26 04 im alumniV8
22 11 im fatiado face
22 11 im fatiado twitter
22 11 im fatiado youtube
22 11 im fatiado gmail
22 11 im fatiado brazil
22 11 im fatiado england
22 11 im fatiado spain

27 04 Probability Seminar of the AmericasTítulo: Random growth in 1+1 dimensions, KPZ and KP

Palestrante: Daniel Remenik
Data: 28/04/2021
Horário: 11:00h
Local: Transmissão online.

Confira AQUI o link para a transmissão.

Resumo: The KPZ fixed point is a scaling invariant Markov process which arises as the universal scaling limit of all models in the KPZ universality class, a broad collection of models including one-dimensional random growth, directed polymers and particle systems. In particular, it contains all of the rich fluctuation behavior seen in the class, which for some initial data relates to distributions from random matrix theory (RMT). In this talk I'm going to introduce this process and explain how its finite-dimensional distributions are connected to a famous integrable dispersive PDE, the Kadomtsev-Petviashvili (KP) equation (and, for some special initial data, the simpler Korteweg-de Vries equation). I will also describe how this relation provides an explanation for the appearance in the KPZ universality class of the Tracy-Widom distributions from RMT.