On translating solitons for the mean curvature flow that are of finite genus.

Graham Smith

Universidade Federal do Rio de Janeiro, Rio de Janeiro

April 9, 2015
Let $A_{ij} : \mathbb{R} \to \text{Symm}(\mathbb{R}^n)$ be smooth functions such that

1. $A_{ij}(t)$ tends to A_i (resp. A_j) as t tends to $-\infty$ (resp. $+\infty$);
2. $A^{(k)}_{ij}(t)$ tends to 0 as $|t|$ tends to ∞.

Define $D : H^1(\mathbb{R}, \mathbb{R}^n) \to L^2(\mathbb{R}, \mathbb{R}^n)$ by

$$(D_{ij}f)(t) = (\partial_t f)(t) + A_{ij}(t)f(t).$$
Theorem

If \(A_{ij}(t) =: A \) is constant, and if \(A \) is invertible, then \(D_{ij} \) defines an invertible linear map from \(H^1(\mathbb{R}, \mathbb{R}^n) \) into \(L^2(\mathbb{R}, \mathbb{R}^n) \).

Theorem

If \(A_i \) and \(A_j \) are invertible, then \(D_{ij} \) is Fredholm. Furthermore

\[
\text{Ind}(D_{ij}) = \text{Index}(A_i) - \text{Index}(A_j),
\]

where \(\text{Index}(A_i) \) and \(\text{Index}(A_j) \) are the Morse Indices of \(A_i \) and \(A_j \) respectively.

Theorem

For generic \(A_{ij} \), \(\text{Coker}(D_{ij}) \) is maximal.
Define $\xi : \mathbb{R} \to [0, 1]$ such that

$$\xi(t) = \begin{cases} 1 & \text{if } t \leq 0, \\ 0 & \text{if } t \geq 1. \end{cases}$$

For $R > 0$, define $D_{02,R}^R : H^1(\mathbb{R}, \mathbb{R}^n) \to L^2(\mathbb{R}, \mathbb{R}^n)$ by

$$(D_{02}^R f)(t) = (\partial_t f)(t) + (\xi(t)A_{01}(t + R) + (1 - \xi(t)A_{12}(t - R))f(t).$$

Theorem

For sufficiently large R, if $\xi(t)f(t + R) \in \text{Ker}(D_{01})^\perp$, if $(1 - \xi(t))f(t - R) \in \text{Ker}(D_{12})^\perp$, and if $f \in \text{Ker}(D^R)$, then $f = 0$.
Step 1: For all $L, \epsilon > 0$ and for sufficiently large R,

$$\|f|_{[-L,L]}\|_{H^1} \leq \epsilon.$$

Indeed, define

$$\eta^R(t) = \xi(4(x - 1)/R)\xi(4(1 - x)/R).$$

Then, denoting $A := A_1$,

$$(\partial_t - A)(\eta^R f) = D_{02}^R(\eta^R f) + \text{Err}^R(\eta^R f)$$
$$= [D_{02}^R, \eta^R]f + \eta^R D_{02}^R f + \text{Err}^R(\eta^R f)$$
$$= (\partial_t \eta^R)f + \text{Err}^R(\eta^R f).$$

This is small for large R, and the assertion follows by invertibility of $\partial_t - A$.
Step II: For all $\epsilon > 0$ and for sufficiently large R,

$$\|\xi f\|_{H^1} \leq \epsilon.$$

Indeed

$$D_{01}(\xi f) = D_{02}^R(\xi f) + Err^R(\xi f)$$

$$= [D_{02}^R, \xi]f + \xi D_{02}^R f + Err^R(\xi f)$$

$$= (\partial_t \xi)f + Err^R(\xi f).$$

This is small for large R, and the assertion follows since $\xi f \in \text{Ker}(D_{01})^\perp$.
Mean Curvature Flow

Let M be a surface. Let $i_t : M \to \mathbb{R}^3$ be a smooth family of complete, smooth immersions of M into \mathbb{R}^3.

Let $N_t : M \to S^2$ be the unit normal vector field over i_t.

Let $H_t : M \to \mathbb{R}$ be the mean curvature of M.

We say that i_t is a **mean curvature flow** whenever it satisfies

$$\langle \partial_t i_t, N_t \rangle + H_t = 0.$$

This is a degenerate-parabolic partial differential equation.
Mean Curvature Solitons

Let A_t be a group of isometries of \mathbb{R}^3.
Let $i : M \rightarrow \mathbb{R}^3$ be a complete, smooth immersion.
We say that i is a soliton for the mean curvature flow whenever the family $i_t := A_t \circ i$ is a mean curvature flow.
When A_t is a group of translations (usually in the z-direction), we say that i is a translating soliton.
Translating solitons are solutions of
\[\langle e_z, N_t \rangle + H_t = 0, \]
where e_z here denotes the unit vector in the z direction.
This is a degenerate-elliptic partial differential equation.
Invariant Examples I - Translation Invariance

Simple examples are constructed by supposing invariance with respect to a continuous group of isometries of \(\mathbb{R}^3 \).

This reduces the dimension of the problem from 2 to 1.

First suppose horizontal translation invariance.

This reduces the problem to mean curvature solitons in \(\mathbb{R}^2 \). Up to translation, there are two examples.

(1) The vertical line in \(\mathbb{R}^2 \). This yields the vertical plane in \(\mathbb{R}^3 \).

(2) The graph of the function

\[
g : [- \pi/2, \pi/2] \to \mathbb{R}, \quad t \mapsto \log(\sec(t)).
\]

This is known as the Grim Reaper Curve. It yields the Grim plane in \(\mathbb{R}^3 \).
Now suppose rotation invariance about the z-axis.

There are two types of solutions: \textbf{simply connected} solutions and \textbf{doubly connected} solutions.

The simply connected solution, S_0, is called the \textbf{Grim paraboloid}.

S_0 is the graph of a function $g : \mathbb{R}^2 \rightarrow \mathbb{R}$.

For large x,

$$g(x) \sim C + \frac{1}{2} \|x\|^2 - \log(\|x\|) + \ldots$$

Up to vertical translation, S_0 is unique.
The doubly connected solution, S_r, is called the **Grim catenoid**.

S_r is the union of the graphs of two functions $g_{u,r}, g_{l,r} : A(r, \infty) \rightarrow \mathbb{R}$.

For large x,

$$g_{u,r}(x), g_{l,r}(x) \sim C + \frac{1}{2} \|x\|^2 - \log(\|x\|) + \ldots$$

Up to vertical translation, this family is 1-dimensional, parametrised by the inner-radius, r.

As r tends to 0, S_r converges to 2 copies of S_0.
In 2013, Nguyen constructed solutions that are invariant under the action of a discrete group of translations.

She calls these solutions **translating tridents**.

They are obtained by desingularising the union of a **Grim plane** and a **vertical plane** along a **singly-periodic Sherk surface**.

In particular, like the singly-periodic Sherk surface, they have infinite genus.
Invariant Examples - Discrete Rotation Invariance

In 2014, Martín, Savas-Halilaj and Smoczyk ask for the existence of solutions of non-trivial finite topology.

We achieve this by singularising the union of a Grim catenoid and a Grim paraboloid about the Costa-Hoffman-Meeks surface, C_g, of genus g.
C_g is a complete, embedded minimal surface of genus g with 3 horizontal ends.

The upper and lower ends are catenoidal, that is, they are asymptotic to the graphs of

$$f_{\pm}(x) = \pm A \pm B \log(\|x\|) + \ldots$$

The middle end is planar.

For all $k \in \{0, \ldots, g\}$, C_g is invariant by reflection in the plane spanned by the vectors

$$\cos(k\pi/(g + 1))e_x + \sin(k\pi/(g + 1))e_y \text{ and } e_z.$$

We refer to the isometry group spanned by these reflections as the group of **horizontal symmetries** of C_g.

Theorem A

Let g be a positive integer and fix $\eta > 0$. For all sufficiently large Δ, and for all $\epsilon, R > 0$ such that

$$\epsilon R^{4+\eta} < \frac{1}{\Delta}, \quad \epsilon R^{5-\eta} > \Delta,$$

there exists a complete, embedded, translating soliton, $M_{g,\epsilon,R}$, with genus g and 3 ends. Furthermore

1. $M_{g,\epsilon,R}$ is preserved by the horizontal symmetries of C_g;
2. $M_{g,\epsilon,R} \setminus B_{\epsilon R}(0)$ consists of 3 disjoint Grim ends each of which converges towards the Grim paraboloid as Δ tends to infinity; and
3. upon rescaling by $1/\epsilon$, $M_{g,\epsilon,R} \cap B_{\epsilon R}(0)$ converges towards C_g as Δ tends to infinity.
Transition Regions and Cut-Off Functions

For $R > 0$, define

\[B(R) := \{(x, y, z) \mid \|x, y\| \leq R\}. \]

\[A(R, 2R) := \{(x, y, z) \mid R \leq \|x, y\| \leq 2R\}. \]

Define $\chi : [0, \infty] \rightarrow [0, 1]$ such that

\[\chi(t) = \begin{cases}
1 & \text{if } t \leq 1, \\
0 & \text{if } t \geq 2.
\end{cases} \]

For $R > 0$, define $\chi_R : \mathbb{R}^3 \rightarrow [0, 1]$ by

\[\chi_R(x, y, z) = \chi \left(\frac{\sqrt{x^2 + y^2}}{R} \right). \]

We call χ_R the \textbf{cut-off function} over the \textbf{transition region} $A(R, 2R)$.
We pretend that C_g is the graph of a function $f : \mathbb{R}^2 \to \mathbb{R}$.

(It is outside a compact set.)

We pretend that J_C is invertible, with Green's operator G_C.

(It's almost invertible.)

We pretend that G is the graph of a function $g : \mathbb{R}^2 \to \mathbb{R}$.

(It is outside a compact set.)

We pretend that J_G is invertible, with Green's operator G_G.

(It is.)
Building the Approximate Soliton

Given $\epsilon > 0$, we define the rescaled Grim end

$$g_\epsilon(x, y) := g(\epsilon x, \epsilon y).$$

Given $R > 0$, we define the approximate soliton

$$h(x, y) := h_{\epsilon, R}(x, y) = \chi_R(x, y)f(x, y) + (1 - \chi_R)(x, y)g_\epsilon(x, y).$$

Let H be the graph of h.

H solves the translating soliton equation over $A(2R, \infty)$.

The error over $B(2R)$ is bounded by ϵ.

We consider H as an **approximate soliton**.
Building the Green’s operator

We construct the translating soliton by perturbing H.

This is a simple application of Schauder’s fixed point theorem.

However, we require a Green’s operator for J_H.

Furthermore, the Green’s operator is not unique: we need to choose the right one.

We construct a suitable Green’s operator out of G_C and G_G.

We do this via a “ping-pong” argument.
For $\phi \in C^\infty_0(B(0, 2R))$, we define
\[\|\phi\|_{k,C} \]
to be the C^k-norm of ϕ with respect to the intrinsic metric of C.

For $\psi \in C^\infty_0(A(R, \infty))$, we define
\[\|\phi\|_{k,G} \]
to be the C^k-norm of ϕ with respect to the intrinsic metric of G.

Care should be taken, as G has been **rescaled** by a factor of $1/\epsilon$!
For ϕ supported in $B(0, 2R)$, we define

$$A\phi := J_H \chi_{R^4} G_C \phi - \phi.$$

$A\phi$ measures the obstruction to $\chi_{R^4} G_C \phi$ being the J_H inverse of ϕ.

We rewrite A as

$$A\phi = \chi_{R^4} (J_H - J_C) G_C \phi - [J_G, \chi_{R^4}] G_C \phi.$$

This is supported in $A(R, \infty)$. Furthermore

$$\|A\phi\|_{0, G} \leq \frac{1}{R^{6+\delta}} \|\phi\|_{0, C}.$$
The “Ping-Pong” Argument - Part II

For ψ supported in $A(R, \infty)$, we define

$$B\phi := J_H(1 - \chi_{R/2})G_G\psi - \psi.$$

$B\phi$ measures the obstruction to $(1 - \chi_{R/2})G_G\psi$ being the J_H inverse of ψ.

We rewrite B as

$$B\phi = \chi_{R/4}(J_H - J_C)G_C\phi + [J_G, \chi_{R/4}]G_C\phi.$$

This is supported in $B(2R)$. Furthermore

$$\|B\psi\|_{0,c} \leq \frac{R^2}{\epsilon R} \|\psi\|_{0,c}.$$
The “Ping-Pong” Argument - Part III

We define

\[Q_C := \sum_{m=0}^{\infty} (BA)^m, \quad Q_G := \sum_{m=0}^{\infty} (AB)^m \]

If \(\phi \) is supported in \(B(0, 2R) \), we define

\[G_{H,C}\phi := \chi_{R^4} G_C Q_C \phi - (1 - \chi_{R/4}) G_G A Q_C \phi. \]

This yields

\[J_H G_{H,C}\phi = J_H \chi_{R^4} G_C Q_C \phi - J_H (1 - \chi_{R/4}) G_G A Q_C \phi, \]

\[= A Q_C \phi + Q_C \phi - B A Q_C \phi - A Q_C \phi, \]

\[= \phi. \]

We define \(G_{H,G} \) in a similar manner.
Let D denote the differentiation operator of \mathbb{R}^2 and define

$$D_C := RD, \quad D_G := \frac{1}{\epsilon}D$$

D_C is the natural differentiation operator over the Costa-Hoffman-Meeks surface.

D_G is the natural differentiation operator over the rescaled Grimm end.

In particular

$$\|\phi\|_{2,C} = \|\phi\|_{L^\infty} + \|D_C\phi\|_{L^\infty} + \|D_C^2\phi\|_{L^\infty}$$

$$\|\phi\|_{2,G} = \|\phi\|_{L^\infty} + \|D_G\phi\|_{L^\infty} + \|D_G^2\phi\|_{L^\infty}$$
For ϕ supported in $A(R/4, 2R)$,

$$\|\phi\|_{L^\infty} = \|\phi\|_{L^\infty},$$

$$\|D_G\phi\|_{L^\infty} = (\epsilon R)^{-1}\|D_C\phi\|_{L^\infty},$$

$$\|D_G^2\phi\|_{L^\infty} = (\epsilon R)^{-2}\|D_C^2\phi\|_{L^\infty}.$$

In particular

$$\|\phi\|_{2,G} \leq (\epsilon R)^{-2}\|\phi\|_{2,C}.$$

This constitutes a loss of information concerning the lower order derivatives of ϕ!
To recover this lost information, we actually use the norm

\[\| \phi \|_{k,G} := \| \phi \|_{C^k(G)} + \frac{1}{(\epsilon R)} \| \phi \|_{H^k(G)}, \]

where \(\| \cdot \|_{C^k(G)} \) is the rescaled \(C^k \) norm over \(G \) and \(H^k(G) \) is the rescaled Sobolev norm over \(G \).

In particular,

\[\| \phi \|_{C^1(G)} \leq \| \phi \|_{H^2(G)} \leq (\epsilon R) \| \phi \|_{2,G}. \]

Well... not quite...
Thankyou!