Programa Especial de Matemática
Instituto de Matemática
logo do IM
UFRJ


Disciplina Geometria Afim e Projetiva


Pré-requisitos

Álgebra Linear II e Álgebra I (opcional).

O Público-alvo são alunos do segundo ano de faculdade em diante.


Motivação

Nesta disciplina buscamos:

Docente Responsável: Prof. Nicolas Puignau ( npuignau ARROBA labma . ufrj . br)


Ementa da Disciplina

L'algèbre n'est qu'une géométrie écrite.
La géométrie n'est qu'une algèbre figurée.
(Sophie Germain)

  1. Grupos e operação de grupo sobre um conjunto: exemplos geométricos, órbitas, transitividade, estabilizador.
  2. Espaços e subespaços afin: exemplos, incidência, paralelismo. Equações de subespaços, espaços gerados, sistemas de coordenadas.
  3. Transformações afins. Exemplos notáveis (translação, rotação, homotetia, reflexão, projeção, etc.). Grupo afim. Transformações afins com restrições.
  4. Cálculo baricêntrico (aplicações em geometria elementar, baricentro e transformações afins: ponto fixo). Convexidade. Polítopos convexos.
  5. Espaços euclidianos vetoriais e afins. Grupo ortogonal linear: topologia e redução. Ângulos orientados no plano.
  6. Grupo das isometrias afins: forma reduzida, descrição em dimensão 2 e 3. Similaridades planas.
  7. Polígonos convexos regulares do plano. Grupos diedrais.
  8. Espaços e subespaços projetivos. Dualidade. Transformações projetivas. A reta projetiva: dupla razão e o grupo circular.
  9. Cônicas e quâdricas afins e projetivas: classificação e propriedades.

Retorne para Página principal do Programa Especial de Matemática.

Última atualização: março/2010

Valid HTML 4.0!