Contact and equivalence of submanifolds of homogeneous spaces

Alexandre A. M. Rodrigues

1 Introduction

The problem of equivalence of submanifolds of homogeneous spaces of Lie groups was extensively treated by F. Cartan by his method of moving frames [2]. A basic idea of Cartan’s method is that for sufficiently high k, G-contact of order k (see §4) implies G-equivalence. In other words, for each homogeneous space M there exists an integer k, depending on the dimension p, such that if two submanifolds S and \overline{S} of same dimension p have G-contact of order k then, there exists $g \in G$ such that $gS = \overline{S}$. Cartan treated several important geometrical examples and proved in each case the existence of k.

Essentially, Cartan’s method of proving the existence of the element $g \in G$ consists in using the uniqueness of solution of a system of first order differential equations as in Frobenius theorem. Cartan’s theory has been the subject of attention of a great number of authors (see for example [4], [5]). However, they all reduce the proof of the existence of the element $g \in G$ to the uniqueness of solution of a first order differential system whereas it seems more natural and geometrical to deal directly with a higher order differential system.

The notion of contact element as defined by Ehresmann [3] allows a geometrical formulation of the theorem of existence and uniqueness of solution of higher order
completely integrable differential systems which is a straight forward generalization of Frobenius theorem (theorem 1). It is the uniqueness of this theorem that we use to solve the problem of G-equivalence. As a result, the regularity conditions on the submanifolds S and \overline{S}, which are necessary for the theorem of equivalence to hold (theorem 3), can be given a simple and geometrical definition, valid in any homogeneous space M. Also, in the method of moving frames, the invariants of a submanifold S of M are defined attaching special higher order frames to the points of S, [2], [5]. These frames are constructed by subtle geometrical arguments valid for a fixed homogeneous space whereas we construct the invariants of S as the elements of a complete set of invariants of the orbits of G acting on a manifold of higher order contact elements.

The equivalence problem may be posed for two immersions $f, h : S \to M$ of a differentiable manifold S. f and g are equivalent if there exits $g \in G$ such that $h = L_g \circ f$ where $L_g(x) = gx$, $x \in S$. This fixed parametrization theorem has been treated by J.A. Vederesi [7] by means of a higher order differential system defined in a manifold of jets.

The paper ends with a necessary and sufficient condition for a submanifold S of M to be an open set of an orbit of a Lie subgroup K of G.

This paper is a summary of a lecture delivered at the 7th Conference on Geometry and Topology of Manifolds at Bedlewo. Proves will appear elsewhere.

2 Contact elements

All manifolds and maps considered in this paper are assumed to be differentiable of class C^∞. If M and N are manifolds and $f : M \to N$ is a map, the induced map on tangent spaces at points $a \in M$ and $b = f(a) \in N$ will be denoted by
Given integers \(p, k \geq 0 \), \(p \leq \dim M \), \(J^{k,p}M \) denotes the manifold of all \(k \)-jets of rank \(p \) whose source is the origin of \(\mathbb{R}^p \) and whose target is any point of \(M \). Let \(GL^k \mathbb{R}^p \) be the Lie group of invertible \(k \)-jets whose source and target are at the origin of \(\mathbb{R}^p \). By definition, a contact element of order \(k \) and dimension \(p \) of \(M \) is an equivalence class of \(J^{k,p}M \) under the equivalence relation: for \(X, Y \in J^{k,p}M \), \(X \sim Y \) if there exists \(Z \in GL^k \mathbb{R}^p \) such that \(Y = X \circ Z \). The set of contact elements of order \(k \) and dimension \(p \) of \(M \) is a differentiable manifold denoted by \(C^{k,p}(M) \). \(C^{0,p}(M) \) identifies naturally with \(M \).

For \(0 \leq k' \leq k \) there is a natural projection \(\pi^k_{k'} : C^{k,p}(M) \rightarrow C^{k',p}(M) \). If \(k' = 0 \), we write \(\pi^k : C^{k,p}M \rightarrow M \) instead of \(\pi^k_0 \). The fiber of \(C^{k,p}M \) over \(a \in M \) is denoted by \(C^a_{k,p}M \). If \(p \) is the dimension of \(M \), \(C^a_{k,p}M \) has only one element which is denoted by \(C^a_{k}M \) and is called the contact element of order \(k \) of \(M \) at the point \(a \in M \).

Given a submanifold \(S \) of \(M \), \(S \subset M \), and an integer \(p \), \(0 \leq p \leq \dim S \), there is a natural injection of \(C^{k,p}S \) into \(C^{k,p}M \). If \(p \) is the dimension of \(S \), composing the map \(a \in S \rightarrow C^a_{k,p}S \in C^{k,p}M \) with the injection \(C^{k,p}S \rightarrow C^{k,p}M \), we define an injection \(C^k : a \in S \rightarrow C^a_{k}S \in C^{k,p}M \). The image of this injection is denoted by \(C^kS \subset C^{k,p}M \). Two submanifolds \(S \) and \(\overline{S} \) of \(M \) of same dimension \(p \) have contact of order \(k \) at a common point \(a \) if \(C^a_{k}S = C^a_{k} \overline{S} \).

3 Completely integrable differential systems of higher order

A differential system of order \(k \geq 1 \) and dimension \(p \) defined over a manifold \(M \) is a submanifold \(\Omega^k \) of \(C^{k,p}M \) such that the projection \(\pi^k : \Omega^k \rightarrow M \) is of rank equal to the dimension of \(M \). An integral manifold of \(\Omega^k \) is a submanifold \(S \) of \(M \) of dimension \(p \) such that \(C^k_xS \in \Omega^k \) for all \(x \in S \). For \(X \in C^{k,p}M \), let \(F_X \) be the fiber
of X by the projection $\pi_{k-1}^k : C^{k,p}M \to C^{k-1,p}M$. The symbol $\sigma(X)$ of Ω^k at the point $X \in \Omega^k$ is by definition, the vector space

$$\sigma(X) = T_X\Omega^k \cap T_XF_X.$$

Let $X^{k+1} \in C^{k+1,p}M$, $X^k = \pi_{k+1}^k(X)$, and let S be a submanifold of M such that $X^{k+1} = C_{\alpha}^{k+1} S$, $\alpha \in S$. Then, $C_{X^k}^1(C^kS)$ depends only on X^{k+1} and not on the choice of S. Hence, there is a natural imbedding

$$\Lambda_{k,1} : C^{k+1,p}M \to C^{1,p}(C^{k,p}M)$$

which maps X^{k+1} into $C_{X^k}^1(C^kS)$. By definition, the first prolongation of the differential system Ω^k is the subset $\Omega^{k,1}$ of $C^{k+1,p}M$ defined by

$$\Omega^{k,1} = (\Lambda_{k,1})^{-1}[C^{1,p}(\Omega^k) \cap \Lambda_{k,1}(C^{k+1,p}M)].$$

Since $\pi_{k+1}^k = \pi_0^1 \circ \Lambda_{k,1}^{-1}$, it follows that π_{k+1}^k maps $\Omega^{k,1}$ into Ω^k. If S is an integral manifold of Ω^k then, $C_{x}^{k+1}S \in \Omega^{k,1}$ for every $x \in S$. Hence, a necessary condition for the existence of an integral manifold of Ω^k going through every point of Ω^k is that the projection $\pi_{k+1}^k : \Omega^{k,1} \to \Omega^k$ be surjective.

Theorem 1: Let $\Omega^k \subset C^{k,p}M$ be a differential system of order $k \geq 1$ and let $X \in \Omega^k$ be a contact element such that

1) $\sigma(X) = \{0\}$;

2) The image of $\Omega^{k,1}$ by the projection $\pi_{k+1}^k : \Omega^{k,1} \to \Omega^k$ is a neighborhood of X in Ω^k.

Then, there exists an integral manifold S of Ω^k such that $X \in C^kS$. Moreover, if S and S' are integral manifolds of Ω^k such that $X \in C^kS \cap C^kS'$, there exists a set W which is an open neighborhood of X in C^kS and C^kS'.
Theorem 1 is a geometrical version of the theorem of existence and uniqueness of solutions of completely integrable systems of partial differential equations of order \(k \geq 1 \). Taking suitable coordinates in \(C^{k+1,p}M \) and \(C^{k,p}M \), the existence of integral manifolds of \(\Omega^k \) reduces to the existence of solutions of a completely integrable system of partial differential equations [6].

4 Contact of submanifolds

Let \(G \) be a Lie group acting transitively on the manifold \(M \). Two submanifolds \(S \) and \(\overline{S} \) of \(M \) of same dimension \(p \), have \(G \)-contact of order \(p \) at points \(a \in S \) and \(\overline{a} \in \overline{S} \) if there exists \(g \in G \) such that \(ga = \overline{a} \) and \(gS \) and \(\overline{S} \) have contact of order \(k \) at the point \(\overline{a} \). \(S \) and \(\overline{S} \) have \(G \)-contact of order \(k \geq 0 \) if there exists a diffeomorphism \(\phi : S \to \overline{S} \) such that for all \(x \in S \), \(S \) and \(\overline{S} \) have contact of order \(k \) at points \(x \) and \(\phi(x) = g(x)x \). We say in this case that \(\phi \) makes contact of order \(k \) of \(S \) onto \(\overline{S} \). \(S \) and \(\overline{S} \) are \(G \)-equivalent at points \(a \in S \) and \(\overline{a} \in \overline{S} \) if there are open neighborhoods of \(a \) and \(\overline{a} \) in \(S \) and \(\overline{S} \) which are \(G \)-equivalent.

The action of \(G \) on \(M \) extends to an equivariant action on the manifold \(C^{k,p}M \) of contact elements of order \(k \) and dimension \(p \) of \(M \). For a point \(x \in M \), let \(C^k_xS \), \(G^k_x \) and \(d^k(x) \) denote respectively the contact element of order \(k \) of \(S \) at the point \(x \), the isotropy subgroup of \(G \) at the point \(C^k_xS \) and the dimension of \(G^k_x \). We call \(G^k_x \) the isotropy subgroup of order \(k \) of the point \(x \) of \(S \). Put \(X = C^k_xS \) and let \(h^k(x) \) be the dimension of the vector space \(T_X(GX) \cap T_XC^kS \) where \(C^kS \) is the submanifold of \(C^{k,p}M \) of all contact elements of order \(k \) of \(S \) and \(T_X(GX) \) and \(T_XC^kS \) are the tangent spaces of the orbit \(GX \) and of \(C^kS \) at the point \(X \).

For \(k' \leq k \), \(d^k(x) \leq d^{k'}(x) \) and \(h^k(x) \leq h^{k'}(x) \). Hence, there exists an integer
k \geq 1\) such that \(d^k(x) = d^{k-1}(x)\) and \(h^k(x) = h^{k-1}(x)\). We say that \(a \in S\) is a \(k\)-regular point of \(S\) under the action of \(G\) if there exists \(k \geq 1\) such that

1) \(d^k(a) = d^{k-1}(a)\) and \(h^k(a) = h^{k-1}(a)\);

2) \(d^k(x)\) and \(h^k(x)\) are constant for \(x\) varying in a neighborhood of \(a\) in \(S\).

The order of \(a\) is the least integer satisfying conditions above. If \(a\) is a \(k\)-regular point of \(S\) then \(ga\) is a \(k\)-regular point of \(gS\).

Theorem 2: Let \(S, \overline{S}\) be two submanifolds of \(M\) of same dimension \(p\). Let \(a \in S\) and \(\overline{a} \in \overline{S}\) be two points. Assume that \(\overline{a}\) is a \(k\)-regular point of \(\overline{S}\) and that there exists a continuous map \(\varphi : V \to G\), defined in a neighborhood \(V\) of \(a\) in \(S\), such that \(\varphi(a).a = \overline{a}\), \(\varphi(x).x \in S\) and \(\varphi(x).C^k_xS = C^k_{\varphi(x)}\overline{S}\) for all \(x \in V\). Then, there exist open neighborhoods \(W\) and \(\overline{W}\) of \(a\) and \(\overline{a}\) in \(S\) and \(\overline{S}\) which are \(G\)-equivalent.

The proof of theorem 2 is based on the uniqueness statement of theorem 1.

In theorems 3, 4, 5, 6, 8 below we assume that \(G\) is a compact Lie group and \(H\) is a closed subgroup of \(G\). Let \(L\) be the union of all \(G\)-orbits of \(C^{k,p}M\) of type \(H\) that is, orbits whose isotropy subgroups are conjugate to \(H\). Denote by \(L/G\) the quotient space of \(L\) by the orbits and by \(\pi : L \to L/G\) the natural projection. It is known [1] that \((L, L/G, \pi, G/H, G)\) is a differentiable fiber bundle with structural group \(G\) and standard fiber \(G/H\).

Let \(f : S \to \overline{S}\) be a diffeomorphism such that \(S\) and \(\overline{S}\) have \(G\)-contact of order \(k \geq 1\) at corresponding points \(x \in S\) and \(\overline{x} = f(x) \in \overline{S}\) and let \(a \in S\) and \(\overline{a} = f(a) \in \overline{S}\) be two points. Considering suitable cross sections of the fiber bundle \((L, L/G, \pi, G/H, G)\) one can prove the existence of a neighborhood \(U\) of \(a\) in \(S\) and of a differentiable map \(\varphi : V \to G\) such that \(\varphi(x).x = f(x)\) and \(\varphi(x).C^k_xS = C^k_{\varphi(x)}\overline{S}\).

Hence, theorem 2 can be restated as follows:
Theorem 3 Assume that G is compact and that there exists $k \geq 1$ such that

1. $a \in S$ is a k-regular point.

2. The isotropy subgroups of C^k_xS are conjugate in G for all $x \in S$.

3. There exists a diffeomorphism $f : S \to \overline{S}$ such that S and \overline{S} have G-contact of order k at corresponding points.

Let $a \in S$ be such that $f(a) = \overline{a}$. Then S and \overline{S} are locally G-equivalent at points a and \overline{a}.

Theorem 4 Assume that S and \overline{S} are connected and that there exists an integer $k \geq 1$ such that:

1. $x \in S$ is a k-regular point of \overline{S} and $h^k(x) = 0$ for all $x \in S$.

2. The isotropy subgroups of C^k_xS are conjugate in G for all $x \in S$.

3. There exists a diffeomorphism $f : S \to \overline{S}$ such that S and \overline{S} have G-contact of order k at corresponding points.

Then, f is the restriction to S of the translation by an element g of $G : f = L_g|S$.

Consider again the fiber bundle $(L, L/G, \pi, G/H, G)$. There exists a finite number of real valued differentiable functions $\tilde{\rho}_i, 1 \leq i \leq r$, defined in L, such that two contact elements $X, \overline{X} \in L$ are in the same fiber of L if and only if $\tilde{\rho}_i(X) = \tilde{\rho}_i(\overline{X})$, $1 \leq i \leq r$. Given a submanifold S of M of dimension p, and assuming that the orbits of C^k_xS are of type H for all $x \in S$, one can pull back the functions $\tilde{\rho}_i$ by the map $\sigma^k : x \in S \to C^k_xS \in L$. The set of functions $\rho_i = \tilde{\rho}_i \circ \sigma^k, 1 \leq i \leq r$, is a complete set of G-invariants of order k of the submanifold S of M. Often the invariants can
be defined in a natural way and have deep geometrical meaning as for instance, the
curvature and torsion of curves and the principal curvatures of surfaces in \mathbb{R}^3.

Assuming that the isotropy subgroups of C^k_xS and $C^k_\pi\overline{S}$ are of type H for all
$x \in S$ and $\pi \in \overline{S}$, complete sets of invariants of order k, ρ_i and $\overline{\rho}_i$ can be defined
in S and \overline{S}. Condition $h^k(\pi) = 0$ in theorem 4 is then clearly equivalent to stating
that the rank of differentials $d\rho_i$, $1 \leq i \leq r$, is p at every point $\pi \in \overline{S}$ One can then
restate theorems 3 and 4 in the following way.

Theorem 5 : Let $\pi \in \overline{S}$ be a k-regular point of \overline{S}, $k \geq 1$. Assume following
conditions are satisfied:

1. The isotropy subgroups of C^k_xS and $C^k_\pi\overline{S}$ are conjugate for all $x \in S$ and $\pi \in S$.

2. There exists a diffeomorphism $f : S \rightarrow \overline{S}$ such that
$$\overline{\rho}_i = \rho_i \circ f, \ 1 \leq i \leq r.$$

Then, S and \overline{S} are locally G-equivalents at points $a = f^{-1}(\pi)$ and $\overline{\pi}$.

Theorem 6 : Let S, \overline{S} be two submanifolds of M and let $k \geq 1$ be such that

1. Every point $\pi \in \overline{S}$ is k-regular.

2. The isotropy subgroups of C^k_xS and $C^k_\pi\overline{S}$ are conjugate for all $x \in S$ and $\pi \in S$.

3. There exists a diffeomorphism $f : S \rightarrow \overline{S}$ such that
$$\rho_i = \overline{\rho}_i \circ f, \ 1 \leq i \leq r.$$

4. The rank of differentials $d\overline{\rho}_i$, $1 \leq i \leq r$, is p at every point $\pi \in \overline{S}$.
Then, \(f \) is the restriction to \(S \) of the left translation by an element of \(G \): \(f = L_g|S \).

Let us assume that \(S \) is an open set of an orbit of a Lie subgroup \(K \) of \(G \). Then, \(h^k(x) = p \) and the isotropy subgroups of \(C^k_x \) are conjugate for all \(x \in S \) and \(k \geq 0 \). Hence there exits \(k \geq 1 \) such that every \(x \in S \) is a \(k \)-regular point of \(S \). Conversely,

Theorem 7: A necessary and sufficient condition for a connected submanifold \(S \) of \(M \) to be an open set of an orbit of a Lie subgroup \(K \) of \(G \) is the existence of \(k \geq 1 \) such that for all \(x \in S \), \(x \) is a \(k \)-regular point of \(S \) and \(h^k(x) = p \).

Assuming \(G \) compact and the isotropy subgroups of order \(k \) of points of \(S \) conjugate, a complete set of invariants of order \(k \) can be defined on \(S \). Clearly, \(h^k(x) = p \) for every \(x \in S \) if and only if the invariants are constant on \(S \). Therefore, the following corollary to theorem 7 holds.

Theorem 8: Assume \(G \) compact and \(S \) connected. Assume also that for some integer \(k \geq 1 \), every point of \(S \) is \(k \)-regular and all isotropy subgroups of order \(k \) of points of \(S \) are conjugate. Then, a necessary and sufficient condition for \(S \) to be an open set of an orbit of a Lie subgroup of \(G \), is that the invariants of order \(k \) of \(S \) be constant.

Bibliography

Instituto de Matemática e Estatística

Universidade de São Paulo

E-mail: aamrod@terra.com.br

10