Groups of Hölder diffeomorphisms.

1 - Overview. Let X be a smooth, compact manifold. For all $k \in \mathbb{N}$ and for all $\alpha \in [0, 1]$, let $\text{Diff}^{k,\alpha}(X)$ denote the space of homeomorphisms of X which are of Hölder class (k, α). Trivially, this is a group except when $k + \alpha \notin [0, 1]$. However, for almost all values of k and α, it is not a topological group. Indeed, it is straightforward to show that the operations of composition and inversion are only continuous when $k = \alpha = 0$. The purpose of this note is to show that continuity of these operations is recovered when $\text{Diff}^{k,\alpha}(X)$ is replaced by the space $\text{diff}^{k,\alpha}(X)$, defined to be the closure of $\text{Diff}^{\infty}(X)$ in $\text{Diff}^{k,\alpha}(X)$.

2 - Definitions. We recall the notation and terminology of Hölder norms and seminorms. Consider first two metric spaces X and Y. For all $f : X \to Y$ and for all $\alpha \in [0, 1]$, the Hölder seminorm of f of order α is defined by

$$[f]_\alpha := \sup_{x \neq y} \frac{d(f(x), f(y))}{d(x, y)^\alpha}. \quad (1)$$

In particular, $[f]_0$ is the total variation of f and $[f]_1$ is its Lipschitz seminorm. The following log-concavity property will prove useful.

Lemma 2.1

For all $f : X \to Y$, and for all $\alpha, \beta, t \in [0, 1]$,

$$[f]_{t\alpha+(1-t)\beta} \leq [f]_\alpha^t[f]_\beta^{1-t}. \quad (2)$$

Proof: Indeed,

$$[f]_{t\alpha+(1-t)\beta} = \sup_{x \neq y} \frac{d(f(x), f(y))}{d(x, y)^{(t\alpha+(1-t)\beta)}}$$

$$= \sup_{x \neq y} \left(\frac{d(f(x), f(y))}{d(x, y)^\alpha} \right)^t \left(\frac{d(f(x), f(y))}{d(x, y)^\beta} \right)^{(1-t)}$$

$$\leq [f]_\alpha^t[f]_\beta^{1-t},$$

as desired. □

Suppose now that Y is a normed vector space. For all $f : X \to Y$, the uniform norm of f is defined by

$$\|f\|_{C^0} := \sup_x \|f(x)\|. \quad (3)$$

In particular, it is trivially related to the total variation of f by

$$[f]_0 \leq 2\|f\|_{C^0}. \quad (4)$$

For all $f : X \to Y$ and for all $\alpha \in [0, 1]$, the Hölder norm of f of order $(0, \alpha)$ is defined by

$$\|f\|_{C^{0,\alpha}} := \|f\|_{C^0} + [f]_\alpha. \quad (5)$$
Groups of Hölder diffeomorphisms.

Suppose finally that X is an open subset of some normed vector space. The concept of derivatives of functions from X into Y can then be introduced. For all $k \in \mathbb{N}$, for all $\alpha \in [0, 1]$, and for every k-times differentiable function $f : X \to Y$, the Hölder norm of f of order (k, α) is defined by

$$\|f\|_{C^k,\alpha} := \sum_{m=0}^{k} \|D^m f\|_{C^0} + [D^k f]_\alpha.$$ \hspace{1cm} (5)

In particular, the Hölder norms satisfy the following inductive formula

$$\|f\|_{C^{k+1},\alpha} = \|f\|_{C^0} + \|Df\|_{C^k,\alpha}.$$

For all (k, α), the Hölder space of order (k, α), denoted by $C^{k,\alpha}(X,Y)$, is defined to be the space of all k-times differentiable functions $f : X \to Y$ such that $\|f\|_{C^{k,\alpha}} < \infty$. It is straightforward to show that this space is non-separable and that $C^{\infty}(X,Y)$ is not a dense subset even when X is compact. For this reason, for all (k, α), the little Hölder space of order (k, α), denoted by $c^{k,\alpha}(X,Y)$, is defined to be the closure of $C^{\infty}(X,Y)$ in $C^{k,\alpha}(X,Y)$. In the special case where $\alpha = 1$, we have, for all k,

$$c^{k,1}(X,Y) = C^{k+1}(X,Y).$$

3 - Multilinear maps. In this section, E_1, \ldots, E_m and F will be normed vector spaces, and $\mu : E_1 \oplus \ldots \oplus E_m \to F$ will be a bounded, multilinear map. We first suppose that X is a metric space.

Lemma 3.1

The map

$$C^0(X, E_1) \oplus \ldots \oplus C^0(X, E_m) \to C^0(X, F); (f_1, \ldots, f_m) \mapsto \mu(f_1, \ldots, f_m)$$

is a continuous, multilinear map of norm bounded by $\|\mu\|$.

Proof: Indeed, for all f_1, \ldots, f_m,

$$\|\mu(f_1, \ldots, f_m)\|_{C^0} = \sup_{x \in X} \|\mu(f_1, \ldots, f_m)(x)\|$$

$$= \sup_{x \in X} \|\mu(f_1(x), \ldots, f_m(x))\|$$

$$\leq \sup_{x \in X} \|\mu\| \|f_1(x)\| \ldots \|f_m(x)\|$$

$$\leq \|\mu\| \|f_1\|_{C^0} \ldots \|f_m\|_{C^0},$$

and the result follows. □
Groups of Hölder diffeomorphisms.

Lemma 3.2

For all $\alpha \in [0, 1]$, the map

$$C^{0,\alpha}(X, E_1) \oplus \ldots \oplus C^{0,\alpha}(X, E_m) \to C^{0,\alpha}(X, F); (f_1, \ldots, f_m) \mapsto \mu(f_1, \ldots, f_m)$$

is a continuous, multilinear map of norm bounded by $\|\mu\|$.

Proof: It suffices to consider the case where $m = 2$. For all f_1, f_2, and for all $\alpha \in [0, 1]$,

$$[\mu(f_1, f_2)]_\alpha = \sup_{x \neq y} \frac{\|\mu(f_1, f_2)(x) - \mu(f_1, f_2)(y)\|}{d(x, y)^\alpha}$$

$$= \sup_{x \neq y} \frac{\|\mu(f_1(x), f_2(x)) - \mu(f_1(y), f_2(y))\|}{d(x, y)^\alpha}$$

$$\leq \sup_{x \neq y} \frac{\|\mu(f_1(x), f_2(x)) - \mu(f_1(y), f_2(x))\|}{d(x, y)^\alpha}$$

$$+ \sup_{x \neq y} \frac{\|\mu(f_1(x), f_2(x)) - \mu(f_1(y), f_2(y))\|}{d(x, y)^\alpha}$$

$$\leq \|\mu\|[f_1]_\alpha ||f_2||_{C^0} + \|\mu\| ||f_1||_{C^\alpha} [f_2]_\alpha,$$

and since

$$\|\mu(f_1, f_2)||_{C^0} \leq \|\mu\| ||f_1||_{C^\alpha} ||f_2||_{C^0},$$

it follows that

$$\|\mu(f_1, f_2)||_{C^{0,\alpha}} \leq \|\mu\| ||f_1||_{C^{0,\alpha}} ||f_2||_{C^{0,\alpha}},$$

as desired. □

Suppose now that X is an open subset of a normed vector space.

Lemma 3.3

For all $k \in \mathbb{N}$ and for all $\alpha \in [0, 1]$, the map

$$C^{k,\alpha}(X, E_1) \oplus \ldots \oplus C^{k,\alpha}(X, E_m) \to C^{k,\alpha}(X, F); (f_1, \ldots, f_m) \mapsto \mu(f_1, \ldots, f_m)$$

is a continuous, multilinear map of norm bounded by $m^k \|\mu\|$.

Proof: It suffices to consider the case where $m = 2$. We prove this result by induction on k. The case where $k = 0$ follows from Lemma 3.2. Denote by E the normed vector space in which X is contained and define the continuous bilinear maps $\mu_1 : \text{Lin}(E, E_1) \oplus E_2 \to \text{Lin}(E, F)$ and $\mu_2 : E_1 \oplus \text{Lin}(E, E_2) \to \text{Lin}(E, F)$ by

$$\mu_1(A, V)(U) := \mu(A(U), V),$$

and

$$\mu_2(U, A)(V) := \mu(U, A(V)).$$
Groups of Hölder diffeomorphisms.

Consider now \(f_1 \in C^{k+1,\alpha}(X, E_1) \) and \(f_2 \in C^{k+1,\alpha}(X, E_2) \). By the chain rule,
\[
D\mu(f_1, f_2) = \mu_1(Df_1, f_2) + \mu_2(f_1, Df_2),
\]
so that, by the inductive hypothesis,
\[
\|D\mu(f_1, f_2)\|_{C^k,\alpha} \leq 2^k \|\mu\| \left(\|Df_1\|_{C^k,\alpha} \|f_2\|_{C^k,\alpha} + \|f_1\|_{C^k,\alpha} \|Df_2\|_{C^k,\alpha} \right).
\]

However, since \(\|\mu(f_1, f_2)\|_{C^0} \leq \|\mu\| \|f_1\|_{C^0} \|f_2\|_{C^0} \),

it follows that
\[
\|\mu(f_1, f_2)\|_{C^{k+1,\alpha}} \leq 2^{k+1} \|\mu\| \|f_1\|_{C^{k+1,\alpha}} \|f_2\|_{C^{k+1,\alpha}},
\]
as desired. \(\square\)

4 - Composition. In this section, \(X \) will be a metric space. We suppose first that \(Y \) and \(Z \) are also metric spaces and that \(Y \) is locally compact.

Lemma 4.1

The composition map
\[
C^0(X, Y) \times C^0(Y, Z) \to C^0(X, Z); (f, g) \mapsto g \circ f
\]
is continuous.

Proof: We prove this result using the compact-open topology. Consider an element \((f, g)\) of \(C^0(X, Y) \times C^0(Y, Z) \). Let \(U \) be an open subset of \(Z \) and let \(K \) be a compact subset of \(X \) such that \((g \circ f)(K) \subseteq U\). In particular, \(f(K) \subseteq g^{-1}(U) \). Since \(f(K) \) is compact and since \(Y \) is locally compact, there exists a relatively compact, open subset \(V \) of \(Y \) such that \(K \subseteq V \) and \(g(V) \subseteq U \). Define now the neighbourhoods \(\mathcal{U} \) and \(\mathcal{V} \) of \(f \) and \(g \) respectively by
\[
\mathcal{U} := \{ f' \in C^0(X, Y) \mid f(K) \subseteq V \} \text{ and } \\
\mathcal{V} := \{ g' \in C^0(X, Y) \mid g(V) \subseteq U \}.
\]

For all \((f', g') \in \mathcal{U} \times \mathcal{V}\), \((g' \circ f')(K) \subseteq U\), and the result follows. \(\square\)

We henceforth suppose that \(Y \) and \(Z \) are subsets of normed vector spaces.

Lemma 4.2

For all \(\alpha, \beta \in [0, 1] \), and for all \((f, g) \in C^{0,\alpha}(X, Y) \times C^{0,\beta}(Y, Z)\),
\[
[g \circ f]_{\alpha\beta} \leq [g]_{\beta}[f]_{\alpha}^\beta.
\]

In particular,
\[
\|g \circ f\|_{C^{0,\alpha\beta}} \leq \|g\|_{C^{0,\alpha}} \left(1 + [f]_{\alpha}^\beta \right).
\]

Remark: It follows that pre-composition by an element of \(C^{0,\alpha}(X, Y) \) defines a bounded linear map from \(C^{0,\beta}(Y, Z) \) to \(C^{0,\alpha\beta}(X, Z) \).
Groups of Hölder diffeomorphisms.

Proof: Indeed,
\[
[g \circ f]_\alpha = \sup_{x \neq y} \frac{\|(g \circ f)(x) - (g \circ f)(y)\|}{d(x, y)^{\alpha \beta}} \\
\leq [g]_\beta \sup_{x \neq y} \frac{d(f(x), f(y))^{\beta}}{d(x, y)^{\alpha \beta}} \\
= [g]_\beta [f]_\alpha^{\beta},
\]
as desired. □

Lemma 4.3

For all $\alpha, \beta, \gamma \in [0, 1]$ such that $\gamma < \alpha \beta$, the composition map

\[C^{0,\alpha}(X, Y) \times C^{0,\beta}(Y, Z) \to C^{0,\gamma}(X, Z); (f, g) \mapsto g \circ f \]

is continuous.

Proof: Indeed, consider a sequence (f_m, g_m) converging in $C^{0,\alpha}(X, Y) \times C^{0,\beta}(Y, Z)$ to (f_∞, g_∞). By Lemma 4.1,

\[
\lim_{m \to +\infty} \|(g_m \circ f_m) - (g_\infty \circ f_\infty)\|_{C^0} = 0.
\]

By (6), there exists $B > 0$ such that, for all m,

\[
[(g_m \circ f_m) - (g_\infty \circ f_\infty)]_{\alpha \beta} \leq [g_m \circ f_m]_{\alpha \beta} + [g_\infty \circ f_\infty]_{\alpha \beta} \leq B.
\]

By (2) with $t := \gamma/\alpha \beta$,

\[
[(g_m \circ f_m) - (g_\infty \circ f_\infty)]_{\gamma} \leq B^t [(g_m \circ f_m) - (g_\infty \circ f_\infty)]_{0}^{(1-t)}
\]

and since this tends to zero as m tends to infinity, the result follows. □

Lemma 4.4

For all $\alpha \in [0, 1]$ and for all $\beta \in [0, 1]$, the composition map

\[C^{0,\alpha}(X, Y) \times C^{0,\beta}(Y, Z) \to C^{0,\alpha \beta}(X, Z); (f, g) \mapsto g \circ f \]

is continuous.

Proof: Indeed, consider a sequence (f_m, g_m) converging in $C^{0,\alpha}(X, Y) \times C^{0,\beta}(Y, Z)$ to (f_∞, g_∞). For all m,

\[
[(g_m \circ f_m) - (g_\infty \circ f_\infty)]_{\alpha \beta} \leq [(g_\infty \circ f_m) - (g_\infty \circ f_\infty)]_{\alpha \beta} + [(g_m - g_\infty) \circ f_m]_{\alpha \beta}.
\]

By (6), the second term on the right hand side satisfies

\[
[(g_m - g_\infty) \circ f_m]_{\alpha \beta} \leq [g_m - g_\infty]_{\beta} [f_m]_{\alpha}^{\beta},
\]

and since this tends to zero as m tends to infinity, the result follows. □
which tends to zero as \(m \) tends to infinity. Consider now the first term on the right hand side. Let \(B > 0 \) be such that, for all \(m \in \mathbb{N} \cup \{\infty\} \),

\[
[f_m]_\alpha \leq B.
\]

Now choose \(\epsilon > 0 \) and choose \(h \in C^\infty(Y,Z) \) such that

\[
[h - g_\infty]_\beta \leq \epsilon/3B^\beta.
\]

Using (6) again, we obtain

\[
\begin{align*}
\left[(g_\infty \circ f_m) - (g_\infty \circ f_\infty)\right]_\alpha &\leq \left[(h - g_\infty) \circ f_m\right]_\alpha \beta \\
&\quad + \left[(h \circ f_\infty) - (h \circ f_\infty)\right]_\alpha \beta \\
&\quad + \left[(h - g_\infty) \circ f_\infty\right]_\alpha \beta \\
&= \left[(h \circ f_m) - (h \circ f_\infty)\right]_\alpha \beta \\
&\quad + [h - g_\infty]_\beta [f_m]_\alpha^\beta \\
&\quad + [h - g_\infty]_\beta [f_\infty]_\alpha^\beta \\
&\leq \left[(h \circ f_m) - (h \circ f_\infty)\right]_\alpha \beta + 2\epsilon/3.
\end{align*}
\]

Since \(h \in C^{0,1}(Y,Z) \), it follows by Lemma 4.3 that, for sufficiently large \(m \),

\[
\left[(h \circ f_m) - (h \circ f_\infty)\right]_\alpha \beta \leq \epsilon/3,
\]

so that

\[
\left[(g_\infty \circ f_m) - (g_\infty \circ f_\infty)\right]_\alpha \beta \leq \epsilon.
\]

Since \(\epsilon \) may be chosen arbitrarily small, the first term on the right hand side also tends to zero as \(m \) tends to infinity, and this completes the proof. \(\Box \)

The case where \(\beta = 1 \) is treated separately. Although it is not strictly necessary for our purposes, we include it for completeness.

Lemma 4.5

If \(Y \) is convex and compact then, for all \(\alpha \in [0,1] \), the composition map

\[
C^{0,\alpha}(X,Y) \times C^1(Y,Z) \to C^{0,\alpha}(X,Z); (f,g) \mapsto g \circ f
\]

is continuous.

Proof: Let \(E \) and \(F \) denote the normed vector spaces containing \(Y \) and \(Z \) respectively. Suppose furthermore that \(F \) is complete, so that the integral of continuous curves in \(F \) is well defined. Now let \((f_m, g_m)\) be a sequence converging in \(C^{0,\alpha}(X,Y) \times C^1(Y,Z) \) to \((f_\infty, g_\infty)\). Bearing in mind that \(Y \) is convex, for all \(m \in \mathbb{N} \cup \{\infty\} \), we define \(A_m : X \times X \to \text{Lin}(E,F) \) by

\[
A_m(x,y) := \int_0^1 Dg_m((1-t)f_m(x) + tf_m(y))dt.
\]
Groups of Hölder diffeomorphisms.

It follows by compactness of Y that the sequence (A_m) converges uniformly to A_∞ as m tends to infinity. Now, for all m,

$$
[g \circ f_m - g \circ f_\infty]_\alpha = \sup_{x \neq y} \frac{\|A_m(x, y)(f_m(y) - f_m(x)) - A_\infty(x, y)(f_\infty(y) - f_\infty(x))\|}{d(x, y)\alpha}
$$

$$
\leq \sup_{x \neq y} \frac{\|A_m(x, y)(f_m(y) - f_m(x)) - f_\infty(y) + f_\infty(x))\|}{d(x, y)\alpha}
$$

$$
+ \sup_{x \neq y} \frac{\|(A_m(x, y) - A_\infty(x, y))(f_\infty(y) - f_\infty(x))\|}{d(x, y)\alpha}
$$

and since this tends to zero as m tends to infinity, the result follows. □

Finally, we suppose that X is an open subset of a normed vector space.

Lemma 4.6

For all $k \geq 1$, and for all $\alpha \in [0, 1]$, the composition map

$$C^{k,\alpha}(X, Y) \times C^{k,\alpha}(Y, Z) \to C^{k,\alpha}(X, Z); (f, g) \mapsto g \circ f$$

is continuous.

Proof: Since $C^{k,1} = C^{k+1}$, the case where $\alpha = 1$ follows by a straightforward argument of elementary calculus. We therefore suppose that $\alpha < 1$, and we prove this result by induction in k. Consider a sequence (f_m, g_m) converging to (f_∞, g_∞) in $C^{k,\alpha}(X, Y) \times C^{k,\alpha}(Y, Z)$. By Lemma 4.1, the sequence $(g_m \circ f_m)$ converges to $(g_\infty \circ f_\infty)$ in $C^0(X, Z)$. By the chain rule, for all $m \in \mathbb{N} \cup \{\infty\}$,

$$D(g_m \circ f_m) = (Dg_m \circ f_m) Df_m.$$

Denote by E and F the normed vector spaces containing X and Z respectively. If $k > 1$, then it follows by the inductive hypothesis that the sequence $(Dg_m \circ f_m)$ converges to $(Dg_\infty \circ f_\infty)$ in $C^{k-1,\alpha}(X, \text{Lin}(E, F))$. Otherwise, if $k = 1$, then this property follows by Lemma 4.4. In each case, by Lemma 3.3, the sequence $(D(g_m \circ f_m))$ converges to $D(g_\infty \circ f_\infty)$ in $C^{0,\alpha}(X, \text{Lin}(E, F))$, and we conclude that the sequence $(g_m \circ f_m)$ converges to $(g_\infty \circ f_\infty)$ in $C^{k,\alpha}(X, Z)$, as desired. □

Suppose now that X is a smooth, compact, embedded submanifold of some finite-dimensional vector space, and observe that the above results continue to hold in this case. Let $\text{diff}^{k,\alpha}(X)$ denote the space of diffeomorphisms of X which are of type $c^{k,\alpha}$. Setting $Z = Y = X$, Lemma 4.6 immediately yields

Theorem 4.7

For all $k \geq 1$, and for all $\alpha \in [0, 1]$, the composition map

$$\text{diff}^{k,\alpha}(X) \times \text{diff}^{k,\alpha}(X) \to \text{diff}^{k,\alpha}(X); (f, g) \mapsto g \circ f$$

is continuous.

We conclude by proving continuity of the inversion map. First, we have
Groups of Hölder diffeomorphisms.

Lemma 4.8

The inversion map

\[
\text{homeo}(X) \rightarrow \text{homeo}(X); \phi \rightarrow \phi^{-1}
\]

is continuous.

Proof: Indeed, consider a sequence \((\phi_m)\) converging in \(\text{Homeo}(X)\) to \(\phi_\infty\). Let \(U\) and \(K\) be respectively an open and a compact subset of \(X\) such that \(\phi_\infty^{-1}(K) \subseteq U\). In particular \(\phi_\infty(U^c) \subseteq K^c\) so that, since \(U^c\) is compact and \(K^c\) is open, for sufficiently large \(m\), \(\phi_m(U^c) \subseteq K^c\). It follows that, for sufficiently large \(m\), \(\phi_m^{-1}(K) \subseteq U\) and so \((\phi_m^{-1})\) converges to \(\phi_\infty^{-1}\) in the compact-open topology, as desired. \(\square\)

Theorem 4.9

For all \(k \geq 1\) and for all \(\alpha \in [0, 1]\), the inversion map

\[
\text{diff}^{k,\alpha}(X) \rightarrow \text{diff}^{k,\alpha}(X); \phi \mapsto \phi^{-1}
\]

is continuous.

Proof: We prove this by induction on \(k\). Consider a sequence \((\phi_m)\) converging in \(\text{diff}^{k,\alpha}(X)\) to \(\phi_\infty\) and for all \(m \in \mathbb{N} \cup \{\infty\}\) denote \(\psi_m := \phi_m^{-1}\). By Lemma 4.8, \((\psi_m)\) converges to \(\psi_\infty\) in the \(C^0\) sense. By the chain rule, for all \(m \in \mathbb{N} \cup \{\infty\}\),

\[
D\psi_m = (D\phi_m)^{-1} \circ \psi_m.
\] (7)

We now claim that \((\psi_m)\) converges to \(\psi_\infty\) in the \(C^{k-1,\alpha}\) sense. Indeed, when \(k > 1\), this follows by the inductive hypothesis. Otherwise, when \(k = 1\), we first observe that (7) implies that \((D\psi_m)\) converges towards \(D\psi_\infty\) in the \(C^0\) sense. It follows that \((\psi_m)\) converges to \(\psi_\infty\) in the \(C^1\) sense, and therefore also in the \(C^{0,\alpha}\) sense, as asserted. In each case, it follows by Lemma 4.6 that \((D\psi_m)\) converges towards \(D\psi_\infty\) in the \(C^{k-1,\alpha}\) sense, and so \((\psi_m)\) converges towards \(\psi_\infty\) in the \(C^{k,\alpha}\) sense, as desired. \(\square\)