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Abstract

In this mini-course we will discuss the so called Nagaev spectral method: a method which exploits
properties of the Ruelle-Perron-Frobienius transfer operator in order to establish limit theorems (such
as the central limit theorem) for dynamical systems. The course will consist of three sessions. The
first two sessions will be devoted to motivating the problem, introducing the required mathematical
tools and discussing some first properties of the transfer operator. In the final session we will give
explicit examples of proving the central limit theorem using the Nagaev method.
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1 Session 1: Introduction

1.1 The Central Limit Theorem for iid random variables

Setup

Suppose that (Ω,F ,P) is a probability space. Recall that random variables X,Y : Ω → R are identically
distributed if their distributions PX(A) := X∗P = P(X ∈ A) and PY (A) := Y∗P = P(Y ∈ B) are equal.
Recall that X,Y are independent if their joint distribution PX,Y (A,B) := P(X ∈ A, Y ∈ B) is equal to
the product distribution PX(A) · P(B).
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The strong law of large numbers

If we take a sequence of independent and identically distributed (iid) random variables X0, X1, . . . we
know from the Strong Law of Large numbers (SLN) that

Xn :=
1

n

n−1∑
k=0

Xk → X =

∫
X0 dP, almost surely. (1)

So, the SLN tells us that if we repeat a random experiment n times independently (e.g. dice roll, coin
toss. . . ), then the average outcome over time approaches the average over all possible outcomes of a
single experiment. A natural question to ask is whether it is possible to understand how quickly Xn

approaches X , and also if we can understand how Xn is distributed for large n. The central limit theorem
(CLT) Wall provide us with a partial answer in the case that Xk ∈ L2.

The Central Limit Theorem

Recall that a sequence of measures (µn) converges weakly to measure µ, and write µn →w µ if
∫
φdµn →∫

φdµ for every continuous bounded function φ : Ω → R; and recall that a sequence of random
variables X0, X1, . . . : Ω,→ R converges in distribution to some Y : Ω → R, and write Xn →d Y , if
their distributions converge weakly: (Xn)∗P →w Y∗P.

Theorem 1.1 (CLT). Suppose that X0, X2, . . . ∈ L2 are iid, then for every t ∈ R∑n−1
k−0 Xk − nX

√
n

→d Z,

where Z ∼ N (0, σ2) and σ2 =
∫
X2

0 dP.

Remark 1.2. Notice that ∑n−1
k−0 Xk − nX

√
n

=
1

1/
√
n
(Xn −X),

and we know Xn −X →a.s. 0 thus 1/
√
n, in some sense, captures the rate of convergence1. Moreover,

the CLT tells us that the Xn is close to the normal distribution N (0, σ2/
√
n)

Characteristic functions

Later, we will give a simple proof of the central limit theorem. The proof will make use of the properties
of the characteristic function (or Fourier transform) of a random variable. The characteristic function (CF)
of a random variable X is given by2

ϕX : R → C, ϕX(t) :=

∫
eitX dP =

∫
eitx dX∗P.

Lemma 1.3. 1. The CF of a (real) random variable always exists

2. If a random variable X admits a density fX (i.e. the Radon-Nikodym derivative dfX/dLeb) exists
then, the CF is the Fourier transform of fX

1More formally, If 1/
√
n

an
→ 0 then Xn−X

an
→P 0, so in fact 1/

√
n describes speed that Xn −X converges to 0 in measure.

2In the last inequality we make use of the change of variables formula: If T : Ω → Ω′ is a measurable map between
measrurable spaces then
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3. The CF of X uniquely determines X∗P, (there exists some inversion formula)

4. If X0, X1, . . . , Xn−1 are independent then the CF of the sum is equal to the product of the CFs:∫
eit

∑n−1
k=0 dP =

n−1∏
k=0

∫
eitXk dP.

Proof. 1. x 7→ eitx is bounded and so integrable.

2. Follows from the definition.

3. One can check that if µX is the distribution of a random variable X and if φX is its distribution
then

µX(x1, x2) +
1

2
µX({x1}) +

1

2
µX({x2}) = lim

T→∞

∫ T

−T

e−itx1 − e−itx2

it
φX(t) dt.

4. Exercise.

□

Example 1.4. If Z ∼ N (0, σ2) then ∫
eitZ dP = e−

1
2
σ2t2 .

Another important property of CFs is that they characterise converge in distribution.

Theorem 1.5 (Levy’s continuity thoerem [Bil95, Theorem 26.3]). A sequence of random varaiblesX0, X1, . . . :
Ω → R converges in distribution if and only if the corresponding sequence ϕXn converges pointwise. In partic-
ular,

Xn →d X ⇔
∫
eitXn dP →

∫
eitX dP for every t ∈ R.

A proof of the CLT

Proof of Theorem 1.1. We will assume that
∫
X0 dP = 0, the general case will then follow from considering

X̃k = Xk −
∫
X0 dP. Let Zn = 1√

n

∑n−1
j=0 Xj . As the Xk are independent, 4 of Lemma 1.3 gives∫

eitZn dP = ϕ(t)n (2)

where ϕ(t) =
∫
eitX0 dP. Since X0 ∈ L2, we have3

ϕ(t) =

∫ ∞∑
k=0

(itX0)
k

k!
dP = 1 + it

∫
X0 dP− t2

∫
X2 dP+ o(t2) (as t→ 0). (3)

Combining (2) and (3) we find that∫
eitZn/

√
n dP = (ϕ(t/sqrtn)n =

(
1− t2

2n
σ2 + o

(
t2

n

))n

→ e−σ2t2/2.

Theorem 1.5 together with 1.4 concludes the proof. □
3We write f(t) = o(g(t)) as t → c if limt→c f(t)/g(t) = 0, we will drop the "as t → c" if it is clear from the context.
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Important points form the proof

1. We used independence to write the CF of the sum as ϕ(t)n for some ϕ

2. We found an asymptotic expansion of ϕ near 0

3. Used the continuity theorem to conclude

The deterministic case

Even though the above proof does not work for if Xk is a deterministic process it is very natural to still
expect a central limit theorem to hold if the process is sufficiently chaotic. For example, the outcome of
a coin toss is not random, just very sensitive to initial conditions, and experimentally we can see that
successive coin tosses will satisfy the central limit theorem.

Let us suppose from now on that (Ω,B,Leb) is a standard probability space and that f : Ω → Ω is
non-singular ( Leb(A) = 0 ⇔ Leb(f−1A) = 0) transformation. For every observable φ : Ω → R (i.e.
real valued measurable function) we can consider the sequence (φ ◦ fk)k≥0 and try to understand the
statistical behaviour as we did with the iid sequence X0, X1, . . .. The sequence (φ ◦ fk)k≥0 is not iid,
however:

• if µ is an invariant measure for f then the sequence (φ ◦ fk)k≥0 is identically distributed (but not
independent)

• if µ is invariant, ergodic and finite, then the strong law of large numbers holds: 1
n

∑n−1
k=0 φ◦fk →a.s.∫

φdµ

• if µ is mixing for f there is some form asymptotic independence: the events A, f−nB become
independent over time, µ(f−nA ∩B) → µ(A)µ(B).

We will show that in certain cases it is indeed possible to mimic the proof of the CLT given above for
sufficiently chaotic dynamical systems.

1.2 Transfer operators

The main tool in proving a deterministic version of the central limit theorem will be the Ruelle-Frobenius-
Perron operator or simply the transfer operator corresponding to a dynamical system.

Definition of The transfer operator

The transfer operator L : L1 → L1 is the operator which describes how densities evolve under the
dynamics of f .

Question: Suppose that we distribute mas on Ω according to some density h ∈ L1. How will mass be
distributed after the space is transformed by f?

Well, our initial (signed) measure is µh = dLeb, and so the measure after time 1 will be f∗µh. Thus, we
define

L(h) := df∗µh
dLeb

.
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2 Session 2: Transfer operators and spectral gap

2.1 Transfer operators continued

Basic properties

Lemma 2.1. If h ∈ L1 then L(h) is the unique element of L1 such that∫
φ · Lh dLeb =

∫
φ ◦ f · h dLeb,

for all φ ∈ L∞.

Proof. By definition∫
φ · Lh dLeb =

∫
φdf∗µh =

∫
φ ◦ f dµh =

∫
φ ◦ f · h dLeb .

Now, suppose that there exists another element g ∈ L∞ which satisfies the same identity. Then∫
φ · (Lh− g) dLeb = 0,

for every φ ∈ L∞. Taking φ = sgn(Lh− g) in the above we find that
∫
|Lh− g| dLeb = 0, and so Lh

and g must be almost everywhere equal. □

Lemma 2.2. L : L1 → L1 is a positive, bounded linear operator with norm equal to 1.

Proof. 1. Linearity follows from the definition.

2. Positive: Suppose that h ∈ L1 is almost everywhere positive, and so defines a positive measure µh.
The measure f∗µh will also only assign positive measure to any Borel set. As L(h) is by definition
the density of f∗µh it must be also almost everywhere positive as other wise there would be some
A with Leb(A) > 0 such that f∗µh(A) < 0.

3. Bounded: Use: To see that L is bounded we can use Lemma 2.1 to obtain

‖Lh‖1 =
∫

|Lh| dΨ =

∫
sgn(Lh) · Lh dLeb =

∫
sgn(Lh) ◦ f · h dLeb ≤ ‖h‖1. (4)

Thus, the transfer operator is a weak contraction: ‖L‖1 ≤ 1.

4. Norm 1: take h > 0 in (4) above and use the fact that L is positive.

□

Definition 2.3. We will say that f : [0, 1] → [0, 1] is a Markov map if there exists a partition P of [0, 1]
into sub-intervals In such that

1. f : In → f(In) is bijective

2. f(In) is a union of elements in P

3. the sigma algebra σ{f−kIn : In ∈ P} = B (up to sets of measure zero)
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Example 2.4. Suppose that f : [0, 1] → [0, 1] is Markov and that f is C1 on each of its partition
elements. Then, we can compute the transfer operator explicitly. Let h ∈ L1 and ψ ∈ L∞ and write
fn := f |In , then ∫

h · ψ ◦ f dLeb =
∑
n

∫
In

h · ψ ◦ f dLeb

=
∑
n

∫
f(In)

h ◦ f−1
n · ψ ◦ f ◦ f−1

n · (f−1
n )′ dLeb

=

∫ (∑
n

[
1

f ′
1Inh

]
◦ f−1

n

)
· ψ dLeb .

As h ∈ L1 and ψ ∈ L∞ were arbitrary we know from Lemma 2.1 that

Lh =
∑
n

[
1

f ′
1Inh

]
◦ f−1

n

Example 2.5. Suppose that f(x) = 2x mod 1, then our observation above says that the corresponding
transfer operator will be given by

Lh(x) = 1

2
h(x/2) +

1

2
h((x+ 1)/2).

Dynamical properties of transfer operators

Note from the definition of L that a function h ≥ 0 in L1 is the density of an absolutely continuous
invariant measure if and only if 〈 = h, i.e. h is an eigenvector corresponding to the eigenvalue 1.
Moreover, we have the following result.

Proposition 2.6. If 1 is a simple eigenvalue (i.e. the dimension of the corresponding eigenspace if 1) then f
preserves an ergodic absolutely continuous measure.

Proof. First we show that if 1 is a simple eigenvalue then f has an absolutely continuous invariant
measure. It is enough to show that there exists a non-negative h such that Lh = h. As the eigenspace
Λ(1) is 1 dimensional we know there exists a fixed point h of L. Write h = h+ − h− where h+, h− are
the positive and negative parts of h. Then, by the linearity and positivity of L (Lemma 2.2) we find that
Lh± = h±. If h+, h− are linearly independent then we obtain a contradiction to dimΛ(1) = 1; so, Λ(1)
must be the span of a non-negative function.

Now, let us fix h ≥ 0 in Λ(1) and suppose for contradiction that µ = h dm is not ergodic. Let A be an
f invariant set with µ(A) ∈ (0, 1) and let B = Ac. The measures µA := (· ∩ A) and µB := µ(· ∩ B)
are f invariant and their densities h1A, hB1B are linearly independent. This contradicts the fact that
dimΛ(1) = 1. □

Recall, a sequence φn converges weakly to φ in L1 if∫
φnψ dLeb →

∫
φψ dLeb .

We state the following proposition and leave the proof as an exercise.
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Proposition 2.7. If there exist a h ≥ 0 such that Ln(φ) → h
∫
φdLeb weakly in L1 for every φ ∈ L1 then

1. f preserves the measure µh,

2. f is mixing with respect to µh (and in particular ergodic).

2.2 Spectral gap

We have seen that the iterates of L determine some interesting dynamical properties.

Definition of spectral gap

Definition 2.8. For an operator T acting on a Banach space B we define the spectrum of T to be the
set

σ(T ) = {λ ∈ C : (T − λ Id) has no bounded inverse.}

The spectral radius of ρ(T ) = supλ∈σ(T ) |λ|.

Definition 2.9 (spectral gap). We say that a bounded linear operator T : B → B acting on a Banach
space (B, ‖ · ‖) has a spectral gap if

T = λP +N, (5)

where P is a projection onto a 1-dimensional subspace of B, N is a bounded linear operator with spectral
radius ρ(N) < |λ| and NP = PN = 0.

Lemma 2.10. [Sar20] We also note that as the name suggests T having a spectral gap implies that the spectrum
σ(T ) of T consists of simple isolated eigenvalue at λ with remaining eigenvalues lying within a disc of radius
strictly smaller that |λ|:

σ(T ) = {λ} ∪A, where ∃γ > 0 such that A ⊂ {z ∈ C : |z| ≤ e−γ |λ|}.

Moreover,

• P is the projection onto the eigenspace corresponding to λ (i.e. Im(P ) = {φ ∈ B : T φ = λφ}).

• So λ is a simple eigenvalue.

Idea

• if an operator has a spectral gap we can say something about its iterates

• the iterates of the transfer operator tell us interesting things about the dynamics.

• problem, most systems do not have a spectral gap on L1

2.3 Gibbs-Markov maps

In this section we introduce the notion of a Gibbs-Markov map. For a detailed discussion of Gibbs-
Markov maps see [Aar97, Chapter 4].

Definition 2.11 (Markov map). A non-singular map f : Ω → Ω of a standard probability space is Markov
if there exits a measurable and at most countable partition P of Ω such that

1. f : a→ f(a) is a bijection for every a ∈ P

2. f(a) ∈ σ(P)

3. the partition P is generating : σ (
∨∞

k=0 f
−n(P) = B (up to sets of zero Lebesgue measure).
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Given a Markov map f with partition P there is natural measure of distance on the space Ω which comes
from the notion of the separation time s(x, y). Given tow points x, y ∈ Ω we define the separation time
to be the smallest amount of time for two distinct points to lie in different elements of P

s(x, y) := min{n ≥ 0 : fnx, fny lie in different elements of P}. (6)

Then for θ ∈ (0, 1) we may define the distance dθ by putting

dθ(x, y) := θs(x,y). (7)

We note that the space (Ω, dθ) is Polish and f is Lipschitz with respect to dθ4.

For a function φ : Ω → R and a partition element a ∈ P we denote by Dθ(φ) the least Lipschitz
constant of φ|a with respect to the distance dθ :

Dθ(φ)(a) := sup
x,y∈q

|φ(x)− φ(y)|
dθ(x, y)

.

We define the semi-norm
|φ|θ := sup

n∈P
Dθ,n(φ). (8)

If |φ|θ <∞ we say that φ is locally θ-Hölder. We note that locally θ-Hölder functions may be unbounded.
Let Bθ be the space of bounded locally θ-Hölder functions

Lθ := {φ : Ω → R : ‖φ‖θ := ‖φ‖L∞(m) + |φ|θ <∞}, (9)

and remark that (Bθ, ‖ · ‖θ) forms a Banach space. By definition a Markov map is invertible on each
partition element. Denoting by φa : Tna→ a the inverse of Tn on a ∈ Pn :=

∨n−1
j=0 T

−jP we let φ′
a be

the Radon-Nikodym derivatives

φ′
a :=

dm ◦ φa

dm
.

Definition 2.12 (Gibbs-Markov). If T is Markov with partition P then we say that the tuple (Ω,B,m, T,P)
is Gibbs-Markov if two additional properties are satisfied

1. big images:
inf
q∈P

m(Tq) > 0,

2. θ-distortion: there exists a θ ∈ (0, 1) and there exists a C > 0 so that for all n ≥ 0, all a ∈ Pn

and almost every x, y ∈ a we have that∣∣∣∣φ′
a(x)

φ′
a(y)

− 1

∣∣∣∣ ≤ Cdθ(x, y).

Exercise 1:

Check that the following are Gibbs-Markov maps of the interval

4To see that (Ω, dθ) is Polish one quickly verifies that if xn → x in (Ω, dθ) then xn → x in (Ω, d) and moreover one
can easily check that sequences which are Cauchy in (Ω, dθ) are also Cauchy in (Ω, d). To see that T is Lipschitz one simple
observes that dθ(Tx, Ty) = θs(Tx,Ty) ≤ θs(x,y)−1.
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• doubling map, x 7→ 2x mod 1

• Gauss map, x 7→ 1/x mod 1

Theorem 2.13. [AD01] If f is a topologically mixing Gibbs-Markov map then there exists a θ ∈ (0, 1) such
that the corresponding transfer operator L acts on the space Bθ. Moreover, L has a spectral gap with λ = 1:

L|Bθ
φ = P +N,

and the projection P is given by Pφ = h
∫
φdLeb for some h ≥ 0.

3 Session 3: Central limit theorem for Gibbs-Markov maps

3.1 Dynamical interpretation of a spectral gap

Suppose that f is a Gibbs-Markov map of a standard probability space, then we know that from Theorem
2.13 that the transfer operator corresponding to f has a spectral gap and moreover

• 1 is a simple isolated eigenvalue of L

• h ≥ 0 is a fixed point ( put P1 = h and compute )

• this means that there exists a unique µ � Leb which is ergodic for f with density h (recall
Proposition 2.6).

We can also use the fact that L has a spectral gap in order to compute the iterates of L,

Ln = Pn +Nn

so ‖L − Pn‖ = ‖Nn‖ ≤ (ρ(N) + ε)n < γn for some γ < 1 by the spectral radius formula.

Note that ‖φ‖ ≥ ‖φ‖L1 so for every φ ∈ Bθ∥∥∥∥Lnφ− h

∫
φdLeb

∥∥∥∥
L1

≤
∥∥∥∥Lnφ− h

∫
φdLeb

∥∥∥∥ < γn → 0

exponentially fast. Recall that before we showed that Lnφ → h
∫
φdLeb weakly in L1 for every φ

implies mixing. We do not quite have this Bθ does not contain the indicator functions.

However, we do have exponential decay of correlations: let ψ ∈ L∞ and φ ∈ Bθ, then

|Cor(φ,ψ ◦ fn)| =
∣∣∣∣∫ ψ ◦ fn · φdµ−

∫
ψ dµ

∫
φdµ

∣∣∣∣
=

∣∣∣∣∫ ψLn(φh) dLeb−
∫
ψh

(∫
φhdLeb

)
dLeb

∣∣∣∣
≤
∣∣∣∣∫ ψ

(
Ln(φh)− h

∫
φhdLeb

)
dLeb

∣∣∣∣
≤ ‖ψ‖∞

∥∥∥∥Ln(φh)− h

∫
φhdLeb

∥∥∥∥
L1

≤ γn‖ψ‖∞

9



3.2 Central limit theorem for Gibbs-Markov maps

Theorem 3.1. Suppose that (f,Ω,B,m,P) is a Gibbs-Markov map with θ-distortion. Let φ : Ω → R is
bounded. Then a central limit theorem holds for φ∑n−1

k=0 φ ◦ fk(x)− n
∫
φdµ√

n
→d Z,

where:

• Z ∼ N (0, σ2) for some σ2 ≥ 0

• the convergence in distribution occurs with respect to the acip µ = h dm (which exists by Theorem 2.13

3.3 Proof of the CLT for Gibbs-Markov maps

Let us assume for the time being that
∫
φdµ = 0 and let us write φn :=

∑n−1
k=0 φ ◦ fk. Recall: Levy’s

continuity theorem told us that to prove convergence in distribution it is in fact enough to show pointwise
convergence of the characteristic functions. So, to prove the theorem it is enough to show that

∫
exp

{
it

1√
n
φn

}
dµ→ exp

{
−1

2
t2σ2

}
, ∀t ∈ R.

To ease notation let us set

Φ(t) :=

∫
exp {itφ} dµ, and Φn(t) :=

∫
exp {itφn} dµ,

So, our aim is to show that

Φn(t/
√
n) → Ψ(t) := exp

{
−1

2
t2σ2

}
, ∀t.

If X1, X2, . . . are iid random variables on some probability space (Ω′,F ,P) with the same distribution
as φ we know that

∫
X2

1 dP =
∫
φ2 dµ and so Theorem 1.1 ensures that the X1, X2, . . . will satisfy a

central limit theorem. In particular,

Ψ(t) = lim
n→∞

∫
e
i t√

n

∑n−1
k=0 Xk dP = lim

n→∞

[∫
e
i t√

n
X1 dP

]n
= lim

n→∞
Φ(t/

√
n)n. (10)

The characteristic function operator

Given t ∈ R we define the characteristic function operator Lt : Bθ → Bθ by setting

Ltψ := L
(
eitφψ

)
.

Lemma 3.2. The operator Lt acts on Bθ. Moreover, there exists a C > 0 such that

‖Lt − L‖ ≤ C|t|. (11)

Proof. Throughout the proof we will make repeated use of the following inequality
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Sublemma 3.3. There exists a C > 0 such that for any a ∈ R

|eita − 1| < C|a|. (12)

Let ψ ∈ Bθ with ‖ψ‖ < 1.

By definition, (Lt − L)(ψ) = ψ(eitφ − 1)

Thus,
‖(Lt − L)(ψ)‖∞ ≤ ‖ψ‖∞‖φ‖∞C|t| < C|t|.

Similarly

|(Lt − L)(ψ)(x)− (Lt − L)(ψ)(y)| ≤ |ψ(x)− ψ(y)||eitφ(x) − 1|+ |ψ(y)||eitφ(y)||eitφ(x)−φ(y) − 1|
≤ C‖φ‖∞|ψ|θ|t|dθ(x, y) + C‖ψ‖∞|t||φ|θdθ(x, y)

and so
|(Lt − L)(ψ)|Bθ

< C|t|.
Finally, ‖Lt‖ ≤ C|t|+ ‖L‖. □

Basic properties of the CF operator

Notice that as eitφ ∈ L∞∫
Lt(h) dµ =

∫
L
(
eitφh

)
dµ =

∫
eitφhdm =

∫
eitφdµ = Φ(t),

and moreover for n ∈ N∫
Ln
t (h) dm =

∫
L
[
eitφhLn−1

t (h)
]
dm =

∫
eitφLn−1

t (h) dm

=

∫
eitφ ◦ f · eitφLn−2

t (h) dm = · · ·

=

∫
eitφ ◦ fn−1 · eitφ ◦ fn−2 · · · eitφh dm

= Φn(t) (13)

Perturbation of linear operators

Theorem 3.4 ([Gou15, Proposition 2.3]). Suppose that Tt is a family of linear operators acting on a Banach
space B and suppose further that T0 has a spectral gap with decomposition

T0 = λP0 +Nt.

If ‖Tt − T0‖ < C|t| then, for all |t| sufficiently small we have that

• Tt has a spectral gap with decomposition Tt = λtPt +Nt

• |λt − λ| = O(|t|)

• ‖Pt − P‖ = O(|t|).

Thus, Lemma 3.2 yields allows us to use the theorem above to conclude that for all |t| small enough Lt

has a spectral gap with Lt = λtPt +Nt with

|λt − 1| = O(|t|) (14)

‖Ptψ − h

∫
ψdµ‖ = O(|t|) for all ‖ψ‖ ≤ 1. (15)
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Expansion of the dominant eigenvalue λt

Proposition 3.5. The dominant eigenvalue λt of Lt satisfies

λt = Φ(t) +O(|t|2)

Proof. Let ht = Pt1∫
Pt1 dm

then

Ltht = λtPt

(
Pt1∫
Pt1 dm

)
+Nt

(
Pt1∫
Pt1 dm

)
= λtht.

So ht is eigenvector of λt with
∫
ht dm = 1. Thus

∫
Lh−Lht dm =

∫
h dm−

∫
ht dm = 0 and we can

use (14) and (15) to calculate that

λt =

∫
Ltht dm =

∫
Lth dm+

∫
(Lt − L)(ht − h) dm = Φ(t) +O(|t|2).

□

Concluding the central limit theorem

Proof. Recall that since Lt has a spectral gap, we know from the spectral radius formula that there exists
an ε such that for all n large enough and for all t

‖Nn
t ‖L1 ≤ ‖Nn

t ‖ ≤ |λt − ε|n.

So,
1

λn
t/
√
n

∣∣∣∣∫ Nn
t/
√
nh dm

∣∣∣∣ ≤ 1

λn
t/
√
n

‖Nn
t/
√
n‖ <

|λt/√n − ε|n

λn
t/
√
n

→ 0 as n→ ∞.

Using (15) we also have∫
Pt/

√
nh dm =

∫
Phdm+

∫
Pt/

√
nh− Phdm = 1 + o(1).

Finally, using (13), (10) and Proposition 3.5,

Φn(t/
√
n) = λnt/

√
n

∫
Pt/

√
nh+Nnh dm

= λnt/
√
n(1 + o(1))

= (Φ(t/
√
n)n(1 + o(1)),

→ Ψ(t),

concluding the proof. □
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