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Topological Markov Shifts

⋄ Let S be a countable set and A = (tij)S×S be a matrix of
zeroes and ones with no columns or rows which are all zeroes.

⋄ Out of this one can construct a directed graph with set of
vertices S and set of edges {a → b; tab = 1}.

⋄ The set of all one-sided infinite allowed paths on the graph is
called a topological Markov shift.



Definition

The topological Markov shift (TMS) with set of states S and
transition matrix A = (tij)S×S is the set

X :=
{
x ∈ SN0 ; txixi+1 = 1, ∀i ≥ 0

}
equipped with the topology generated by cylinders

[a0, ..., an−1] := {x ∈ X ; xi = ai , 0 ≤ i ≤ n − 1} (a0, ..., an−1 ∈ S),

and endowed with the left shift map T : (x0, x1, ...) 7→ (x1, x2, ...).

⋄ The topology of a TMS is metrizable, and it is a complete
and separable metric space.

⋄ A TMS with a finite set of states is called a subshift of finite
type (SFT).

⋄ The metric space X is often denoted by Σ+
A .
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Topological properties of a TMS

⋄ An admissible word in X is an element x = (a0, ..., an−1) ∈ Sn,
n ∈ N, such that [a0, ..., an−1] is a non-empty cylinder in X.

⋄ Write a
n→ b if there is an admissible word of length n + 1

which starts at a and ends at b, e.g., [a, x1, ..., xn−1, b].

Proposition

Let X be a topological Markov shift with set of states S and
transition matrix A = (tab)S×S .

1. X is topologically transitive iff for all a, b ∈ S there is an n
s.t. a

n→ b.

2. X is topologically mixing iff for all a, b ∈ S there is a number
Nab s.t. for all n ≥ Nab, a

n→ b.
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Proof

Suppose that for all a, b ∈ S there is a number Nab s.t. for all
n ≥ Nab, a

n→ b. Given open sets U := [u0, ..., uk−1] and
V := [v0, ..., vl−1] in X , k ≥ l , there is Nuk−1v0 s.t. for

n ≥ Nuk−1v0 , uk−1
n→ v0.

Therefore, in U, there is such admissible words

x = (u0, ..., uk−1, x1, ..., xn, v0, ..., vl−1)
y = (u0, ..., uk−1, y1, ..., yn+1, v0, ..., vl−1)

...

So, for all n ≥ Nukv0 + k, T nU ∩ V ̸= ∅. Thus, X is topologically
mixing.
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Example: Cayley graphs

⋄ Suppose G is a finitely generated group with a finite set of
generators R.

⋄ The Cayley graph TMS associated to R is the TMS with set
of states G and transition matrix

tab = 1 ⇐⇒ b = ar for some r ∈ R.

⋄ The Cayley graph TMS of (Z,+) with R = {±1} is given by
the transition matrix A = (tij)Z×Z

tij = 1 ⇐⇒ |i − j | = 1.

⋄ Generally, Cayley graphs TMS are always topologically
transitive, because for any pair of states a, b ∈ G one can find
an admissible word which starts at a and ends at b by
expanding a−1b = r1 · · · rn and setting (a, ar1, ar1r2, ..., b).



Example: Cayley graphs

⋄ Suppose G is a finitely generated group with a finite set of
generators R.

⋄ The Cayley graph TMS associated to R is the TMS with set
of states G and transition matrix

tab = 1 ⇐⇒ b = ar for some r ∈ R.

⋄ The Cayley graph TMS of (Z,+) with R = {±1} is given by
the transition matrix A = (tij)Z×Z

tij = 1 ⇐⇒ |i − j | = 1.

⋄ Generally, Cayley graphs TMS are always topologically
transitive, because for any pair of states a, b ∈ G one can find
an admissible word which starts at a and ends at b by
expanding a−1b = r1 · · · rn and setting (a, ar1, ar1r2, ..., b).



Example: Expanding Markov Interval Maps

Let J = [0, 1] and f : J → J be a map for which there exists a
finite or countable collection of pairwise disjoint open intervals
{Ja}a∈S s.t.

1. J =
⋃
a∈S

Ja;

2. f |Ja extends to a C 1 monotonic map on an open n’hood of Ja;

3. Uniform expansion: There are constants N ∈ N and λ > 1 s.t.
|(f N)′| > λ > 1 on

⋃
a∈S

Ja;

4. Markov partition: For every a, b ∈ S , if f (Ja) ∩ Jb ̸= ∅, then
f (Ja) ⊇ Jb;

5. For every a ∈ S , there are b, c ∈ S s.t. f (Ja) ⊇ Jb and
f (Jc) ⊇ Ja.

Let X denote the TMS with set of states S and transition matrix
(tab)S×S given by tab = 1 ⇐⇒ f (Ja) ⊇ Jb.
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Example: Expanding Markov Interval Maps

An example of a SFT given by a expanding Markov interval map.



Example: Expanding Markov Interval Maps

An example of a countable TMS given by the Gauss map.



Example: Expanding Markov Interval Maps

The following proposition gives us a topological conjugacy between
the TMS generated by the interval maps and the expanding
Markov function f in a big subset of [0, 1].

Proposition

Set N :=
⋃
n≥0

f −n

(
∂J ∪

⋃
a∈S

∂Ja

)
, there is a Hölder continuous

map π : X → I with the following properties:

1. The image of π contains (0, 1) \ N ;

2. Every t ∈ (0, 1) \ N has a unique pre-image (x0, x1, ...) ∈ X
and this pre-image is determined by f n(t) ∈ Jxn , n ∈ N;

3. If x ∈ X and π(x) ∈ (0, 1) \ N , then (π ◦ T )(x) = (f ◦ π)(x).
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Induced map and the full shift

⋄ Suppose that T : X → X is a measurable map on a
measurable space (X ,B).

⋄ If A ∈ B, set A′ := {x ∈ A;T n(x) ∈ A infinitely often}. The
induced map on A is the map TA : A′ → A′,
TA(x) = TφA(x)(x), where φA(x) := inf{n ≥ 1;T n(x) ∈ A}.

⋄ For X a TMS and A = [a], for some state a ∈ S , then TA is
topologically conjugate to a full shift on a countable alphabet.

⋄ The domain of the induced map is
A′ := {x ∈ [a]; xi = a for infinitely many i ∈ N}.

⋄ Define:

1. S := {[a, ξ1, ..., ξk ]; k ≥ 0, ξi ∈ S \ a, [a, ξ1, ..., ξk , a] ̸= ∅};
2. X := S

N
,T : X → X is the left shift;

3. π : X → A, π([a, ξ1], [a, ξ2], ...) = (a, ξ1, a, ξ2, ...).

⋄ Then π ◦ T = TA ◦ π.
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Functions on TMS

⋄ Consider X a fixed TMS. The variations of ϕ : X → R are

varn(ϕ) := sup{|ϕ(x)−ϕ(y)|; x , y ∈ X , xi = yi , 0 ≤ i ≤ n− 1}

that can be infinite.

⋄ We say that ϕ is weakly Hölder continuous with parameter θ
if there is A > 0 and θ ∈ (0, 1) such that for all n ≥ 2,
varn(ϕ) ≤ Aθn.

⋄ We say that ϕ has summable variations if
∞∑
n=2

varn(ϕ) < ∞.

⋄ Each of these conditions implies that ϕ is uniformly
continuous.

⋄ If |S | = ∞, then these conditions do not imply that ϕ is
bounded.
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Ruelle Operator (a wrong definition)

Let (M, d) be a proper metric space and T : X → X be a proper
continuous map. Given a proper continuous function ϕ : X → R
(the potential function), we can define an operator
Lϕ : C (X ) → C (X ) as

Lϕf (x) =
∑

y∈T−1x

eϕ(y)f (y).

This operator is called the Ruelle operator.



Riesz-Markov theorem

Let M a compact metric space. Consider a linear functional
Φ : C (M) → C. Then there exists a unique complex measure µ on
M such that

Φ(φ) =

∫
φdµ for all φ ∈ C (M)

and |µ|(X ) := ∥µ∥ = ∥Φ∥.



Eigenfunctions and Eigenmeasures

We sey that h : M → C is an eigenfunction if there exists λ ̸= 0
such that Lφ(h) = λh.
We say that a Borel measure on M is a eigenmeasure if there
exists λ ̸= 0 such that L∗

φ(µ) = λµ.
Where L∗

φ is the dual operator of Lφ.



Ruelle’s Perron-Frobenius Theorem

Let X be topologically mixing and S finite, ϕ weakly Hölder.
There are λ > 0, h ∈ C (X ) with h > 0 and ν ∈ M

(
Σ+
A

)
for which

Lh = λh,L∗ν = λν, ν(h) = 1,

lim
m→∞

∥∥λ−mLmg − ν(g)h
∥∥ = 0 for all g ∈ C (X )

and

▶ µ = νh is a Gibbs measure.

▶ µ = νh is the unique equilibrium state.

▶ λ is the radius of Lφ

▶ eP(T ,φ) = λ
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Guveric Pressure

For every a ∈ S , n ∈ N set Zn(ϕ, a) =
∑

T nx=x e
ϕn(x)1[a](x) where

ϕn =
∑n−1

k=0 ϕ ◦ T k . If X is topologically mixing and ϕ is locally
Hölder continuous then the limit

PG (ϕ) = lim
n→∞

1

n
logZn(ϕ, a)

exists, is independent of a and belongs to (−∞,∞].

If ∥Lϕ1∥∞ < ∞, this limit is finite and satisfies

PG (ϕ) = sup

{
hµ(T ) +

∫
ϕdµ : µ ∈ PT (X ), µ(−ϕ) < ∞

}
where PT (X ) denotes the set of all invariant Borel probability
measures. PG (ϕ) is called the Gurevic Pressure of ϕ.



Guveric Pressure

For every a ∈ S , n ∈ N set Zn(ϕ, a) =
∑

T nx=x e
ϕn(x)1[a](x) where

ϕn =
∑n−1

k=0 ϕ ◦ T k . If X is topologically mixing and ϕ is locally
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Hölder continuous Potentials

Set

Zn(ϕ, a) =
∑

T nx=x
x0=a

eϕn(x); Z ∗
n (ϕ, a) =

∑
T nx=x

x0=a:;x1,...,xn−1 ̸=a

eϕn(x).

Let X be topologically mixing and ϕ be locally Hölder continuous
with finite Gurevic pressure log λ. ϕ is called:

▶ recurrent if for some (hence all)
a ∈ S ,

∑
n<∞ λ−nZn(ϕ, a) = ∞; and transient otherwise;

▶ positive recurrent if it is recurrent and for some (hence all)
a ∈ S ,

∑
n<∞ nλ−nZ ∗

n (ϕ, a) < ∞
▶ null recurrent if it is recurrent and for some (hence all) a ∈ S ,∑

n<∞ nλ−nZ ∗
n (ϕ, a) = ∞.



Theorem, Sarig
Let X be topologically mixing and ϕ locally Hölder continuous with
finite Gurevic pressure. ϕ is recurrent iff there exist λ > 0, a
measure ν, finite and positive on cylinders, and a positive
continuous function h such that L∗ϕν = λν and Lϕh = λh. In this
case λ = expPG (ϕ) and ∃an ↗ ∞ such that for every cylinder [a]
and x ∈ X

1

an

n∑
k=1

λ−k
(
Lkϕ1[a]

)
(x) −→

n→∞
h(x)ν[a],

where {an}n satisfies an ∼
(∫

[a]hdν
)−1∑n

k=1 λ
−kZk(ϕ, a) for

every a ∈ S . Furthermore,

▶ if ϕ is positive recurrent then ν(h) < ∞, an ∼ n. const, and
for every [a], λ−nLnϕ1[a] −→

n→∞
hν[a]/ν(h) uniformly on

compacts;

▶ if ϕ is null recurrent then ν(h) = ∞, an = o(n), and for every
[a], λ−nLnϕ1[a] −→

n→∞
0 uniformly on cylinders.
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