Ruelle Operator

Gabriel Lacerda e Juan Mongez

Instituto de Matemática - UFRJ

27 de Fevereiro de 2023

Contents

Topological Markov Shifts

Ruelle Operator

Topological Markov Shifts

- ♦ Let S be a countable set and $\mathbb{A} = (t_{ij})_{S \times S}$ be a matrix of zeroes and ones with no columns or rows which are all zeroes.
- ♦ Out of this one can construct a directed graph with set of vertices S and set of edges $\{a \rightarrow b; t_{ab} = 1\}$.
- The set of all one-sided infinite allowed paths on the graph is called a topological Markov shift.

a
$$c \rightarrow e g \rightarrow$$

 $l / l / f / h \rightarrow$

Definition

The topological Markov shift (TMS) with set of states S and transition matrix $\mathbb{A} = (t_{ij})_{S \times S}$ is the set

$$X := \left\{ x \in S^{\mathbb{N}_0} ext{; } t_{x_i x_{i+1}} = 1, orall i \geq 0
ight\}$$

equipped with the topology generated by cylinders

$$[a_0,...,a_{n-1}] := \{x \in X; x_i = a_i, 0 \le i \le n-1\} \ (a_0,...,a_{n-1} \in S),$$

and endowed with the *left shift* map $T: (x_0, x_1, ...) \mapsto (x_1, x_2, ...)$.

Definition

The topological Markov shift (TMS) with set of states S and transition matrix $\mathbb{A} = (t_{ij})_{S \times S}$ is the set

$$X:=\left\{x\in \mathcal{S}^{\mathbb{N}_{0}} ext{;}\ t_{x_{i}x_{i+1}}=1,orall i\geq 0
ight\}$$

equipped with the topology generated by cylinders

$$[a_0,...,a_{n-1}] := \{x \in X; x_i = a_i, 0 \le i \le n-1\} \ (a_0,...,a_{n-1} \in S),$$

and endowed with the left shift map $T:(x_0,x_1,...)\mapsto (x_1,x_2,...).$

- The topology of a TMS is metrizable, and it is a complete and separable metric space.
- A TMS with a finite set of states is called a *subshift of finite* type (SFT).
- \diamond The metric space X is often denoted by Σ_A^+ .

Topological properties of a TMS

- ♦ An admissible word in X is an element $\underline{x} = (a_0, ..., a_{n-1}) \in S^n$, $n \in \mathbb{N}$, such that $[a_0, ..., a_{n-1}]$ is a non-empty cylinder in X.
- ♦ Write $a \xrightarrow{n} b$ if there is an admissible word of length n + 1 which starts at *a* and ends at *b*, e.g., $[a, x_1, ..., x_{n-1}, b]$.

Topological properties of a TMS

- ♦ An admissible word in X is an element $\underline{x} = (a_0, ..., a_{n-1}) \in S^n$, $n \in \mathbb{N}$, such that $[a_0, ..., a_{n-1}]$ is a non-empty cylinder in X.
- ♦ Write $a \xrightarrow{n} b$ if there is an admissible word of length n + 1 which starts at *a* and ends at *b*, e.g., $[a, x_1, ..., x_{n-1}, b]$.

Proposition

Let X be a topological Markov shift with set of states S and transition matrix $\mathbb{A} = (t_{ab})_{S \times S}$.

- 1. X is topologically transitive iff for all $a, b \in S$ there is an n s.t. $a \xrightarrow{n} b$.
- 2. X is topologically mixing iff for all $a, b \in S$ there is a number N_{ab} s.t. for all $n \ge N_{ab}$, $a \xrightarrow{n} b$.

Proof

Suppose that for all $a, b \in S$ there is a number N_{ab} s.t. for all $n \geq N_{ab}$, $a \stackrel{n}{\rightarrow} b$. Given open sets $U := [u_0, ..., u_{k-1}]$ and $V := [v_0, ..., v_{l-1}]$ in $X, k \geq l$, there is $N_{u_{k-1}v_0}$ s.t. for $n \geq N_{u_{k-1}v_0}, u_{k-1} \stackrel{n}{\rightarrow} v_0$.

Proof

Suppose that for all $a, b \in S$ there is a number N_{ab} s.t. for all $n \geq N_{ab}$, $a \stackrel{n}{\rightarrow} b$. Given open sets $U := [u_0, ..., u_{k-1}]$ and $V := [v_0, ..., v_{l-1}]$ in $X, k \geq l$, there is $N_{u_{k-1}v_0}$ s.t. for $n \geq N_{u_{k-1}v_0}, u_{k-1} \stackrel{n}{\rightarrow} v_0$. Therefore, in U, there is such admissible words

$$\underline{x} = (u_0, ..., u_{k-1}, x_1, ..., x_n, v_0, ..., v_{l-1})$$

$$\underline{y} = (u_0, ..., u_{k-1}, y_1, ..., y_{n+1}, v_0, ..., v_{l-1})$$

$$\vdots$$

Proof

Suppose that for all $a, b \in S$ there is a number N_{ab} s.t. for all $n \geq N_{ab}$, $a \stackrel{n}{\rightarrow} b$. Given open sets $U := [u_0, ..., u_{k-1}]$ and $V := [v_0, ..., v_{l-1}]$ in $X, k \geq l$, there is $N_{u_{k-1}v_0}$ s.t. for $n \geq N_{u_{k-1}v_0}, u_{k-1} \stackrel{n}{\rightarrow} v_0$. Therefore, in U, there is such admissible words

$$\underline{x} = (u_0, ..., u_{k-1}, x_1, ..., x_n, v_0, ..., v_{l-1}) \underline{y} = (u_0, ..., u_{k-1}, y_1, ..., y_{n+1}, v_0, ..., v_{l-1}) \vdots$$

So, for all $n \ge N_{u_k v_0} + k$, $T^n U \cap V \ne \emptyset$. Thus, X is topologically mixing.

Example: Cayley graphs

- ◊ Suppose G is a finitely generated group with a finite set of generators R.
- The Cayley graph TMS associated to R is the TMS with set of states G and transition matrix

$$t_{ab} = 1 \iff b = ar$$
 for some $r \in R$.

Example: Cayley graphs

- ◊ Suppose G is a finitely generated group with a finite set of generators R.
- The Cayley graph TMS associated to R is the TMS with set of states G and transition matrix

$$t_{ab} = 1 \iff b = ar$$
 for some $r \in R$.

♦ The Cayley graph TMS of $(\mathbb{Z}, +)$ with $R = \{\pm 1\}$ is given by the transition matrix $\mathbb{A} = (t_{ij})_{\mathbb{Z} \times \mathbb{Z}}$

$$t_{ij}=1 \iff |i-j|=1.$$

♦ Generally, Cayley graphs TMS are always topologically transitive, because for any pair of states $a, b \in G$ one can find an admissible word which starts at a and ends at b by expanding $a^{-1}b = r_1 \cdots r_n$ and setting $(a, ar_1, ar_1r_2, ..., b)$.

Let J = [0, 1] and $f : J \to J$ be a map for which there exists a finite or countable collection of pairwise disjoint open intervals $\{J_a\}_{a \in S}$ s.t.

- 1. $J = \bigcup_{a \in S} \overline{J_a};$
- 2. $f|_{J_a}$ extends to a C^1 monotonic map on an open n'hood of $\overline{J_a}$;
- 3. Uniform expansion: There are constants $N \in \mathbb{N}$ and $\lambda > 1$ s.t. $|(f^N)'| > \lambda > 1$ on $\bigcup_{a \in S} \overline{J_a}$;

Let J = [0, 1] and $f : J \to J$ be a map for which there exists a finite or countable collection of pairwise disjoint open intervals $\{J_a\}_{a \in S}$ s.t.

- 1. $J = \bigcup_{a \in S} \overline{J_a};$
- 2. $f|_{J_a}$ extends to a C^1 monotonic map on an open n'hood of $\overline{J_a}$;
- 3. Uniform expansion: There are constants $N \in \mathbb{N}$ and $\lambda > 1$ s.t. $|(f^N)'| > \lambda > 1$ on $\bigcup_{a \in S} \overline{J_a}$;
- 4. Markov partition: For every $a, b \in S$, if $f(J_a) \cap J_b \neq \emptyset$, then $f(J_a) \supseteq J_b$;
- 5. For every $a \in S$, there are $b, c \in S$ s.t. $f(J_a) \supseteq J_b$ and $f(J_c) \supseteq J_a$.

Let J = [0, 1] and $f : J \to J$ be a map for which there exists a finite or countable collection of pairwise disjoint open intervals $\{J_a\}_{a \in S}$ s.t.

- 1. $J = \bigcup_{a \in S} \overline{J_a};$
- 2. $f|_{J_a}$ extends to a C^1 monotonic map on an open n'hood of $\overline{J_a}$;
- 3. Uniform expansion: There are constants $N \in \mathbb{N}$ and $\lambda > 1$ s.t. $|(f^N)'| > \lambda > 1$ on $\bigcup_{a \in S} \overline{J_a}$;
- 4. Markov partition: For every $a, b \in S$, if $f(J_a) \cap J_b \neq \emptyset$, then $f(J_a) \supseteq J_b$;
- 5. For every $a \in S$, there are $b, c \in S$ s.t. $f(J_a) \supseteq J_b$ and $f(J_c) \supseteq J_a$.

Let X denote the TMS with set of states S and transition matrix $(t_{ab})_{S \times S}$ given by $t_{ab} = 1 \iff f(J_a) \supseteq J_b$.

An example of a SFT given by a expanding Markov interval map.

An example of a countable TMS given by the Gauss map.

The following proposition gives us a topological conjugacy between the TMS generated by the interval maps and the expanding Markov function f in a big subset of [0, 1].

The following proposition gives us a topological conjugacy between the TMS generated by the interval maps and the expanding Markov function f in a big subset of [0, 1].

Proposition

Set $\mathcal{N} := \bigcup_{n \ge 0} f^{-n} \left(\partial J \cup \bigcup_{a \in S} \partial J_a \right)$, there is a Hölder continuous map $\pi : X \to I$ with the following properties:

1. The image of π contains $(0,1) \setminus \mathcal{N}$;

- 2. Every $t \in (0,1) \setminus \mathcal{N}$ has a unique pre-image $(x_0, x_1, ...) \in X$ and this pre-image is determined by $f^n(t) \in J_{x_n}, n \in \mathbb{N}$;
- 3. If $x \in X$ and $\pi(x) \in (0,1) \setminus \mathcal{N}$, then $(\pi \circ T)(x) = (f \circ \pi)(x)$.

Induced map and the full shift

- ♦ Suppose that $T : X \to X$ is a measurable map on a measurable space (X, B).
- ◇ If $A \in \mathcal{B}$, set $A' := \{x \in A; T^n(x) \in A \text{ infinitely often}\}$. The *induced map* on A is the map $T_A : A' \to A'$, $T_A(x) = T^{\varphi_A(x)}(x)$, where $\varphi_A(x) := \inf\{n \ge 1; T^n(x) \in A\}$.

Induced map and the full shift

- ♦ Suppose that $T : X \to X$ is a measurable map on a measurable space (X, B).
- ◊ If A ∈ B, set A' := {x ∈ A; Tⁿ(x) ∈ A infinitely often}. The induced map on A is the map T_A : A' → A', T_A(x) = T^{φ_A(x)}(x), where φ_A(x) := inf{n ≥ 1; Tⁿ(x) ∈ A}.
- ◇ For X a TMS and A = [a], for some state $a \in S$, then T_A is topologically conjugate to a full shift on a countable alphabet.
- ♦ The domain of the induced map is $A' := \{x \in [a]; x_i = a \text{ for infinitely many } i \in \mathbb{N}\}.$

Induced map and the full shift

- ♦ Suppose that $T : X \to X$ is a measurable map on a measurable space (X, B).
- ◊ If A ∈ B, set A' := {x ∈ A; Tⁿ(x) ∈ A infinitely often}. The induced map on A is the map T_A : A' → A', T_A(x) = T^{φ_A(x)}(x), where φ_A(x) := inf{n ≥ 1; Tⁿ(x) ∈ A}.
- ◇ For X a TMS and A = [a], for some state $a \in S$, then T_A is topologically conjugate to a full shift on a countable alphabet.
- ♦ The domain of the induced map is $A' := \{x \in [a]; x_i = a \text{ for infinitely many } i \in \mathbb{N}\}.$
- ◊ Define:

1.
$$\overline{S} := \{[a, \xi_1, ..., \xi_k]; k \ge 0, \xi_i \in S \setminus a, [a, \xi_1, ..., \xi_k, a] \neq \emptyset\};$$

2. $\overline{X} := \overline{S}^{\mathbb{N}}, \overline{T} : \overline{X} \to \overline{X}$ is the left shift;
3. $\pi : \overline{X} \to A, \pi([a, \underline{\xi}^1], [a, \underline{\xi}^2], ...) = (a, \underline{\xi}^1, a, \underline{\xi}^2, ...).$

 $\diamond \text{ Then } \pi \circ T = T_A \circ \pi.$

Functions on TMS

 \diamond Consider X a fixed TMS. The *variations* of $\phi : X \to \mathbb{R}$ are

 $\operatorname{var}_{n}(\phi) := \sup\{|\phi(x) - \phi(y)|; x, y \in X, x_{i} = y_{i}, 0 \le i \le n-1\}$

that can be infinite.

Functions on TMS

 $\diamond\,$ Consider X a fixed TMS. The variations of $\phi: X \to \mathbb{R}$ are

 $var_n(\phi) := sup\{|\phi(x) - \phi(y)|; x, y \in X, x_i = y_i, 0 \le i \le n-1\}$

that can be infinite.

- ♦ We say that ϕ is *weakly Hölder continuous* with parameter θ if there is A > 0 and $\theta \in (0, 1)$ such that for all $n \ge 2$, $var_n(\phi) \le A\theta^n$.
- \diamond We say that ϕ has summable variations if $\sum_{n=2}^{\infty} \operatorname{var}_{n}(\phi) < \infty$.

Functions on TMS

 $\diamond\,$ Consider X a fixed TMS. The variations of $\phi: X \to \mathbb{R}$ are

 $\operatorname{var}_{n}(\phi) := \sup\{|\phi(x) - \phi(y)|; x, y \in X, x_{i} = y_{i}, 0 \le i \le n-1\}$

that can be infinite.

- ♦ We say that ϕ is *weakly Hölder continuous* with parameter θ if there is A > 0 and $\theta \in (0, 1)$ such that for all $n \ge 2$, $var_n(\phi) \le A\theta^n$.
- ♦ We say that ϕ has summable variations if $\sum_{n=2}^{\infty} \operatorname{var}_{n}(\phi) < \infty$.
- $\diamond\,$ Each of these conditions implies that ϕ is uniformly continuous.
- $\diamond~$ If $|{\cal S}|=\infty,$ then these conditions do not imply that ϕ is bounded.

Ruelle Operator (a wrong definition)

Let (M, d) be a proper metric space and $T : X \to X$ be a proper continuous map. Given a proper continuous function $\phi : X \to \mathbb{R}$ (the potential function), we can define an operator $\mathcal{L}_{\phi} : C(X) \to C(X)$ as

$$\mathcal{L}_{\phi}f(x) = \sum_{y \in T^{-1}x} e^{\phi(y)} f(y).$$

This operator is called the Ruelle operator.

Let M a compact metric space. Consider a linear functional $\Phi: C(M) \to \mathbb{C}$. Then there exists a unique complex measure μ on M such that

$$\Phi(arphi) = \int arphi d\mu$$
 for all $arphi \in \mathcal{C}(M)$

and $|\mu|(X) := \|\mu\| = \|\Phi\|.$

We sey that $h: M \to \mathbb{C}$ is an eigenfunction if there exists $\lambda \neq 0$ such that $\mathcal{L}_{\varphi}(h) = \lambda h$. We say that a Borel measure on M is a eigenmeasure if there exists $\lambda \neq 0$ such that $\mathcal{L}_{\varphi}^{*}(\mu) = \lambda \mu$. Where $\mathcal{L}_{\varphi}^{*}$ is the dual operator of \mathcal{L}_{φ} .

Let X be topologically mixing and S finite, ϕ weakly Hölder. There are $\lambda > 0$, $h \in C(X)$ with h > 0 and $\nu \in \mathcal{M}(\Sigma_A^+)$ for which $\mathcal{L}h = \lambda h, \mathcal{L}^*\nu = \lambda \nu, \nu(h) = 1$,

$$\lim_{m\to\infty} \left\|\lambda^{-m}\mathcal{L}^m g - \nu(g)h\right\| = 0 \quad \text{for all} \quad g\in C(X)$$

and

Let X be topologically mixing and S finite, ϕ weakly Hölder. There are $\lambda > 0$, $h \in C(X)$ with h > 0 and $\nu \in \mathcal{M}(\Sigma_A^+)$ for which $\mathcal{L}h = \lambda h, \mathcal{L}^*\nu = \lambda \nu, \nu(h) = 1$,

$$\lim_{m\to\infty}\left\|\lambda^{-m}\mathcal{L}^mg-\nu(g)h\right\|=0\quad\text{for all}\quad g\in C(X)$$

and

• $\mu = \nu h$ is a Gibbs measure.

Let X be topologically mixing and S finite, ϕ weakly Hölder. There are $\lambda > 0$, $h \in C(X)$ with h > 0 and $\nu \in \mathcal{M}(\Sigma_A^+)$ for which $\mathcal{L}h = \lambda h, \mathcal{L}^*\nu = \lambda \nu, \nu(h) = 1$,

$$\lim_{m\to\infty}\left\|\lambda^{-m}\mathcal{L}^mg-\nu(g)h\right\|=0\quad\text{for all}\quad g\in C(X)$$

and

• $\mu = \nu h$ is a Gibbs measure.

• $\mu = \nu h$ is the unique equilibrium state.

Let X be topologically mixing and S finite, ϕ weakly Hölder. There are $\lambda > 0$, $h \in C(X)$ with h > 0 and $\nu \in \mathcal{M}(\Sigma_A^+)$ for which $\mathcal{L}h = \lambda h, \mathcal{L}^*\nu = \lambda \nu, \nu(h) = 1$,

$$\lim_{m\to\infty}\left\|\lambda^{-m}\mathcal{L}^mg-\nu(g)h\right\|=0\quad\text{for all}\quad g\in C(X)$$

and

- $\mu = \nu h$ is a Gibbs measure.
- $\mu = \nu h$ is the unique equilibrium state.
- \blacktriangleright λ is the radius of \mathcal{L}_{φ}

Let X be topologically mixing and S finite, ϕ weakly Hölder. There are $\lambda > 0$, $h \in C(X)$ with h > 0 and $\nu \in \mathcal{M}(\Sigma_A^+)$ for which $\mathcal{L}h = \lambda h, \mathcal{L}^*\nu = \lambda \nu, \nu(h) = 1$,

$$\lim_{m\to\infty}\left\|\lambda^{-m}\mathcal{L}^mg-\nu(g)h\right\|=0\quad\text{for all}\quad g\in C(X)$$

and

- $\mu = \nu h$ is a Gibbs measure.
- $\mu = \nu h$ is the unique equilibrium state.
- \blacktriangleright λ is the radius of \mathcal{L}_{φ}

$$\blacktriangleright e^{P(T,\varphi)} = \lambda$$

Guveric Pressure

For every $a \in S$, $n \in \mathbb{N}$ set $Z_n(\phi, a) = \sum_{T^n X = X} e^{\phi_n(x)} \mathbb{1}_{[a]}(x)$ where $\phi_n = \sum_{k=0}^{n-1} \phi \circ T^k$. If X is topologically mixing and ϕ is locally Hölder continuous then the limit

$$P_G(\phi) = \lim_{n \to \infty} \frac{1}{n} \log Z_n(\phi, a)$$

exists, is independent of *a* and belongs to $(-\infty, \infty]$.

Guveric Pressure

For every $a \in S$, $n \in \mathbb{N}$ set $Z_n(\phi, a) = \sum_{T^n X = X} e^{\phi_n(X)} \mathbb{1}_{[a]}(X)$ where $\phi_n = \sum_{k=0}^{n-1} \phi \circ T^k$. If X is topologically mixing and ϕ is locally Hölder continuous then the limit

$$P_G(\phi) = \lim_{n \to \infty} \frac{1}{n} \log Z_n(\phi, a)$$

exists, is independent of *a* and belongs to $(-\infty, \infty]$. If $\|L_{\phi}1\|_{\infty} < \infty$, this limit is finite and satisfies

$$P_G(\phi) = \sup\left\{h_\mu(T) + \int \phi d\mu : \mu \in \mathcal{P}_T(X), \mu(-\phi) < \infty\right\}$$

where $\mathcal{P}_{\mathcal{T}}(X)$ denotes the set of all invariant Borel probability measures. $P_G(\phi)$ is called the Gurevic Pressure of ϕ .

Hölder continuous Potentials

Set

$$Z_{n}(\phi, a) = \sum_{\substack{T^{n} x = x \\ x_{0} = a}} e^{\phi_{n}(x)}; \quad Z_{n}^{*}(\phi, a) = \sum_{\substack{T^{n} x = x \\ x_{0} = a :; x_{1}, \dots, x_{n-1} \neq a}} e^{\phi_{n}(x)}.$$

Let X be topologically mixing and ϕ be locally Hölder continuous with finite Gurevic pressure log λ . ϕ is called:

- ► recurrent if for some (hence all) $a \in S, \sum_{n < \infty} \lambda^{-n} Z_n(\phi, a) = \infty$; and transient otherwise;
- ▶ positive recurrent if it is recurrent and for some (hence all) $a \in S$, $\sum_{n < \infty} n\lambda^{-n}Z_n^*(\phi, a) < \infty$
- ▶ null recurrent if it is recurrent and for some (hence all) $a \in S$, $\sum_{n < \infty} n\lambda^{-n} Z_n^*(\phi, a) = \infty$.

Theorem, Sarig

Let X be topologically mixing and ϕ locally Hölder continuous with finite Gurevic pressure. ϕ is recurrent iff there exist $\lambda > 0$, a measure ν , finite and positive on cylinders, and a positive continuous function h such that $L_{\phi}^*\nu = \lambda\nu$ and $L_{\phi}h = \lambda h$. In this case $\lambda = \exp P_G(\phi)$ and $\exists a_n \nearrow \infty$ such that for every cylinder [a] and $x \in X$

$$\frac{1}{a_n}\sum_{k=1}^n \lambda^{-k} \left(L_{\phi}^k \mathbb{1}_{[a]} \right)(x) \underset{n \to \infty}{\longrightarrow} h(x)\nu[\underline{a}],$$

where $\{a_n\}_n$ satisfies $a_n \sim \left(\int [a]hd\nu\right)^{-1} \sum_{k=1}^n \lambda^{-k} Z_k(\phi, a)$ for every $a \in S$. Furthermore,

- if φ is positive recurrent then ν(h) < ∞, a_n ~ n. const, and for every [<u>a</u>], λ⁻ⁿLⁿ_φ1_[a] → hν[<u>a</u>]/ν(h) uniformly on compacts;
- if ϕ is null recurrent then $\nu(h) = \infty$, $a_n = o(n)$, and for every [a], $\lambda^{-n} L_{\phi}^n 1_{[a]} \xrightarrow[n \to \infty]{} 0$ uniformly on cylinders.