Rényi’s Parking Problem Revisited
Probability in Dynamics at IM-UFRJ

Matthew Clay & Nándor Simányi

mclay6@gatech.edu Georgia Institute of Technology
simanyi@uab.edu University of Alabama at Birmingham

26 May 2014
Outline

1 Background and Motivation
 • Rényi’s Parking Problem
 • Discrete Models

2 The Discrete Model
 • Model Description
 • Research Questions
 • The Recursion

3 Numerical Results
 • Numerical Approach
 • Numerical Results
 • Filling Density of Blocks
Rényi’s Parking Problem

Model (1958)
- Consider an interval I of length $x \gg 1$.
- Sequentially and randomly pack disjoint unit intervals in I as long as there is space in I.
- Each new interval is chosen uniformly from the available space.
- $M(x)$ is the expected value of the measure of the covered part.

Rényi’s Parking Constant

$$m = \lim_{x \to \infty} \frac{M(x)}{x} = \int_0^\infty \exp \left[-2 \int_0^x \frac{1 - e^{-y}}{y} dy \right] dx = 0.747597...$$

$$M(x) = mx + m - 1 + O(x^{-n})$$
Some Previous Discrete Models

- Rényi studied a continuous process, but discrete processes have been investigated as well.
- Page (1959) investigated the sequential packings of non-overlapping neighboring pairs of integer points.
- Such discrete models have direct applications in physics, e.g., the sequential absorption of molecules.

Model of Gargano et al. (2005)

- Considered packings with disjoint blocks of $k + 1$ consecutive integer lattice points.
- Asymmetric filling process: each block center is distanced at least $k + 2$ from at least one of its two neighbors.
Model Description

Consider the discrete lattice interval \(\{1, 2, \ldots, n + k - 1\} \) (\(n \gg 1 \)).

Sequentially pack the interval with disjoint blocks of \(k + 1 \) integers until the space does not permit additional intervals.

The packing process is symmetric, hence more natural.

Example: \(k = 2 \)

We then have gaps of \(k \leq r \leq 2k \) lattice points between the block centers.
Research Questions

1. In similar fashion to Rényi’s continuous recursion, can we obtain a recursion to determine the filling by the discrete process?
2. What is the distribution of gap lengths r?
3. How do the results for the discrete model compare to those from Rényi’s continuous model?
Recursion for Gap Length Expectation

Definition

For any \(r (k \leq r \leq 2k) \), let \(a_n^{(r)} \) be the expected number of \(r \)-gaps.

We begin with the lattice

A car chooses the \(i + k \) slot, where \(1 \leq i \leq n - k - 1 \).
Recursion for Gap Length Expectation

The process repeats for each new lattice.

The probability of occupying the available \(n - k - 1 \) lattice points are equal, hence we obtain the following formula:

\[
a_n^{(r)} = \frac{1}{n - k - 1} \sum_{i=1}^{n-k-1} \left[a_i^{(r)} + a_{n-k-i}^{(r)} \right]
\]
Recursion for Gap Length Expectation

Hence, for \(n \geq k + 2 \) we have that

\[
a_n^{(r)} = \frac{2}{n - k - 1} \sum_{i=1}^{n-k-1} a_i^{(r)}
\]

\[
a_n^{(r)} = \begin{cases}
1 & \text{if } n = r - k + 1 \\
0 & \text{if } 1 \leq n \leq k + 1, n \neq r - k + 1
\end{cases}
\]

We have a linear recursion with an unbounded step.
Obtaining a \(k \)-step Recursion

Definition

\[
\begin{align*}
 s_n^{(r)} &= \sum_{i=1}^{n} a_i^{(r)} \\
 t_n^{(r)} &= \frac{s_n^{(r)}}{n(n+2k+1)}
\end{align*}
\]

Let \(u_n^{(r)} = t_n^{(r)} - t_{n-1}^{(r)} \), which yields the following linear \(k \)-step recursion.

\[
u_n^{(r)} = \frac{-2(n+k)}{n(n+2k+1)} \cdot \sum_{i=1}^{k} u_{n-i}^{(r)}
\]

\[
u_n^{(r)} = \begin{cases}
 0 & \text{if } 2 \leq n \leq r - k \\
 \frac{1}{(r-k+1)(r+k+2)} & \text{if } n = r - k + 1 \text{ and } r \geq k + 1 \\
 \frac{1}{n(n+2k+1)} - \frac{1}{(n-1)(n+2k)} & \text{if } r - k + 2 \leq n \leq k + 1
\end{cases}
\]
Limits

The limiting densities

\[D(k, r) = (r + 1) \lim_{n \to \infty} \frac{a_n^{(r)}}{n} = 2(r + 1)t^{(r)} \]

exist for all \(r \) \((k \leq r \leq 2k)\), and

\[\sum_{r=k}^{2k} D(k, r) = 1 \]

The factor \((r + 1)\) accounts for the occupied lattice sites.

Example: \(k = 2 \)
Limits

Of particular interest is the limiting cumulative distribution function

\[F(t) = \lim_{k \to \infty} \sum_{r=k}^{[(1+t)k]} D(k, r) \]

which indicates how the \(r \) gaps are distributed, and the corresponding limiting density function

\[F'(t) = \lim_{k \to \infty} kD(k, [(1 + t)k]) \]

for \(0 \leq t \leq 1 \).
Numerical Methods

Driving Factors
- Must use large k, and therefore large n, to accurately estimate $F(t)$ and $F'(t)$.
- Precision is important when estimating limits accurately.

Program Design
- Fortran module with quadruple precision to calculate each $D(k, r)$.
- Driving program is a Python script utilizing MPI to parallelize the calculation of each $D(k, r)$.
- Communication is only required at program completion, since each $D(k, r)$ calculation is independent.
Figure: Plot of the distribution function $\sum_{s=k}^{\lfloor (1+t)k \rfloor} D(k, s)$ for $k = 2^{20}$.
Figure: Plot of the density function $kD(k, [(1 + t)k])$ for $k = 2^{20}$. The maximum value is at $t = 0$ and is marked with the symbol.
Figure: Plot of the growth of $kD(k, k)$ as k is increased. The values of k used were 2^n, where $3 \leq n \leq 30$.
Figure: Plot of the growth of $kD(k, 2k)$ as k is increased. The values of k used were 2^n, where $3 \leq n \leq 30$.
The numerical results suggest that

- Small gaps are favored, but not aggressively so.
- $F'(0) \approx kD(k, k)$ grows at a logarithmic rate with k.
- $F'(1) \approx kD(k, 2k)$ converges to a number 0.63047... in a monotone increasing fashion as k is increased.
- $D(k, r)$ is decreasing in r (not shown).
Filling Density of Integer Blocks

Definition

\[D(k) = \sum_{r=k}^{2k} \frac{k+1}{r+1} D(k, r) \]

- Gives the limiting filling density of cars getting a parking slot.
- Reminiscent of the filling density investigated by Rényi.

Clearly

\[\frac{k+1}{2k+1} \leq D(k) \leq 1 \]

Example of Inefficient Packing: \(k = 2 \)
Recovering Rényi’s Parking Constant

Figure: Plot depicting the difference between the calculated values of $D(k)$ and Rényi’s constant m (to machine precision) versus k. The values of k used were 2^n, where $3 \leq n \leq 20$.
Thanks!