STABILITY OF SPACELIKE HYPERSURFACES IN FOLIATED SPACETIMES

ABDÈNAGO BARROS, ALDIR BRASIL, AND ANTÔNIO CAMINHA

Abstract. Given a generalized $\mathbb{M}^{n+1} = I \times_\phi F^n$ Robertson-Walker spacetime we will classify strongly stable spacelike hypersurfaces with constant mean curvature whose warping function verifies a certain convexity condition. More precisely, we will show that given $x : M^n \to \mathbb{M}^{n+1}$ a closed spacelike hypersurfaces of \mathbb{M}^{n+1} with constant mean curvature H and the warping function ϕ satisfying $\phi'' \geq \max\{H\phi', 0\}$, then M^n is either minimal or a spacelike slice $M_{t_0} = \{t_0\} \times F$, for some $t_0 \in I$.

1. Introduction

Spacelike hypersurfaces with constant mean curvature in Lorentz manifolds have been object of great interest in recent years, both from physical and mathematical points of view. In [1], the authors studied the uniqueness of spacelike hypersurfaces with CMC in generalized Robertson-Walker (GRW) spacetimes, namely, Lorentz warped products with 1-dimensional negative definite base and Riemannian fiber. They proved that in a GRW spacetime obeying the timelike convergence condition (i.e, the Ricci curvature is non-negative on timelike directions), every compact spacelike hypersurface with CMC must be umbilical. Recently, Alías and Montiel obtained, in [2], a more general condition on the warping function f that is sufficient in order to guarantee uniqueness. More precisely, they proved the following

Theorem 1.1. Let $f : I \to \mathbb{R}$ be a positive smooth function defined on an open interval, such that $ff'' - (f')^2 \leq 0$, that is, such that $-\log f$ is convex. Then, the only compact spacelike hypersurfaces immersed into a generalized Robertson-Walker spacetime $I \times_f F^n$ and having constant mean curvature are the slices $\{t\} \times F$, for a (necessarily compact) Riemannian manifold F.

Stability questions concerning CMC, compact hypersurfaces in Riemannian space forms began with Barbosa and do Carmo in [4], and Barbosa, Do Carmo and Eschenburg in [5]. In the former paper, they introduced the notion of stability and proved that spheres are the only stable critical points for the area functional, for volume-preserving variations. In the setting of spacelike hypersurfaces in Lorentz manifolds, Barbosa and Oliker proved in [6] that CMC spacelike hypersurfaces are critical points of volume-preserving variations. Moreover, by computing the second variation formula they showed that CMC embedded spheres in the de Sitter space S^{n+1}_1 maximize the area functional for such variations. In this paper, we give a characterization of strongly stable, CMC spacelike hypersurfaces in GRW spacetimes, the essential tool for the proof being a formula for the Laplacian of a new support function. More precisely, it is our purpose to show the following
Theorem 1.2. Let $\mathcal{M}^{n+1} = I \times \mathbb{F}^n$ be a generalized Robertson-Walker spacetime, and $x: M^n \to \mathcal{M}^{n+1}$ be a closed spacelike hypersurface of \mathcal{M}^{n+1}, having constant mean curvature H. If the warping function ϕ satisfies $\phi'' \geq \max\{H\phi', 0\}$ and M^n is strongly stable, then M^n is either minimal or a spacelike slice $M_{t_0} = \{t_0\} \times F$, for some $t_0 \in I$.

2. Stable spacelike hypersurfaces

In what follows, \mathcal{M}^{n+1} denotes an orientable, time-oriented Lorentz manifold with Lorentz metric $\mathcal{g} = \langle \cdot, \cdot \rangle$ and semi-Riemannian connection ∇. If $x: M^n \to \mathcal{M}^{n+1}$ is a spacelike hypersurface of \mathcal{M}^{n+1}, then M^n is automatically orientable ([8], p. 189), and one can choose a globally defined unit normal vector field N on M^n having the same time-orientation of V, that is, such that $\langle V, N \rangle < 0$ on M. One says that such an N points to the future.

A variation of x is a smooth map $X: M^n \times (-\epsilon, \epsilon) \to \mathcal{M}^{n+1}$ satisfying the following conditions:

1. For $t \in (-\epsilon, \epsilon)$, the map $X_t: M^n \to \mathcal{M}^{n+1}$ given by $X_t(p) = X(t, p)$ is a spacelike immersion such that $X_0 = x$.
2. $X_t|_{\partial M} = x|_{\partial M}$, for all $t \in (-\epsilon, \epsilon)$.

The variational field associated to the variation X is the vector field $\frac{\partial X}{\partial t}$. Letting $f = -\langle \frac{\partial X}{\partial t}, N \rangle$, we get

$$\frac{\partial X}{\partial t} \bigg|_M = fN + \left(\frac{\partial X}{\partial t}\right)^T,$$

where T stands for tangential components. The balance of volume of the variation X is the function $\mathcal{V}: (-\epsilon, \epsilon) \to \mathbb{R}$ given by

$$\mathcal{V}(t) = \int_{M \times [0,t]} X^*(d\mathcal{M}),$$

where $d\mathcal{M}$ denotes the volume element of \mathcal{M}.

The area functional $\mathcal{A}: (-\epsilon, \epsilon) \to \mathbb{R}$ associated to the variation X is given by

$$\mathcal{A}(t) = \int_M dM_t,$$

where dM_t denotes the volume element of the metric induced in M by X_t. Note that $dM_0 = dM$ and $\mathcal{A}(0) = \mathcal{A}$, the volume of M. The following lemma is classical:

Lemma 2.1. Let \mathcal{M}^{n+1} be a time-oriented Lorentz manifold and $x: M^n \to \mathcal{M}^{n+1}$ a spacelike closed hypersurface having mean curvature H. If $X: M^n \times (-\epsilon, \epsilon) \to \mathcal{M}^{n+1}$ is a variation of x, then

$$\frac{d\mathcal{V}}{dt} \bigg|_{t=0} = \int_M f dM, \quad \frac{d\mathcal{A}}{dt} \bigg|_{t=0} = \int_M nH f dM.$$
Set $H_0 = \frac{1}{M} \int_M dM$ and $\mathcal{J} : (-\epsilon, \epsilon) \to \mathbb{R}$ given by

$$\mathcal{J}(t) = \mathcal{A}(t) - nH_0 \mathcal{V}(t).$$

\mathcal{J} is called the *Jacobi functional* associated to the variation, and it is a well known result [5] that x has constant mean curvature H_0 if and only if $\mathcal{J}'(0) = 0$ for all variations X of x.

We wish to study here immersions $x : M^n \to \mathcal{M}^{n+1}$ that maximize \mathcal{J} for all variations X. Since x must be a critical point of \mathcal{J}, it thus follows from the above discussion that x must have constant mean curvature. Therefore, in order to examine whether or not some critical immersion x is actually a maximum for \mathcal{J}, one certainly needs to study the second variation $\mathcal{J}''(0)$. We start with the following

Proposition 2.2. Let $x : M^n \to \mathcal{M}^{n+1}$ be a closed spacelike hypersurface of the time-oriented Lorentz manifold \mathcal{M}^{n+1}, and $X : M^n \times (-\epsilon, \epsilon) \to \mathcal{M}^{n+1}$ be a variation of x. Then,

$$n \frac{\partial H}{\partial t} = \Delta f - n \left(\frac{\partial \mathcal{A}}{\partial t} \right) - n \left(\frac{\partial X}{\partial t} \right)^T, \quad \nabla H.$$ \hspace{1cm} (2.1)

Although the above proposition is known to be true, we believe there is a lack, in the literature, of a clear proof of it in this degree of generality, so we present a simple proof here.

Proof. Let $p \in M$ and $\{e_k\}$ be a moving frame on a neighborhood $U \subset M$ of p, geodesic at p and diagonalizing A at p, with $Ae_k = \lambda_k e_k$ for $1 \leq k \leq n$. Extend N and the e'_ks to a neighborhood of p in \mathcal{M}, so that $\langle N, e_k \rangle = 0$ and $\langle \nabla_N e_k \rangle(p) = 0$. Then

$$n \frac{\partial H}{\partial t} = - \text{tr} \left(\frac{\partial A}{\partial t} \right) = - \sum_k \langle \frac{\partial A}{\partial t} e_k, e_k \rangle = - \sum_k \langle \nabla_{\frac{\partial X}{\partial t}} A \rangle e_k, e_k \rangle \langle \nabla_{\frac{\partial X}{\partial t}} A \rangle e_k, e_k \rangle = - \sum_k \left(\nabla_{\frac{\partial X}{\partial t}} A e_k, e_k \right) \langle \nabla_{\frac{\partial X}{\partial t}} A e_k, e_k \rangle \langle \nabla_{\frac{\partial X}{\partial t}} A e_k, e_k \rangle$$

where in the last equality we used the fact that $\langle \frac{\partial X}{\partial t}, e_k \rangle = 0$. Letting

$$I = \sum_k \langle \nabla_{\frac{\partial X}{\partial t}} \nabla_{e_k} N, e_k \rangle \quad \text{and} \quad II = \sum_k \langle A \nabla_{e_k} \frac{\partial X}{\partial t}, e_k \rangle,$$

we have

$$I = \sum_k \left(\nabla_{\frac{\partial X}{\partial t}} \nabla_{e_k} N - \nabla_{e_k} \nabla_{\frac{\partial X}{\partial t}} N + \nabla_{e_k} \langle \frac{\partial X}{\partial t}, e_k \rangle \nabla_{e_k} N, e_k \rangle + \nabla_{e_k} \nabla_{\frac{\partial X}{\partial t}} N, e_k \rangle \right)$$

$$= \sum_k \left(\langle \nabla_{\frac{\partial X}{\partial t}} e_k, \frac{\partial X}{\partial t} \rangle N, e_k \rangle + \langle \nabla_{e_k} \nabla_{\frac{\partial X}{\partial t}} N, e_k \rangle \right)$$

$$= -Ric \left(\frac{\partial X}{\partial t}, N \right) + \sum_k \langle \nabla_{e_k} \nabla_{\frac{\partial X}{\partial t}} N, e_k \rangle.$$

Since the frame $\{e_k\}$ is geodesic at p, it follows that

$$\langle \nabla_{\frac{\partial X}{\partial t}} N, \nabla_{e_k} e_k \rangle = \langle \nabla_{\frac{\partial X}{\partial t}} N, \nabla_{e_k} e_k \rangle = 0$$
at p, and hence
\[
\langle \nabla_{e_k} \frac{\partial X}{\partial t}, e_k \rangle = e_k \langle \nabla_{\frac{\partial X}{\partial t}}, e_k \rangle = -e_k \langle N, \nabla_{e_k} \frac{\partial X}{\partial t} \rangle \\
= -e_k e_k \langle N, \frac{\partial X}{\partial t} \rangle + e_k \langle \nabla_{e_k} N, \frac{\partial X}{\partial t} \rangle \\
= e_k e_k (f) + e_k \langle \nabla_{e_k} N, \left(\frac{\partial X}{\partial t} \right)^T \rangle \\
= e_k e_k (f) + \langle \nabla_{e_k} \nabla_{e_k} N, \left(\frac{\partial X}{\partial t} \right)^T \rangle - \langle Ae_k, \nabla_{e_k} \left(\frac{\partial X}{\partial t} \right)^T \rangle.
\]

For II, we have
\[
II = \sum_k \langle Ae_k, \nabla_{e_k} \frac{\partial X}{\partial t} \rangle = \sum_k \langle Ae_k, \nabla_{e_k} (f N + \left(\frac{\partial X}{\partial t} \right)^T) \rangle \\
= \sum_k \langle Ae_k, f \nabla_{e_k} N \rangle + \sum_k \langle Ae_k, \nabla_{e_k} \left(\frac{\partial X}{\partial t} \right)^T \rangle \\
= -f |A|^2 + \sum_k \langle Ae_k, \nabla_{e_k} \left(\frac{\partial X}{\partial t} \right)^T \rangle
\]

Therefore,
\[
(2.2) \quad \frac{n}{\partial H}{\partial t} = -Ric \left(\frac{\partial X}{\partial t}, N \right) + \Delta f - f |A|^2 + \sum_k \langle \nabla_{e_k} \nabla_{e_k} N, \left(\frac{\partial X}{\partial t} \right)^T \rangle.
\]

Now, letting
\[
\frac{\partial X}{\partial t} = \sum_i^a \alpha_i e_i + f N
\]
and $Ae_k = \sum_j h_{jk} e_j$, one successively gets
\[
Ric \left(\frac{\partial X}{\partial t}, N \right) = \sum_i \alpha_i Ric(N, e_i) + f Ric(N, N) \\
= \sum_{k,l} \alpha_i (R(e_k, e_l)e_k, N) + f Ric(N, N)
\]
and, since $(\nabla_N e_k)(p) = 0$,
\[
\langle R(e_k, e_l)e_k, N \rangle_p = \langle \nabla_{e_l} e_k, e_k \rangle - \langle \nabla_{e_k} e_l, e_k \rangle_N \rangle \rangle \\
= e_l \langle \nabla_{e_k} e_k, N \rangle_p - e_k \langle \nabla_{e_l} e_k, N \rangle_p - e_k \langle \nabla_{e_l} e_k, N \rangle_p \\
= -e_l \langle e_k, \nabla_{e_k} N \rangle_p + e_k \langle e_l, \nabla_{e_l} N \rangle_p \\
= e_l (h_{kk}) - e_k (h_{kl}),
\]
so that
\[
(2.3) \quad Ric \left(\frac{\partial X}{\partial t}, N \right)_p = \sum_{k,l} \alpha_i (h_{kk}) - \sum_{k,l} \alpha_i (h_{kl}) + f Ric(N, N)_p.
\]
Also,
\[
\alpha_l \langle \nabla e_k \nabla e_k N, e_l \rangle = -\alpha_l \sum_j \{ e_k (h_{kj}) \delta_{lj} + h_{kj} \langle \nabla e_k e_j, e_l \rangle \}
\]
and hence
\[
(2.4) \quad \sum_k \langle \nabla e_k \nabla e_k N, \left(\frac{\partial X}{\partial t} \right)^T \rangle = -\sum_{k,l} \alpha_l e_k (h_{kl}).
\]

Substituting (2.3) and (2.4) into (2.2), we finally arrive at
\[
\frac{n}{t} \frac{\partial H}{\partial t} = -\sum_{k,l} \alpha_l e_l (h_{kk}) - f \text{Ric}(N, N)_p + \Delta f - f |A|^2
\]
\[
= - \left(\frac{\partial X}{\partial t} \right)^T (nH) - f \text{Ric}(N, N)_p + \Delta f - f |A|^2.
\]

Proposition 2.3. Let \(M^{n+1} \) be a Lorentz manifold and \(x : M^n \to M^{n+1} \) be a closed spacelike hypersurface having constant mean curvature \(H \). If \(X : M^n \times (-\epsilon, \epsilon) \to \overline{M}^{n+1} \) is a variation of \(x \), then
\[
(2.5) \quad \mathcal{J}''(0)(f) = \int_M f \left\{ \Delta f - \left(\text{Ric}(N, N) + |A|^2 \right) f \right\} dM.
\]

Proof. In the notations of the above discussion, set \(f = f(0) \) and note that \(H(0) = H \). It follows from lemma 2.1 that
\[
\mathcal{J}'(t) = \int_M n \{ H(t) - H \} f(t) dM_t.
\]

Therefore, differentiating with respect to \(t \) once more
\[
\mathcal{J}''(0) = \int_M nH'(0) f(0) dM_0 + \int_M n \{ H(0) - H \} \frac{d}{dt} f(t) dM_t |_{t=0}
\]
\[
= \int_M nH'(0) f dM.
\]

Taking into account that \(H \) is constant, relation (2.1) finally gives formula 2.5 \(\square \)

It follows from the previous result that \(\mathcal{J}''(0) = \mathcal{J}''(0)(f) \) depends only on \(f \in C^\infty(M) \), for which there exists a variation \(X \) of \(M^n \) such that \(\left(\frac{\partial X}{\partial t} \right)^\perp = f N \). Therefore, the following definition makes sense:

Definition 2.4. Let \(M^{n+1} \) be a Lorentz manifold and \(x : M^n \to M^{n+1} \) be a closed spacelike hypersurface having constant mean curvature \(H \). We say that \(x \) is strongly stable if, for every function \(f \in C^\infty(M) \) for which there exists a variation \(X \) of \(M^n \) such that \(\left(\frac{\partial X}{\partial t} \right)^\perp = f N \), one has \(\mathcal{J}''(0)(f) \leq 0 \).
3. Conformal vector fields

As in the previous section, let \overline{M}^{n+1} be a Lorentz manifold. A vector field V on \overline{M}^{n+1} is said to be **conformal** if

\[
\mathcal{L}_V\langle , \rangle = 2\psi\langle , \rangle
\]

for some function $\psi \in C^\infty(\overline{M})$, where \mathcal{L} stands for the Lie derivative of the Lorentz metric of \overline{M}. The function ψ is called the **conformal factor** of V.

Since $\mathcal{L}_V(X) = [V, X]$ for all $X \in \mathcal{X}(\overline{M})$, it follows from the tensorial character of \mathcal{L}_V that $V \in \mathcal{X}(\overline{M})$ is conformal if and only if

\[
\langle \nabla_X V, Y \rangle + \langle X, \nabla_Y V \rangle = 2\psi\langle X, Y \rangle,
\]

for all $X, Y \in \mathcal{X}(\overline{M})$. In particular, V is a Killing vector field relatively to \overline{g} if and only if $\psi \equiv 0$.

Any Lorentz manifold \overline{M}^{n+1}, possessing a globally defined, timelike conformal vector field is said to be a **conformally stationary spacetime**.

Proposition 3.1. Let \overline{M}^{n+1} be a conformally stationary Lorentz manifold, with conformal vector field V having conformal factor $\psi : \overline{M}^{n+1} \to \mathbb{R}$. Let also $x : M^n \to \overline{M}^{n+1}$ be a spacelike hypersurface of \overline{M}^{n+1}, and N a future-pointing, unit normal vector field globally defined on M^n. If $f = \langle V, N \rangle$, then

\[
\Delta f = n\langle V, \nabla H \rangle + f \{ \overline{\text{Ric}}(N, N) + |A|^2 \} + n \{ H\psi - N(\psi) \},
\]

where $\overline{\text{Ric}}$ denotes the Ricci tensor of \overline{M}, A is the second fundamental form of x with respect to N, $H = -\frac{1}{n} \text{tr}(A)$ is the mean curvature of x and ∇H denotes the gradient of H in the metric of M.

Proof. Fix $p \in M$ and let $\{e_k\}$ be an orthonormal moving frame on M, geodesic at p. Extend the e_k to a neighborhood of p in \overline{M}, so that $\langle \nabla_X e_k \rangle(p) = 0$, and let

\[
V = \sum_l \alpha_l e_l - f N.
\]

Then

\[
f = \langle N, V \rangle \Rightarrow e_k(f) = \langle \nabla_{e_k} N, V \rangle + \langle N, \nabla_{e_k} V \rangle = -\langle Ae_k, V \rangle + \langle N, \nabla_{e_k} V \rangle,
\]

so that

\[
\Delta f = \sum_k e_k(e_k(f)) = -\sum_k e_k\langle Ae_k, V \rangle + \sum_k e_k\langle N, \nabla_{e_k} V \rangle = -\sum_k \langle \nabla_{e_k} Ae_k, V \rangle - 2\sum_k \langle Ae_k, \nabla_{e_k} V \rangle + \sum_k \langle N, \nabla_{e_k} \nabla_{e_k} V \rangle.
\]
Now, differentiating $Ae_k = \sum_l h_{kl} e_l$ with respect to e_k, one gets at p

$$\sum_k \langle \nabla_{ek} Ae_k, V \rangle = \sum_{k,l} e_k(h_{kl}) \langle e_l, V \rangle + \sum_{k,l} h_{kl} \langle \nabla_{ek} e_l, V \rangle$$

$$= \sum_{k,l} \alpha_l e_k(h_{kl}) - \sum_{k,l} h_{kl} \langle \nabla_{ek} e_l, N \rangle \langle V, N \rangle$$

$$= \sum_{k,l} \alpha_l e_k(h_{kl}) - \sum_{k,l} h_{kl}^2 f$$

(3.5)

$$= \sum_{k,l} \alpha_l e_k(h_{kl}) - f|A|^2.$$

Asking further that $Ae_k = \lambda_k e_k$ at p (which is always possible), we have at p

$$\sum_k \langle Ae_k, \nabla_{ek} V \rangle = \sum_k \lambda_k \langle e_k, \nabla_{ek} V \rangle = \sum_k \lambda_k \psi = -nH\psi.$$

In order to compute the last summand of (3.4), note that the conformality of V gives

$$\langle \nabla_N V, e_k \rangle + \langle N, \nabla_{ek} V \rangle = 0$$

for all k. Hence, differentiating the above relation in the direction of e_k, we get

$$\langle \nabla_{ek} \nabla_N V, e_k \rangle + \langle \nabla_N V, \nabla_{ek} e_k \rangle + \langle \nabla_{ek} N, \nabla_{ek} V \rangle + \langle N, \nabla_{ek} \nabla_{ek} V \rangle = 0.$$

However, at p one has

$$\langle \nabla_{ek} \nabla_N V, e_k \rangle = -(\nabla_N V, \nabla_{ek} e_k, N) = -(\nabla_N V, \lambda_k N)$$

$$= -\lambda_k \psi \langle N, N \rangle = \lambda_k \psi$$

and

$$\langle \nabla_{ek} N, \nabla_{ek} V \rangle = -\lambda_k \langle e_k, \nabla_{ek} V \rangle = -\lambda_k \psi,$$

so that

(3.7)

$$\langle \nabla_{ek} \nabla_N V, e_k \rangle + \langle N, \nabla_{ek} \nabla_{ek} V \rangle = 0$$

at p. On the other hand, since

$$[N, e_k](p) = (\nabla_N e_k)(p) - (\nabla_{ek} N)(p) = \lambda_k e_k(p),$$

it follows from (3.7) that

$$\langle \overline{\mathcal{R}}(N, e_k) V, e_k \rangle_p = \langle \nabla_{ek} \nabla_N V - \nabla_N \nabla_{ek} V + \nabla_{[N,e_k]} V, e_k \rangle_p$$

$$= -\langle N, \nabla_{ek} \nabla_{ek} V \rangle_p - N(\nabla_{e_k} V, e_k)_p + \langle \lambda_k e_k V, e_k \rangle_p$$

$$= -\langle N, \nabla_{ek} \nabla_{ek} V \rangle_p - N(\psi) + \lambda_k \psi,$$

and hence

(3.8)

$$\sum_k \langle N, \nabla_{ek} \nabla_{ek} V \rangle_p = -nN(\psi) - nH\psi - \overline{\mathcal{R}}(N, V)_p$$

Finally,

$$\overline{\text{Ric}}(N, V) = \sum_l \alpha_l \overline{\text{Ric}}(N, e_l) - f\overline{\text{Ric}}(N, N)$$

$$= \sum_{k,l} \alpha_l (\overline{\mathcal{R}}(e_k, e_l, N) - f\overline{\text{Ric}}(N, N),$$
Let F be closed, then

The curvature H on M is conformal, timelike and closed (in the sense that its dual 1-form is closed), with conformal factor $\psi = \phi'$, where the prime denotes differentiation with respect to t. Moreover, according to [7], for $t_0 \in I$, orienting the (spacelike) leaf $M_{t_0} = \{t_0\} \times F^n$ by using the future-pointing unit normal vector field N, it follows that M_{t_0} has constant mean curvature

$$H = \frac{\phi'(t_0)}{\phi(t_0)}.$$

If $\tilde{M}^{n+1} = I \times_\phi F^n$ is a generalized Robertson-Walker spacetime and $x : M^n \rightarrow \tilde{M}^{n+1}$ is a complete spacelike hypersurface of \tilde{M}^{n+1}, such that $\phi \circ \pi_I$ is limited on M, then $\pi_F|_M : M^n \rightarrow F^n$ is necessarily a covering map ([1]). In particular, if M^n is closed, then F^n is automatically closed.

One has the following corollary of proposition 3.1:

Corollary 4.1. Let $\tilde{M}^{n+1} = I \times_\phi F^n$ be a generalized Robertson-Walker spacetime, and $x : M^n \rightarrow \tilde{M}^{n+1}$ a spacelike hypersurface of \tilde{M}^{n+1}, having constant mean curvature H. Let also N be a future-pointing unit normal vector field globally defined on M^n. If $V = (\phi \circ \pi_I) \frac{\partial}{\partial t}$ and $f = \langle V, N \rangle$, then

$$\Delta f = \left\{ \overline{Ric}(N, N) + |A|^2 \right\} f + n \left\{ H \phi' + \phi'' \langle N, \frac{\partial}{\partial t} \rangle \right\}.$$

4. Applications

A particular class of conformally stationary spacetimes is that of *generalized Robertson-Walker* spacetimes [1], namely, warped products $\tilde{M}^{n+1} = I \times_\phi F^n$, where $I \subseteq \mathbb{R}$ is an interval with the metric $-dt^2$, F^n is an n-dimensional Riemannian manifold and $\phi : I \rightarrow \mathbb{R}$ is positive and smooth. For such a space, let $\pi_I : \tilde{M}^{n+1} \rightarrow I$ denote the canonical projection onto the I-factor. Then the vector field

$$V = (\phi \circ \pi_I) \frac{\partial}{\partial t}$$

is conformal, timelike and closed (in the sense that its dual 1-form is closed), with conformal factor $\psi = \phi'$, where the prime denotes differentiation with respect to t. Moreover, according to [7], for $t_0 \in I$, orienting the (spacelike) leaf $M_{t_0} = \{t_0\} \times F^n$ by using the future-pointing unit normal vector field N, it follows that M_{t_0} has constant mean curvature

$$H = \frac{\phi'(t_0)}{\phi(t_0)}.$$
where $\overline{\text{Ric}}$ denotes the Ricci tensor of \overline{M}, A is the second fundamental form of x with respect to N, and $H = -\frac{1}{n}\text{tr}(A)$ is the mean curvature of x.

Proof. First of all, $f = \langle V, N \rangle = \phi \langle N, \frac{\partial}{\partial t} \rangle$, and it thus follows from (3.3) that

$$\Delta f = \{ \overline{\text{Ric}}(N, N) + |A|^2 \} f + n \{ H\phi' - N(N') \}.$$

However,

$$\nabla \phi' = -\langle \nabla \phi', \frac{\partial}{\partial t} \rangle \frac{\partial}{\partial t} = -\phi'' \frac{\partial}{\partial t},$$

so that

$$N(N') = -\phi'' \langle N, \frac{\partial}{\partial t} \rangle.$$

Therefore, M^n stable implies

$$0 \geq J"(0)(g) = \int_M g \{ \Delta g - (\overline{\text{Ric}}(N, N) + |A|^2 \} g \} \, dM$$

for all $g \in C^\infty(M)$ for which gN is the normal component of the variational field of some variation of M^n. In particular, if $f = \langle V, N \rangle = \phi \langle N, \frac{\partial}{\partial t} \rangle$, where $V = (\phi \circ \pi) \frac{\partial}{\partial t}$, and $g = -f = -\langle V, N \rangle$, then

$$\Delta g = \{ \overline{\text{Ric}}(N, N) + |A|^2 \} g - n \{ H\phi' + \phi'' \langle N, \frac{\partial}{\partial t} \rangle \}.$$

Therefore, M^n stable implies

$$0 \geq \int_M \phi \langle N, \frac{\partial}{\partial t} \rangle \left\{ H\phi' + \phi'' \langle N, \frac{\partial}{\partial t} \rangle \right\} \, dM.$$

Letting θ be the hyperbolic angle between N and $\frac{\partial}{\partial t}$, it follows from the reversed Cauchy-Schwarz inequality that $\cosh \theta = -\langle N, \frac{\partial}{\partial t} \rangle$, with $\cosh \theta = 1$ if and only if N and $\frac{\partial}{\partial t}$ are collinear at every point, that is, if and only if M^n is a spacelike leaf M_{t_0} for some $t_0 \in I$. Hence,

$$0 \geq \int_M \phi \cosh \theta \left\{ -H\phi' + \phi'' \cosh \theta \right\} \, dM.$$

Now, notice that $-H\phi' + \phi'' \cosh \theta \geq -\phi'' + \phi'' \cosh \theta$, which gives

$$\phi \cosh \theta(-H\phi' + \phi'' \cosh \theta) \geq \phi \phi'' \cosh \theta(\cosh \theta - 1).$$

Therefore,

$$0 \geq \int_M \phi \cosh \theta(-H\phi' + \phi'' \cosh \theta)\, dM \geq \int_M \phi \phi'' \cosh \theta(\cosh \theta - 1) \geq 0,$$

and hence

$$\phi''(\cosh \theta - 1) = 0 \quad \text{and} \quad \phi'' = H\phi'.$$
on M. If, for some $p \in M$, one has $\phi''(p) = 0$, then $\phi'H = 0$ at p. If $H \neq 0$, then $\phi'(p) = 0$. But if this is the case, then proposition 7.35 of [8] gives that
\[
\nabla_V \frac{\partial}{\partial t} = \frac{\phi'}{\phi} V = 0
\] at p for any V, and M is totally geodesic at p. In particular, $H = 0$, a contradiction. Therefore, either $\phi''(p) = 0$ for some $p \in M$, and M is minimal, or $\phi'' \neq 0$ on all of M, whence $\cosh \theta = 1$ always, and M is an umbilical leaf such that $\phi'' = H\phi'$. □

Remark 4.3. Note that $\phi'' = H = \frac{\phi'}{\phi}$, i.e., $\phi''\phi - (\phi')^2 = 0$, which is a limit case of Aliás and Montiel’s timelike convergent condition.

References

Abdênago Barros, Departamento de Matemática-UF, 60455-760-Fortaleza-CE-Br
E-mail address: abbarros@mat.ufc.br

Aldir Brasil, Departamento de Matemática-UF, 60455-760-Fortaleza-CE-Br
E-mail address: aldir@mat.ufc.br

Antônio Caminha, Departamento de Matemática-UF, 60455-760-Fortaleza-CE-Br
E-mail address: caminha@mat.ufc.br