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§ 1 Motivation

The following quote is a piece of the celebrated and classical work of Harry Furstenberg
[Fur63Fur63, Noncommuting random products, Trans. AMS, 1963]

Let X1, . . . , Xn be a sequence of independent real valued random variables with
a common distribution function Fpxq, and consider the sums X1 ` X2 ` . . . ` Xn.
A fundamental theorem of classical probability theory is the strong law of large
numbers which asserts that with probability one, X1 ` X2 ` . . . ` Xn „ n

ş

xdFpxq,
provided that

ş

|x|dFpxq is finite. It is natural to inquire whether there exist laws
governing the asymptotic behavior of products XnXn´1 . . . X1, where the Xj are
now identically distributed independent random variables with values in an arbi-
trary group.

Let us rewrite this inquiry from the point of view of the ergodic theory. Consider pΩ, µq

a probability space, T : Ω ý a measure preserving transformation, and G a group (or semi-
group) non-necessarily commutative. Given a function g : Ω Ñ G, we can define, for each
n P N and ω P Ω, the following Birkhoff products:

ÝÑg npωq :“ gpωqgpTωq . . . gpTn´1ωq and ÐÝg npωq :“ gpTn´1ωq . . . gpTωqgpωq.

*This is lectures notes of the satellite seminar for the minicourse: Hyperbolic groups and Martin boundaries given
by Manuel Stadlbauer in the summer program of the Institute of Mathematics of UFRJ, February 2023.

†We are thankful to professor Katrin Gelfert for the review of this text and the patience to listen to our
preparations talk. We will also be thankful for any corrections that the reader can tell us.



The map ÝÑg : N ˆ Ω Ñ G (resp. ÐÝg ) is called right cocycle on G (resp. left cocycle). In fact, these
maps satisfy the respective cocycle identities, that is,

ÝÑg m`npωq “ ÝÑg mpωqÝÑg npTm´1ωq and ÐÝg m`npωq “ ÐÝg npTm´1ωqgmpωq. (1.1)

A classical situation occurs when G “ pR, `q. In this case, if g : Ω Ñ R is integrable,
Birkhoff proved in the 30’s that

1
n

ÝÑg npωq “
1
n

ÐÝg npωq “
1
n

n´1
ÿ

j“0

g ˝ T jω
nÑ`8
ÝÝÝÝÑ

ż

gpωqdµpωq, for µ-a.e. ω P Ω.

It is instructive to compare this result with the strong law of large numbers in the probability
theory, as it was written in the quote above. The map pn, ωq ÞÑ gnpωq “ gpωq ` . . . ` gpTn´1ωq

is called an additive cocycle. Kingman made an important generalization of this result in the
60’s. A function f : N ˆ Ω Ñ R, pn, ωq ÞÑ fnpωq is called a subadditive cocycle with respect to
T : pΩ, µq ý if for every ω P Ω and m, n P N

fm`npωq ď fmpωq ` fnpTm´1ωq. (1.2)

Theorem 1.1 ([Kin68Kin68]). Consider a subaddtive cocycle f : N ˆ Ω Ñ R and assume that T is ergodic.
If fn : Ω Ñ R is measurable for each n P N and f `

1 is integrable, then there exists c ą ´8 such that

fnpωq

n
nÑ8
ÝÝÝÑ c, for µ-almost ω P Ω.

Moreover, c “ infn
1
n

ş

fndµ.

Our main goal in this note is to understand to what extend these results. In particular, we
prove a theorem due A. Karlsson and G. Margulis which provides a deep and elegant result
for the asymptotic behavior of the Birkhoff Products in some nice group actions which applies
to many different situations. Also, we will prove Kingman’s and Birkhoff’s ergodic theorems
as a by-product.

§ 2 Formulation of the main theorem

2.1. Drift of a cocycle of semi-contractions

Let pH, dq be a metric space and consider G the group of semi-contractions of H. That is,
for each g P G and p, q P H

dpgp, gqq ď dpp, qq. (2.1)

Given a mensurable map g : Ω Ñ G, the map pn, ωq P N ˆ Ω ÞÑ ÝÑg npωq is called a cocycle
of semi-contraction of H. We will fix some notations

• Choose a point p0 P H, we call it origin or base point.

• Each pnpωq :“ ÝÑg npωqp0 P H is called the n-steps. The distance of pnpωq to the origin is
denoted by dnpωq, that is, dnpωq “ dpp0, pnpωqq.
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• We say that ÝÑg has finite first moment (or satisfies the integrability hypothesis) if
ż

Ω
d1pωq dµpωq ă 8. (2.2)

Exercise 2.1. Show that the map pn, ωq ÞÑ dnpωq defined above is a subbaditive cocycle, that is, inequality (1.21.2) holds.
Exercise 2.2. Show that the integrability hypothesis does not depend on the choice of the origin.

Proposition 2.1 (Drift). Let ÝÑg : N ˆ Ω Ñ G be a mensurable cocycle of semi-contractions of H with
finite first moment. Then there exists D ě 0 such that

dnpωq

n
nÑ`8
ÝÝÝÝÑ D, for µ-almost everywhere ω P Ω.

The number D is called drift of the cocycle ÝÑg .

Proof. It is an immediate consequence of the Exercise 2.1 and the Theorem 1.11.1.

Exercise 2.3. The statement of Proposition 2.12.1 suggests that D does not depend on the choice of the origin. Prove this.

2.2. Karlsson-Margulis metric space

A geodesic path with velocity v ě 0 joining p, q P H (or, more briefly, a geodesic from p to q)
is a map γ : r0, τs Ă R Ñ H such that γp0q “ p, γpτq “ q and

dpγptq, γpsqq “ v|t ´ s|, @t, s P r0, τs.

In particular, dpp, qq “ vτ. If v “ 1 we say that it is a unitary speed geodesic. The image of γ is
called geodesic segment joining p and q and it is denoted by rp; qsγ or simply rp; qs if there is no
risk of confusion. A geodesic ray in H starting in p with velocity v is a map γ : r0, 8q Ñ H such
that dpγptq, γpsqq “ v|t ´ s| for all t, s ě 0 and γp0q “ p. The metric space pH, dq is said to be a
(uniquely) geodesic space if every two points in H are joined by a (unique) geodesic segment.

A subset C Ă H is called convex if every pair of points p, q P C can be joined by a geodesic
γ and rp; qsγ Ă C. In particular, if pH, dq is a geodesic space, so is convex.

Remark 2.1. If pH, dq is a complete metric space, then pH, dq is a geodesic space if and only if
for each pair p, q P H there exists a midpoint in H. That is, there exists mpq P H such that

dpp, mpqq “ dpmpq, qq “
1
2

dpp, qq.

Indeed, given a unitary geodesic γ : r0, τs Ñ H joining p and q, the point mpq :“ γpτ{2q

satisfies the desired conclusion. On the other hand, we can construct a function η : Q2 X

r0, τs Ñ H where Q2 “
␣ k

2m : k, m P Z`

(

is the dyadic rational number by putting:

$

’

’

’

’

’

&

’

’

’

’

’

%

ηpτ{2q “ midpoint of p and q;

ηpτ{4q “ midpoint of p and ηpτ{2q;

ηp3τ{4q “ midpoint of ηpτ{2q and q;
...
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Constructing η recursively by this way, we obtain a Lipschitz function on Q2 X r0, τs. Since
this set is dense in r0, τs, the completeness of pH, dq implies that we can extend η to a unique
Lipschitz map γ : r0, τs Ñ H.

If H is a Banach space, Clarkson introduced in the 30s the concept of uniformly convexity.
More especifically, the Banach space H is said to be uniformly convex if

@ε ą 0 D δ ą 0 such that
p, q P H, }p} “ }q} “ 1

}p ´ q} ě ε

+

ùñ }mpq} ď 1 ´ δ. (2.3)

where mpq stands for midpoint of p and q.

Definition 2.1. We say that H is uniformly convex if it is convex and there is a continuous
strictly decreasing function h : r0, 1s ý with hp1q “ 0 such that

p0, p, q P H

m “ midpoint of p, q

+

ùñ
dpm, p0q

R
ď h

ˆ

dpp, qq

2R

˙

, (2.4)

where R :“ maxtdpp0, pq, dpp0, qqu.

Exercise: Compare the definitions (2.32.3) and (2.42.4). What can you say about it? How to interpret geometrically
these implications? make a drawing to convince yourself.

Proposition 2.2. If pH, dq is a complete and uniformly convex metric space, then for every p, q P H
there exists a unique midpoint between p and q. In particular, pH, dq is uniquely geodesic.

Proof. We argue by contradiction. Assume that there are m1, m2 P H midpoints of some
p, q P H. Let m1 be the midpoint of m1 and m2. Now, putting R “ dpp, qq{2, by uniformly
convexity, it follows that

dpp, m1q

R
ď h

ˆ

dpm1, m2q

2R

˙

ùñ dpp, m1q ă R.

Analougsly, dpm1, qq ă R. Then, dpp, qq ď dpp, m1q ` dpm1, qq ă 2R yields a contradiction.

Many examples satisfy the definition above: Euclidean spaces, hyperbolic spaces and
symmetric spaces of noncompact type such as GLnpRq{OnpRq, or more generally CATp0q-
space (e.g. R-trees).

Definition 2.2. A convex metric space pH, dq is said to be nonpositively curved in the sense of
Busemann if

for every p0, p, q P H, dpmp0 p, mp0qq ď
1
2

dpp, qq. (2.5)

Definition 2.3. A metric space pH, dq is called Karlsson-Magulis space if it is complete, uni-
formly convex (hence uniquely geodesic) and nonpositively curved in the sense of Busemann.
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Theorem 2.1 (Main theorem, [KM99KM99]). Let T : pΩ, µq ý an ergodic transformation and pH, dq

a Karlsson-Margulis space. Consider g : Ω Ñ G a cocycle of semi-contractions and p0 P H. Then,
for µ-almost every ω P Ω there exists a unique geodesic ray γω : r0, 8q Ñ H starting in p0 with
velocity D (the drift) such that

dpγωpnq, pnpωqq “ opnq.

Remark 2.2. If D “ 0 the geodesic is the constant funcion equals to p0.

The proof will be divided into two parts, a geometric and an ergodic one.

§ 3 Proof of the main theorem

3.1. Geometric tools

Consider pH, dq a Karlsson-Margulis metric space. We note that the condition of nonpositive
curvature implies that t ÞÑ dpγ1ptq, γ2ptqq is a convex function for any two geodesics γ1 and
γ2. In particular, for two rays γ1 and γ2 with same origin, we have that

t ÞÝÑ
1
t

dpγ1ptq, γ2ptqq is non-decreasing. (3.1)

Exercise 3.1 Don’t trust us. Prove that (3.13.1) holds (or you can simply look for the answer in [J. Jost, p. 46, Nonpositive
Curvature: Geometric and Analytic Aspects, 1997]).

Let pγnqn be a sequence of unitary speed rays with same origin such that pγnptqqn is a
Cauchy sequence in H for every t. By completeness of pH, dq we can define a function

t ÞÑ γptq :“ lim
nÑ8

γnptq.

It is immediate that γ is a unitary speed ray starting at the same origin as any of the rays γn.
We say that γ is the limit geodesic of γn.

The next lemma is a fundamental part of the proof of the Theorem 2.12.1. It basically says
that if a triangle is “thin”, so one of its vertices is next to the opposite edge. We suggest you
make your own drawings along the following proof for your best understanding.

Lemma 3.1 (Geometric lemma). There exists a function δ “ δpεq on r0, 1s with limεÑ0 δpεq “ 0
such that, for each ε P r0, 1s

p, q, r P H, dpq, pq ` dpp, rq ď dpq, rq ` εdpq, pq ùñ dpp̃, pq ď δpεqdpq, pq (3.2)

where p̃ is the point in rq; rs such that dpq, p̃q “ dpq, pq.

Proof. Provide p, q, r P H, let m be the midpoint of p̃ and p. Uniform convexity implies that

dpm, rq ď maxtdpp̃, rq, dpp, rqu.

By definition of p̃ we have dpm, rq “ dpq, rq ´ dpq, pq and by hypothesis that dpp, rq ď dpq, rq ´

dpq, pq ` εdpq, pq we get
dpm, rq ď dpq, rq ´ dpq, pq ` εdpq, pq.
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Hence it follows, by △-inequality, that

dpq, mq ě dpq, pq ´ εdpq, pq “ p1 ´ εqR (3.3)

where R :“ dpq, pq “ maxtdpq, pq; dpq, p̃qu. Again by uniform convexity, we have

dpm, qq

R
ď h

ˆ

dpp̃, pq

2R

˙

.

From the inequality (3.33.3) and since h is decreasing we get

h´1p1 ´ εq ě
dpp̃, pq

2R
.

Recalling that R “ dpq, pq and letting δpεq :“ 2h´1p1 ´ εq we obtain the desired conclusion.

3.2. Ergodic tools

F. Riesz [Rie45Rie45] introduced a new short proof of the so-called maximal ergodic theorem on
which Birkhoff’s ergodic theorem is based. A. Karlsson [Kar17Kar17] presents a proof of the sub-
badtive ergodic theorem (Theorem 1.11.1) as an extension of F. Riesz’s approach to the Birkhoff
ergodic theorem. In both works, they use a combinatorial lemma which we state as follows.

Consider a finite sequence of real number pa1, a2, . . . , anq. We say that ℓ is a good index if

Sjpaℓq :“ aℓ ` aℓ`1 ` . . . ` aℓ`j ě 0, for all 0 ď j ď n ´ ℓ.

Otherwise, if there exists some j for which Sjpaℓq is negative, we say that ℓ is a bad index. Each
element aℓ with a bad index is called a leader.

Lemma 3.1 (Riesz’s combinatorial lemma). The sum of the leaders of any finite sequence of real
numbers is nonpositive (by convention, an empty sum is 0). In the other words,

ÿ

ℓ bad index

aℓ ď 0.

Proof. We will argue by induction on the number of elements of the sequence. That is, if it
holds for all finite sequences with k elements for which k ă n, we will conclude that it holds
for all finite sequences with n elements. The conclusion is clear for k “ 1. Assume now, that
is holds for any integer smaller than n. So provide a sequence pa1, . . . , anq, let’s split in two
cases.

Case 1: ℓ “ 1 is a good index. Then all the bad indices are also bad indices in the
shifted sequence pa2, . . . , anq and hence, by induction hypothesis, the sum of the leaders is
nonpositive.

Case 2: ℓ “ 1 is a bad index. Then consider m the smaller index for which a1 ` . . . ` am

is negative. We claim that 2, . . . , m are also bad indices. Indeed, if one of them, say i, were
a good index, then ai ` . . . ` am would be nonnegative and hence a1 ` . . . ` ai´1 negative,
contrary to the choice of m. The leaders a1, a2, . . . , am thus have negative sum; the remaining
leaders (if there are any) have nonpositive sum because they lead in sequence shorter than n.
This completes the proof.
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Henceforth in this section, consider a subbaditive cocycle f : N ˆ Ω Ñ R such that
ż

f `
1 pωq dµpωq ă `8.

So we have that Fn :“
ş

fnpωqdµpωq ă `8 for all n (but it is possible Fn “ ´8). Note that
pFnqn is a real subbaditive sequence, that is, Fn`m ď Fn ` Fm. The standard Fekete’s lemma
implies that

F :“ lim
1
n

Fn ă `8.

Consider the functions f , f : Ω Ñ R, defined by

f pωq :“ lim inf
nÑ8

fnpωq

n
, f pωq :“ lim sup

nÑ8

fnpωq

n
. (3.4)

Lemma 3.2. The functions f and f are Tk-invariant for every k P N. That is,

f “ f ˝ Tk, f “ f ˝ Tk µ-almost everywhere.

In particular, if T is ergodic, these functions are constant almost everywhere.

Proof. Let us consider only f , the argument for f is analogous. By subadditivity we have that
fn ˝ Tk ě fn`k ´ fk. Hence for each ω

1
n

fnpTkωq ě
n ` k

n
1

n ` k
fn`kpωq ´

1
n

fkpωq ùñ f ˝ Tk ě f .

Which implies
ş

f ˝ Tk ´ f dµ “ 0.

Fix some ℓ ě 1 and define

f ℓpωq :“ lim inf
kÑ8

fkℓpωq

kℓ
, f

ℓ
pωq :“ lim sup

kÑ8

fkℓpωq

kℓ
. (3.5)

The following lemma have been used by Karlsson in [Kar17Kar17] to prove the Kingmann theorem
(Theorem 1.11.1).

Lemma 3.3. Consider f : N ˆ Ω Ñ R a nonpositive subbaditive cocycle, that is, fnpωq ď 0 every-
where. Then for each ℓ ě 1 we have

f pωq “ f ℓpωq, f pωq “ f
ℓ
pωq for every ω.

Proof. Since tkℓu is subsequence of tku we get f ℓpωq ě f pωq and f
ℓ
pωq ď f pωq for each ω.

On the other hand, for each n P N we can find some k “ kpnq P N and 0 ď rpnq ă ℓ such that
n “ kℓ ` r. By subadditivity and nonpositivity we have

fpk`1qℓpωq ď fnpωq ` fℓ´rpTnωq ď fnpωq (3.6)

fnpωq ď fkℓpωq ` frpTkℓωq ď fkℓpωq. (3.7)
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Hence letting n Ñ `8

�
����*

1
pk ` 1qℓ

n
1

pk ` 1qℓ
fpk`1qℓpωq ď

1
n

fnpωq ď
�
�
��
1

kℓ
n

1
kℓ

fkℓpωq ùñ

$

&

%

f ℓpωq ď f pωq

f
ℓ
pωq ě f pωq

Exercise 3.2 Prove that the conclusion of the Lemma 3.33.3 still holds (almost everywhere) if we omit the hypothesis of non-
positivity. (See, if necessary, [Con13Con13, Lemma 7.8 and Proposition 7.7])

The following two propositions are the unique “ergodic tools” used in the proof of Theo-
rem 2.12.1. They can be considered ergodic versions of Pliss Lemma (see, e.g. [Mn87Mn87, Chapter 4,
lemma 11.8]).

Proposition 3.1 (Weak ergodic Pliss lemma). Let T : pΩ, µq ý be a measure preserving trans-
formation and F ą 0. Consider the set

E1 :“

#

ω P Ω

ˇ

ˇ

ˇ

ˇ

ˇ

D infinitely many n such that
fnpωq ´ fn´kpTkωq ě 0

@ k : 1 ď k ď n.

+

.

Then, µpE1q ą 0.

Proof. For every i P N, consider

Mi :“ tω P Ω|Dk : 1 ď k ď i and fipωq ´ fi´kpTkωq ă 0u.

We must show that the set of ω P Ω for which ω R Mi for infinitely many i has a positive
measure. For this purpose, consider the function

φipωq :“ Nipωq ´ fi´1pTωq.

We note that

fnpωq ´ fn´kpTkωq “

k´1
ÿ

j“0

φn´jpT jωq. (3.8)

and, in particular,

fnpωq “

n´1
ÿ

j“0

φn´jpT jωq. (3.9)

In view of (3.83.8), if Tkω P Mn´k then for some j, k ď j ď n ´ 1 we have

φn´kpTkωq ` . . . ` φn´jpT jωq ă 0.

From this and the combinatorial lemma (Lemma 3.13.1, letting aℓ :“ φn´ℓpTℓωq) we deduce that
for every ω P Ω and n P N,

ÿ

0ďkďn´1
Tkω P Mn´k

φn´kpTkωq ď 0. (3.10)
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Using the T-invariance of µ, we get from the last inequality that

n
ÿ

j“1

ż

Mj

φjpωqdµpωq “
ÿ

0ďkďn´1

ż

Mn´k

φn´kpωqdµpωq

“
ÿ

0ďkďn´1

ż

T´k Mn´k

φn´kpTkωqdµpωq (3.11)

“

ż

Ω

˜

ÿ

0ďkďn´1
Tkω P Mn´k

φn´kpTkωq

¸

dµpωq ď 0.

On the other hand, recalling Fn “
ş

fnpωqdµpωq and (3.93.9), from the T-invariance we get

Fn “

n
ÿ

j“1

ż

X
φjpωqdµpωq. (3.12)

By hypothesis we have that lim Fn{n “ F ą 0, so there exists a number N such that

Fn ą
2F
3

n, for all n ą N. (3.13)

Let Mc
i :“ ΩzMi, then, in view of (3.113.11), (3.123.12) and (3.133.13) and the inequality φipωq “

fipωq ´ fi´1pTωq ď f1pωq ď f `
1 pωq, we obtain

n
ÿ

j“1

ż

Mc
j

f `
1 pωqdµpωq ě

n
ÿ

j“1

ż

Mc
j

φjpωqdµpωq ą
2F
3

n (3.14)

for all n ą N. Let χn :“
řn

j“1 1Mc
j
, where 1A denotes the indicator function of a set A Ă Ω.

Let F`
1 :“

ş

f `pωqdµpωq and

Bn :“
"

ω P Ω
ˇ

ˇ

ˇ

ˇ

n ě χnpωq ą
F

3F`
1

n
*

.

Since

Bc
n “

"

ω P Ω
ˇ

ˇ

ˇ

ˇ

F
3F`

1
n ě χnpωq ě 0

*

,

we have that

n
ÿ

j“1

ż

Mc
j

f `
1 pωqdµpωq “

ż

Ω
f `
1 pωqχnpωqdµpωq

“

ż

Bn

f `
1 pωqχnpωqdµpωq `

ż

Bc
n

f `
1 pωqχnpωqdµpωq

ď n
ż

Bn

f `
1 pωqdµpωq `

F
3F`

1
n
ż

Bc
n

f `
1 pωqdµpωq

ď n
ż

Bn

f `
1 pωqdµpωq `

F
3

n.
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combining this inequality and the inequality (3.143.14) we get that
ż

Bn

f `
1 pωqdµpωq ą

F
3

. (3.15)

for all n ą N.
The condition

ş

f `
1 dµ ă 8 implies the existence of δ ą 0 such that

µpCq ă δ ùñ

ż

C
f `
1 pωqdµpωq ă

F
3

.

Hence it follows from (3.153.15) that µpBnq ě δ for every n ą N. Let

Cn :“
"

ω P Ω
ˇ

ˇ ω P Mc
i for ate least

F
3F`

1
n positive integers i

*

,

so Bn Ă Cn and Cn`1 Ă Cn. Therefore, the measure of the set
č

ně1

Cn “ tω P Ω | ω P Mc
i for infinitely many iu

is greater than or equal to δ ą 0. Now recalling the definition of Mi we get the desired
statement.

Proposition 3.2 (Ergodic Pliss Lemma). Assume that T is ergodic and F ą ´8. For any
ε ą 0, let

Eε :“

#

ω P Ω

ˇ

ˇ

ˇ

ˇ

ˇ

D k̃ “ k̃pεq and a infinite set Nε Ă N s.t.
fnpωq ´ fn´kpTkωq ě pF ´ εqk

@ n P Nε, and k : k̃ ď k ď n.

+

.

Consider E “
Ş

εą0 Eε, then µpEq “ 1.

Proof. For any ε ą 0, let ψnpωq :“ fnpωq ´ pF ´ εqn. Then ψ is a subadditive cocycle and, by
definition of F,

lim
1
n

ż

Ω
ψnpωqdµpωq “ ε ą 0.

Note also that
fnpωq ´ fn´kpTkωq ě pF ´ εqk

is equivalent to
ψnpωq ´ ψn´kpTkωq ě 0.

Therefore, Proposition 3.13.1 applied to ψ gives us that µpEεq ą 0.
By definition of subadditivity,

fnpTiωq ´ fn´kpTk`iωq ě fn`ipωq ´ fpn`iq´pk`iqpTk`iωq ´ fipωq.

It follows that TiEε Ă E2ε for all i ě 0. Then, µpE2εq “ 1.

We note that Lemma 3.23.2 does not rely on Birkhoff’s (Additive) or Kingmann’s (Subad-
ditive) Ergodic Theorems. So we present a simple proof of Kingman’s result (hence of the
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Birkhoff’s one) as a corollary of the results of this section.

Proof of Theorem 1.11.1. Subadditivity and Proposition 3.23.2 implies that for almost every ω, we
have that for each ε ą 0 there exists k̃pεq such that for every k ą k̃pεq there exists n “ npεq ą k
such that

pF ´ εqk ď fnpωq ´ fn´kpTkωq ď fkpωq (3.16)

Hence
lim inf

kÑ8

1
k

fkpωq ě F ´ ε. (3.17)

Moreover, since ε is take arbitrarily, we have

f pωq ě F. (3.18)

If f is an additive cocycle, then in particular ´ f is a subadditive cocycle such that

lim
1
n

ż

´ fndµ “ ´
1
n

ż

fndµ “ ´F P R.

Then by the same arguments as in (3.163.16)

´ fkpωq

k
ě ´F ´ ε for large enough k ùñ lim sup

kÑ8

fkpωq

k
ď F ` ε.

Hence
f pωq “ f pωq. (3.19)

This prove the convergence almost everywhere in case of additive cocycle.
Exercise. Convince yourself that, at this point, we have proved Birkhoff’s theorem as stated in §1.

In the case of a general subadditive cocycle f we can assume, without lost of generality,
that fnpωq ď 0 for every n and ω. Indeed, if were not, for each ℓ ě 1 consider the additive
cocycle

pn, ωq ÞÑ aℓnpωq :“
n´1
ÿ

j“0

fℓ ˝ T jℓω

and so, note that f ´ a1 ď 0 everywhere. Moreover,

f ℓnpωq :“ fnℓpωq ´ aℓnpωq.

is a nonpositive subadditive cocycle.

Exercise 3.3. (a) Again, don’t trust us. Show that in fact f ℓ is a nonpositive subadditive cocycle. (b) prove that if the
conclusion of the theorem holds for f 1 then it holds for f , where f is an arbitrary subadditive cocycle.

Now, fix an ε ą 0 and take ℓ “ ℓpεq large enough such that

1
ℓ

ż

fℓpωqdµpωq ď F ` ε. (3.20)
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We claim that

0 ě lim inf
kÑ8

f ℓk pωq

kℓ
ě ´ε.

Indeed, consider Fℓ :“ lim 1
k

ş

f ℓk dµ the drift associated to the cocycle k ÞÑ f ℓk . By (3.203.20) we
have

1
kℓ

ż

f ℓk dµ “
1
kℓ

ż

“

fkℓ ´ aℓn
‰

dµ “
1
kℓ

ż

fkℓdµ ´
1
kℓ

k´1
ÿ

j“0

ż

fℓ ˝ T jℓdµ

ě
1
kℓ

ż

fkℓdµ ´
1
kℓ

k´1
ÿ

j“0

pF ` εqℓ “
1
kℓ

Fkℓ ´ F ´ ε.

Since p 1
kℓFkℓq is a subsequence of p 1

k Fkq which converge to F, we obtain 1
ℓ Fℓ ě ´ε. By nonpos-

itive of the cocycle and (3.183.18) we get

0 ě lim inf
kÑ8

1
kℓ

f ℓk pωq ě
1
ℓ

Fℓ ą ´ε.

as we desired and the claim is proved.
From this claim, the nonpositivity and subadditivity of f , Lemma 3.33.3 and the convergence

for additive cocycles, it follows that

f pωq ´ f pωq “ lim sup
kÑ8

1
kℓ

fkℓpωq ´ lim inf
kÑ8

1
kℓ

fkℓpωq

“ lim sup
kÑ8

1
kℓ

f ℓk pωq ´ lim inf
kÑ8

1
kℓ

f ℓk pωq ď ´ lim inf
kÑ8

1
kℓ

f ℓk pωq ď ε.

Therefore limnÑ8
1
n fnpωq exists and it is constant almost everywhere since T is assumed

ergodic. Finally, we note that this constant is exactly F. Since fn ď 0 for every, the dominated
convergence theorem assures that

lim
nÑ8

1
n

fnpωq “

ż

lim
nÑ8

1
n

fnpωqdµpωq “ lim
nÑ8

1
n

ż

fnpωqdµpωq “ F.

This proves the theorem.

3.3. Proof of the main theorem

Unicity. Assume there exists two different of such geodesic rays γ1 and γ2. Then, the follow-
ing △-inequality shows a contradiction.

0 ď
dpγ1pkq, γ2pkqq

k
loooooooomoooooooon

never deacrease

ď
�
���

���*0
dpγ1pkq, pkq

k
`
�

���
���*0

dpγ2pkq, pkq

k
.

Existence. If D “ 0 we can consider by convention γω ” p0 and the result follows by Theorem
1.11.1. Assume then D ą 0. Let E be the set defined in Proposition 3.23.2. Consider ω P E in the full
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measure set where Kingmann theorem holds. From now on, ω will frequently be supressed
in the notations.

For each i P N, consider ε i ą 0 small enough such that

δ

ˆ

2ε i

D ´ ε i

˙

ď 2´i and ε i
iÑ8
ÝÝÝÑ 0, (3.21)

where δ is the function given by Lemma 3.13.1 (geometric Lemma). For each i P N, consider
Ni :“ Nεi and ri such that

pD ´ ε iqk ď dkpωq ď pD ` ε iqk (3.22)

for all k ě ri and
pD ´ ε iqk ď dnpωq ´ dn´kpTkωq (3.23)

for all n P Ni and k̃pε iq ď k ď n.
Consider Ki :“ ri _ k̃pε iq, then (3.223.22) and (3.233.23) holds simultaneuosly for every n P Ni and

k such that Ki ď k ď n. Consider pniqi defined recursively as follows**

n1 :“ min
␣

n P F1 : n ą K1 _ K2
(

, ni`1 :“ min
␣

n P Fi`1 : n ą Ki`2 _ ni
(

.

Remark 3.1. Consider K0 :“ mini Ki, so
ď

iPN

rKi, nis “ rK0, 8q. (3.24)

Then, joining (3.223.22) and (3.233.23), we have for each i and k P rKi, nis that

dni pωq ´ dni´kpTkωq ` pD ` ε iqk ě pD ´ ε iqk ` dkpωq (3.25)

dni pωq ` 2ε ik ě dkpωq ` dni´kpTkωq (3.26)

Recall the definition of d and the semi-contraction property to observe that

dni´kpTkωq “ d
`

p0, gpTkωq . . . gpTni´1ωqp0
˘

ě d
`

ÝÑg kpωqp0, ÝÑg kpωqgpTkωq . . . gpTni´1ωqp0
˘

(3.27)

“ d
`

pkpωq, pni pωq
˘

.

Note that for (3.273.27) holds it is important that the cocycle is a right cocycle. Then, (3.263.26) and
(3.273.27) implies that

dkpωq ` d
`

pkpωq, pni pωq
˘

ď dni pωq ` 2ε ik

ď dni pωq ` ε̃ idkpωq (3.28)

where ε̃ i :“ 2εi
D´εi

. We can rewrite (3.283.28) by

d
`

p0, pk
˘

` d
`

pk, pni

˘

ď d
`

pni , p0
˘

` ε̃ id
`

p0, pk
˘

. (3.29)

This means that the origin and the k and ni-step form a “thin” triangle. Consider γi the

*Recall the notation a _ b :“ maxta, bu for each a, b P R

page 13 of 1515



unitary speed geodesic joining p0 and pni , then the Lemma 3.13.1 implies

dpγipdkq, pkq ď δpε̃ iqdk.

Claim 1. For each t ě 0, the sequence pγiptqqi is Cauchy in H.

Proof. First note that, since D ą 0, we have limiÑ8 dni “ `8. Fixing t ě 0, consider i large
enough such that dni ą t. Since Ki`1 ď ni ď ni`1 we have that

d
`

γi`1pdni q, γipdni q
˘

“ d
`

γi`1pdni q, pni

˘

ď δpε̃ i`1qdni .

Then, the condition (3.13.1) implies

d
`

γi`1ptq, γiptq
˘

ď δpε̃ iqt ď 2´it.

Hence, for each m P N

d
`

γi`mptq, γiptq
˘

ď

m
ÿ

j“1

2´i´jt ď 2´it ÝÑ 0.

Concluding the claim.

Consider γ the limit geodesic of pγiqi, we must reparametrize to obtain a geodesic with
velocity D, rγptq :“ γptDq for all t ě 0. Rest to show that rγ is the geodesic we are looking for.
That is, 1

k dpγpkq, pkq Ñ 0. Indeed, in view of (3.243.24) for k ą K0 we can take i “ ipkq such that
Ki ď k ď ni. It’s clear that i Ñ 8 as k Ñ 8. Then, we have

d
`

γpkDq, pk
˘

ď d
`

γpkDq, γipkDqq ` d
`

γipkDq, γipdkq
˘

` d
`

γipdkq, pk
˘

ď 2´ikD ` |kD ´ dk| ` δpε iqdk

ď 2´ikD ` ε ik ` δpε iqpD ` ε iqk

“
`

2´iD ` ε i ` δpε iqpD ` ε iq
˘

k.

That is,

lim sup
kÑ`8

d
`

γ̃pkq, pk
˘

k
ď lim

kÑ8

`

2´iD ` ε i ` δpε iqpD ` ε iq
˘

“ 0

since k Ñ 8 implies i Ñ 8 which implies ε i Ñ 0 which implies δpε iq Ñ 0. This proves the
theorem
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