Society Collapse through erroneous Annual Tax rates: Piketty Recipe

COLMEA 25/11/2015

Paulo Murilo Castro de Oliveira 1,2,3 (oliveira.paulomurilo@gmail.com)

1 Instituto Nacional de Ciência e Tecnologia - Sistema Complexos (INCTSC)
2 Instituto Mercosul de Estudos Avançados, Universidade Federal da Integração Latino Americana (UNILA)
3 Instituto de Física, Universidade Federal Fluminense (UFF)
Foreword

This work is not yet finished.

I have still many doubts (*).

I hope you can help me with new ideas.
Gráfico 2 - Brasil: IR total/ renda total(%) por faixa de rendimento

Fonte dos dados brutos: Valor Econômico, edição 10/08/2015
Very Simple Model

N agents, with their own wealths $W_i(t)$, $i = 0, 1 \ldots N - 1$. Initial wealths are randomly tossed at $t = 0$, and normalized ($\sum_i W_i = 1$). Time t is counted in years.
Very Simple Model

N agents, with their own wealths $W_i(t)$, $i = 0, 1 \ldots N - 1$. Initial wealths are randomly tossed at $t = 0$, and normalized $(\sum_i W_i = 1)$. Time t is counted in years.

step I (annual income)
During the year, agents are randomly tossed to increase their wealths, $W_i \rightarrow 2W_i$. There are N annual tosses (the same agent may be tossed more than once, or none).
Very Simple Model

N agents, with their own wealths $W_i(t)$, $i = 0, 1 \ldots N - 1$. Initial wealths are randomly tossed at $t = 0$, and normalized ($\sum_i W_i = 1$). Time t is counted in years.

step I (annual income)
During the year, agents are randomly tossed to increase their wealths, $W_i \rightarrow 2W_i$. There are N annual tosses (the same agent may be tossed more than once, or none).

renormalization step
As we are not interested in the global economic growth, the distribution is renormalized ($\sum_i W_i = 1$). Nevertheless, the global growing factor can be booked.
step II (annual taxes)

At the end-of-year, each agent pays tax proportional to its current wealth, according to rate pW_i (total payed tax pW_i^2).
step II (annual taxes)

At the end-of-year, each agent pays tax proportional to its current wealth, according to rate pW_i (total payed tax pW_i^2).

Case $p = 0$ means uniform tax rate, the same for rich and poor agents (covered in the renormalization procedure).
Very Simple Model

step II (annual taxes)
At the end-of-year, each agent pays tax proportional to its current wealth, according to rate pW_i (total paid tax pW_i^2).

Case $p = 0$ means uniform tax rate, the same for rich and poor agents (covered in the renormalization procedure).

Case $p < 0$ corresponds to the Tea Party reality shown before, rich agents pay less.
Very Simple Model

step II (annual taxes)

At the end-of-year, each agent pays tax proportional to its current wealth, according to rate pW_i (total paid tax pW_i^2).

Case $p = 0$ means uniform tax rate, the same for rich and poor agents (covered in the renormalization procedure).

Case $p < 0$ corresponds to the Tea Party reality shown before, rich agents pay less.

Case $p > 0$ corresponds to Piketty recipe, rich agents pay more.
Very Simple Model

step II (annual taxes)
At the end-of-year, each agent pays tax proportional to its current wealth, according to rate pW_i (total payed tax pW_i^2).

Case $p = 0$ means uniform tax rate, the same for rich and poor agents (covered in the renormalization procedure).

Case $p < 0$ corresponds to the Tea Party reality shown before, rich agents pay less.

Case $p > 0$ corresponds to Piketty recipe, rich agents pay more.

Renormalization again, before next year. Annual global growing factor booked.
Further ingredient, computer limits

The renormalization procedure avoids large real numbers and overflow on computers.
Further ingredient, computer limits

The renormalization procedure avoids large real numbers and overflow on computers.

But some unlucky agents decrease their wealth continuously, and may reach the computer minimum real number figure ($\approx 10^{-300}$).

In this case, the wealth becomes null (exactly zero on computers), the corresponding agent is artificially ruled out of the game. Therefore, the system size N becomes meaningless.
Further ingredient, computer limits

The renormalization procedure avoids large real numbers and overflow on computers.

But some unlucky agents decrease their wealth continuously, and may reach the computer minimum real number figure ($\approx 10^{-300}$).

In this case, the wealth becomes null (exactly zero on computers), the corresponding agent is artificially ruled out of the game. Therefore, the system size N becomes meaningless.

In order to keep always the same system size N, every time an agent reaches the minimum computer figure, it is replaced by a copy of another random agent.
Results

After a large number of years, for instance with fixed $p = 0$, the result is a catastrophe: A single agent becomes owner of the whole population wealth. We interpret this as a collapse of the society. It is an absorbing state.
Results

After a large number of years, for instance with fixed $p = 0$, the result is a catastrophe: A single agent becomes owner of the whole population wealth. We interpret this as a collapse of the society. It is an absorbing state.

By adopting $p < 0$ (the Tea Party ideology), the same collapse is accelerated, the collapse time decreases.
Results

After a large number of years, for instance with fixed $p = 0$, the result is a catastrophe: A single agent becomes owner of the whole population wealth. We interpret this as a collapse of the society. It is an absorbing state.

By adopting $p < 0$ (the Tea Party ideology), the same collapse is accelerated, the collapse time decreases.

Adopting p slightly positive, the collapse time increases but the collapse still occurs.
Results

After a large number of years, for instance with fixed $p = 0$, the result is a catastrophe: A single agent becomes owner of the whole population wealth. We interpret this as a collapse of the society. It is an absorbing state.

By adopting $p < 0$ (the Tea Party ideology), the same collapse is accelerated, the collapse time decreases.

Adopting p slightly positive, the collapse time increases but the collapse still occurs.

For large enough positive values of p however, the system remains forever alive, no collapse. There is a transition from society extinction on the absorbing state towards an active forever changing dynamics, by surpassing a certain positive critical threshold p_c.
The dynamics is historical, not ergodic. Following the tree of possibilities by choosing one particular possible branch, other also possible branches become impossible from now on.

The tree of possibilities shrink as time goes by.
The dynamics is historical, not ergodic. Following the tree of possibilities by choosing one particular possible branch, other also possible branches become impossible from now on. The tree of possibilities shrink as time goes by. The lucky agents frequently tossed in the very first time steps tend to stay in the top set forever. Although the statistics are booked independent of who the richest agents are.
The dynamics is historical, not ergodic. Following the tree of possibilities by choosing one particular possible branch, other also possible branches become impossible from now on.

The tree of possibilities shrink as time goes by.

The lucky agents frequently tossed in the very first time steps tend to stay in the top set forever. Although the statistics are booked independent of who the richest agents are.

In evolutionary biology this is called the founders effect.
Technically, the bad side of the historical status of the model is the impossibility of applying mean-field reasonings in time evolution. One cannot compute the next-year distribution of wealths from the many-sample-average of the current state.
Technically, the bad side of the historical status of the model is the impossibility of applying mean-field reasonings in time evolution. One cannot compute the next-year distribution of wealths from the many-sample-average of the current state. This technical difficulty is particularly important in what concerns following the history of the single richest agent in the collapsed phase.
Technically, the bad side of the historical status of the model is the impossibility of applying mean-field reasonings in time evolution. One cannot compute the next-year distribution of wealths from the many-sample-average of the current state.

This technical difficulty is particularly important in what concerns following the history of the single richest agent in the collapsed phase.

Nevertheless, the wealth evolution of each agent is independent of others, therefore, perhaps mean-field reasonings may be applied “spatially” among agents themselves, generating an analytical formulation. Evaldo Curado investigates this possibility.
Zipf distribution

$N = 10240$, $T = 10^8$

$p = 0$, $p = 0.1$, $p = 0.5$, $p = 0.9$
Collapse time \((W_0 > 0.999999) \) (*)

\[T_\infty(p = 0) = T_N + K \times N^{-\alpha} = 1910 \pm 63 \]
Collapse time \((W_0 > 0.999999)\) (*)

\[
T_\infty(0.15) = T_N + K \cdot N^{-\alpha}
= (1.55 \pm 0.02) \times 10^5
\]

\(p = 0.15\)
$T_{\infty} \times p \ (*)$

Fit $p_c = p + K \times T_{\infty}(p)^{-1/\gamma}$

$\gamma = 7.2 \pm 0.4$

Collapse time $T_{\infty}(p)$

Tax parameter p
Zipf first moment (*)

\[N = 10240 \quad T = 10^8 \]