Split Conformal Prediction for Dependent Data

Paulo Orenstein
June 15th, 2022

Joint work with Roberto Imbuzeiro Oliveira, Thiago Ramos, João Vitor Romano and others
Agenda

- Motivation: the need for uncertainty quantification
Agenda

- Motivation: the need for uncertainty quantification

- Solution: split conformal prediction, with a single crucial assumption
Agenda

- Motivation: the need for uncertainty quantification

- Solution: split conformal prediction, with a single crucial assumption

- Extending split CP to dependent data: new results
Agenda

▶ Motivation: the need for uncertainty quantification

▶ Solution: split conformal prediction, with a single crucial assumption

▶ Extending split CP to dependent data: new results

▶ In practice: effect of dependency is negligible
Agenda

- Motivation: the need for uncertainty quantification
- Solution: split conformal prediction, with a single crucial assumption
- Extending split CP to dependent data: new results
- In practice: effect of dependency is negligible
- Conclusion: further directions
Video with blue solid.
Motivation

Dr Heron Werner (DASA): “Given fetal MRI images, can we predict the amount of amniotic fluid”?
Motivation

Dr Heron Werner (DASA): “Given fetal MRI images, can we predict the amount of amniotic fluid”?

- abnormal volume indicates pregnancy pathologies
- usual measurements are imprecise or subjective
- estimation is manually done by trained physician, taking hours to days
Motivation

▶ Dr Heron Werner (DASA): “Given fetal MRI images, can we predict the amount of amniotic fluid”?

- abnormal volume indicates pregnancy pathologies
- usual measurements are imprecise or subjective
- estimation is manually done by trained physician, taking hours to days

▶ Goal: accurate algorithm for volume estimation, in seconds
Motivation

▶ Dr Heron Werner (DASA): “Given fetal MRI images, can we predict the amount of amniotic fluid”?
 - abnormal volume indicates pregnancy pathologies
 - usual measurements are imprecise or subjective
 - estimation is manually done by trained physician, taking hours to days

▶ Goal: accurate algorithm for volume estimation, in seconds

▶ How: segment each layer in the MRI using U-Net, count voxel size for volume
Motivation

▶ Dr Heron Werner (DASA): “Given fetal MRI images, can we predict the amount of amniotic fluid”?
 - abnormal volume indicates pregnancy pathologies
 - usual measurements are imprecise or subjective
 - estimation is manually done by trained physician, taking hours to days

▶ Goal: accurate algorithm for volume estimation, in seconds

▶ How: segment each layer in the MRI using U-Net, count voxel size for volume

▶ Results: ~ 92% Dice accuracy in under 5 seconds
Video with estimates.
Results

![Graph showing predicted versus target volumes](image-url)
Problem: uncertainty quantification

- Can we really trust the results?
Problem: uncertainty quantification

▶ Can we really trust the results?

▶ In medicine, uncertainty quantification is crucial; best guess is 2.80L but...
Problem: uncertainty quantification

- Can we really trust the results?

- In medicine, uncertainty quantification is crucial; best guess is 2.80L but...
 - “I’m 90% sure the true AF volume is between 2.72L and 2.88L”
 - “I’m 90% sure the true AF volume is between 1.90 and 3.70L”
Problem: uncertainty quantification

▶ Can we really trust the results?

▶ In medicine, uncertainty quantification is crucial; best guess is 2.80L but...
 - “I’m 90% sure the true AF volume is between 2.72L and 2.88L”
 - “I’m 90% sure the true AF volume is between 1.90 and 3.70L”

▶ How can we provide valid predictive intervals for black-box prediction methods?
Given data \{((X_i, y_i))_{i=1}^n\} to train any prediction method \(\hat{\mu}\) and any level \(\alpha \in (0, 1)\), can we construct a prediction set \(C_{1-\alpha}(x)\) such that, for a new point \((X_{n+1}, y_{n+1})\),

\[
P[y_{n+1} \in C_{1-\alpha}(X_{n+1})] \geq 1 - \alpha?
\]
Given data \(\{(X_i, y_i)\}_{i=1}^{n} \) to train any prediction method \(\hat{\mu} \) and any level \(\alpha \in (0, 1) \), can we construct a prediction set \(C_{1-\alpha}(x) \) such that, for a new point \((X_{n+1}, y_{n+1}) \),

\[
P[y_{n+1} \in C_{1-\alpha}(X_{n+1})] \geq 1 - \alpha?
\]

(For us, \(X_i \) is an MRI exam, \(y_i \) is the fluid volume, \(\hat{\mu} \) is a U-Net, \(C \) is a rule specifying a volume interval for \(X_i \).)
Conformal Prediction

- Conformal Prediction was proposed by Vladimir Vovk*
Conformal Prediction

- Conformal Prediction was proposed by Vladimir Vovk

- Provides valid predictive sets for any level $\alpha \in (0, 1)$ and any model $\hat{\mu}$
Conformal Prediction

- Conformal Prediction was proposed by Vladimir Vovk

- Provides valid predictive sets for any level $\alpha \in (0, 1)$ and any model $\hat{\mu}$

- Many recent variations and extensions, from regression to classification settings\(^\dagger\)

Conformal Prediction

- Conformal Prediction was proposed by Vladimir Vovk
- Provides valid predictive sets for any level $\alpha \in (0, 1)$ and any model $\hat{\mu}$
- Many recent variations and extensions, from regression to classification settings
- We will consider the most popular incarnation: split CP

Conformal Prediction

- Conformal Prediction was proposed by Vladimir Vovk

- Provides valid predictive sets for any level $\alpha \in (0, 1)$ and any model $\hat{\mu}$

- Many recent variations and extensions, from regression to classification settings

- We will consider the most popular incarnation: split CP

- Important assumption: data $(X_i, y_i)_{i=1}^n$ is exchangeable (which is implied by iid)
Split Conformal Prediction: Setup

- Split the data:
 $\{ (x_i, y_i) \}_{i \in I_{tr}}, \{ (x_j, y_j) \}_{j \in I_{cal}}, \{ (x_k, y_k) \}_{k \in I_{test}}$, with sizes $n_{tr}, n_{cal}, n_{test}$

- Train predictive method $\hat{\mu}_{tr}: X \rightarrow Y$

- Discrepancy scores $\hat{s}_{tr}: X \times Y \rightarrow \mathbb{R}$ (e.g., $\hat{s}_{tr}(x, y) = |y - \hat{\mu}(x)|$

- Calibrate quantile: if $\hat{s}_j = \hat{s}_{tr}(x_j, y_j)$ for $j \in I_{cal}$,
 $\hat{q}_{1-\alpha} = \arg\min_t \in \mathbb{R} \left\{ \frac{1}{n_{cal}} \sum_{j \in I_{cal}} I[\hat{s}_j \leq t] \geq 1 - \alpha \right\}$

- Prediction set: $C_{1-\alpha}(x) = \{ y \in Y : \hat{s}_{tr}(x, y) \leq \hat{q}(1 + 1/n_{cal})(1 - \alpha) \}$.
Split Conformal Prediction: Setup

- Split the data: \{ (X_i, y_i) \}_{i \in \mathcal{I}_{tr}}, \{ (X_j, y_j) \}_{j \in \mathcal{I}_{cal}}, \{ (X_k, y_k) \}_{k \in \mathcal{I}_{test}}, \text{ with sizes } n_{tr}, n_{cal}, n_{test}
Split Conformal Prediction: Setup

- Split the data: \(\{(X_i, y_i)\}_{i \in \mathcal{I}_{tr}}, \{(X_j, y_j)\}_{j \in \mathcal{I}_{cal}}, \{(X_k, y_k)\}_{k \in \mathcal{I}_{test}} \), with sizes \(n_{tr}, n_{cal}, n_{test} \)

- Train predictive method \(\hat{\mu}_{tr} : \mathcal{X} \rightarrow \mathcal{Y} \)
Split Conformal Prediction: Setup

- Split the data: \(\{(X_i, y_i)\}_{i \in I_{tr}}, \{(X_j, y_j)\}_{j \in I_{cal}}, \{(X_k, y_k)\}_{k \in I_{test}} \) with sizes \(n_{tr}, n_{cal}, n_{test} \)

- Train predictive method \(\hat{\mu}_{tr} : \mathcal{X} \to \mathcal{Y} \)

- Discrepancy scores \(\hat{s}_{tr} : \mathcal{X} \times \mathcal{Y} \to \mathbb{R} \) (e.g., \(\hat{s}_{tr}(x, y) = |y - \hat{\mu}(x)| \))
Split Conformal Prediction: Setup

- Split the data: \(\{(X_i, y_i)\}_{i \in I_{\text{tr}}}, \{(X_j, y_j)\}_{j \in I_{\text{cal}}}, \{(X_k, y_k)\}_{k \in I_{\text{test}}} \) with sizes \(n_{\text{tr}}, n_{\text{cal}}, n_{\text{test}} \)

- Train predictive method \(\hat{\mu}_{\text{tr}} : \mathcal{X} \to \mathcal{Y} \)

- Discrepancy scores \(\hat{s}_{\text{tr}} : \mathcal{X} \times \mathcal{Y} \to \mathbb{R} \) (e.g., \(\hat{s}_{\text{tr}}(x, y) = |y - \hat{\mu}(x)| \))

- Calibrate quantile: if \(\hat{s}_j = \hat{s}_{\text{tr}}(X_j, y_j) \) for \(j \in I_{\text{cal}} \),

\[
\hat{q}_{1-\alpha} := \hat{q}_{1-\alpha} (\{\hat{s}_j\}_{j \in I_{\text{cal}}}) = \arg\min_{t \in \mathbb{R}} \left\{ \frac{1}{n_{\text{cal}}} \sum_{j \in I_{\text{cal}}} \mathbb{I}[\hat{s}_j \leq t] \geq 1 - \alpha \right\}
\]
Split Conformal Prediction: Setup

- Split the data: $\{(X_i, y_i)\}_{i \in I_{\text{tr}}}, \{(X_j, y_j)\}_{j \in I_{\text{cal}}}, \{(X_k, y_k)\}_{k \in I_{\text{test}}}$, with sizes $n_{\text{tr}}, n_{\text{cal}}, n_{\text{test}}$

- Train predictive method $\hat{\mu}_{\text{tr}} : \mathcal{X} \rightarrow \mathcal{Y}$

- Discrepancy scores $\hat{s}_{\text{tr}} : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$ (e.g., $\hat{s}_{\text{tr}}(x, y) = |y - \hat{\mu}(x)|$)

- Calibrate quantile: if $\hat{s}_j = \hat{s}_{\text{tr}}(X_j, y_j)$ for $j \in I_{\text{cal}}$,

$$\hat{q}_{1-\alpha} := \hat{q}_{1-\alpha} (\{\hat{s}_j\}_{j \in I_{\text{cal}}}) = \arg\min_{t \in \mathbb{R}} \left\{ \frac{1}{n_{\text{cal}}} \sum_{j \in I_{\text{cal}}} \mathbb{I}[\hat{s}_j \leq t] \geq 1 - \alpha \right\}$$

- Prediction set:

$$C_{1-\alpha}(x) = \{y \in \mathcal{Y} : \hat{s}_{\text{tr}}(x, y) \leq \hat{q}_{(1+1/n_{\text{cal}})(1-\alpha)}\}.$$
Split Conformal Prediction: Setup

- Split the data: \(\{(X_i, y_i)\}_{i \in \mathcal{I}_{tr}}, \{(X_j, y_j)\}_{j \in \mathcal{I}_{cal}}, \{(X_k, y_k)\}_{k \in \mathcal{I}_{test}} \), with sizes \(n_{tr}, n_{cal}, n_{test} \)

- Train predictive method \(\hat{\mu}_{tr} : \mathcal{X} \rightarrow \mathcal{Y} \)

- Discrepancy scores \(\hat{s}_{tr} : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R} \) (e.g., \(\hat{s}_{tr}(x, y) = |y - \hat{\mu}(x)| \))

- Calibrate quantile: if \(\hat{s}_j = \hat{s}_{tr}(X_j, y_j) \) for \(j \in \mathcal{I}_{cal}, \)

\[
\hat{q}_{1-\alpha} := \hat{q}_{1-\alpha} (\{\hat{s}_j\}_{j \in \mathcal{I}_{cal}}) = \arg\min_{t \in \mathbb{R}} \left\{ \frac{1}{n_{cal}} \sum_{j \in \mathcal{I}_{cal}} \mathbb{I}[\hat{s}_j \leq t] \geq 1 - \alpha \right\}
\]

- Prediction set:

\[
C_{1-\alpha}(x) = \{y \in \mathcal{Y} : \hat{s}_{tr}(x, y) \leq \hat{q}_{(1+1/n_{cal})(1-\alpha)} \}.
\]
Split Conformal Prediction: Results

Marginal coverage
Marginal coverage

Given exchangeable data \(\{(X_i, y_i)\}_{i=1}^n\) and level \(1 - \alpha \in (0, 1)\), consider the calibrated quantile \(\hat{q}_{(1+1/n_{cal})(1-\alpha)}\) and define

\[
C_{1-\alpha}(x) = \{y \in \mathcal{Y} : \hat{s}_{tr}(x, y) \leq \hat{q}_{(1+1/n_{cal})(1-\alpha)}\}.
\]
Marginal coverage

Given exchangeable data \(\{(X_i, y_i)\}_{i=1}^n \) and level \(1 - \alpha \in (0, 1) \), consider the calibrated quantile \(\hat{q}_{(1+1/n_{cal})(1-\alpha)} \) and define

\[
C_{1-\alpha}(x) = \{ y \in Y : \hat{s}_{tr}(x, y) \leq \hat{q}_{(1+1/n_{cal})(1-\alpha)} \}.
\]

Then, for any single test data point \((X_k, y_k), k \in I_{test} \),

\[
P[y_k \in C_{1-\alpha}(X_k)] \geq 1 - \alpha.
\]
Split Conformal Prediction: Results

Marginal coverage

Given exchangeable data \(\{(X_i, y_i)\}_{i=1}^n \) and level \(1 - \alpha \in (0, 1) \), consider the calibrated quantile \(\hat{q}_{(1+1/n_{cal})(1-\alpha)} \) and define

\[
C_{1-\alpha}(x) = \{ y \in \mathcal{Y} : \hat{s}_{\text{tr}}(x, y) \leq \hat{q}_{(1+1/n_{cal})(1-\alpha)} \}.
\]

Then, for any single test data point \((X_k, y_k), k \in I_{\text{test}} \),

\[
P[y_k \in C_{1-\alpha}(X_k)] \geq 1 - \alpha.
\]

Additionally, if \(\hat{s}_j \) are almost surely distinct, then

\[
P[y_k \in C_{1-\alpha}(X_k)] \leq 1 - \alpha + 1/(n_{cal} + 1).
\]
Split Conformal Prediction: Results

Marginal coverage

Given exchangeable data \(\{(X_i, y_i)\}_{i=1}^{n} \) and level \(1 - \alpha \in (0, 1) \), consider the calibrated quantile \(\hat{q}_{(1+1/n_{\text{cal}})(1-\alpha)} \) and define

\[
C_{1-\alpha}(x) = \{ y \in \mathcal{Y} : \hat{s}_{\text{tr}}(x, y) \leq \hat{q}_{(1+1/n_{\text{cal}})(1-\alpha)} \}.
\]

Then, for any single test data point \((X_k, y_k), k \in I_{\text{test}},\)

\[
\mathbb{P}[y_k \in C_{1-\alpha}(X_k)] \geq 1 - \alpha.
\]

Additionally, if \(\hat{s}_j \) are almost surely distinct, then \(\mathbb{P}[y_k \in C_{1-\alpha}(X_k)] \leq 1 - \alpha + 1/(n_{\text{cal}} + 1). \)

Proof sketch: since data is exchangeable, \(\hat{s}_j \) are also exchangeable. Consider the \(1 - \alpha \) quantile of \(\{\hat{s}_j\}_{j \in I_{\text{cal}}} \cup \{\hat{s}_k\} \); the probability of \(\hat{s}_k \) being bigger than the quantile must be bigger than \(1 - \alpha \).
Marginal coverage

Given exchangeable data \(\{(X_i, y_i)\}_{i=1}^{n} \) and level \(1 - \alpha \in (0, 1) \), consider the calibrated quantile \(\hat{q}(1+1/n_{cal})(1-\alpha) \) and define

\[
C_{1-\alpha}(x) = \{ y \in Y : \hat{s}_{tr}(x, y) \leq \hat{q}(1+1/n_{cal})(1-\alpha) \}.
\]

Then, for any single test data point \((X_k, y_k), k \in I_{test} \),

\[
P[y_k \in C_{1-\alpha}(X_k)] \geq 1 - \alpha.
\]

Additionally, if \(\hat{s}_j \) are almost surely distinct, then \(P[y_k \in C_{1-\alpha}(X_k)] \leq 1 - \alpha + 1/(n_{cal} + 1) \).

Proof sketch: since data is exchangeable, \(\hat{s}_j \) are also exchangeable. Consider the \(1 - \alpha \) quantile of \(\{\hat{s}_j\}_{j \in I_{cal}} \cup \{\hat{s}_k\} \); the probability of \(\hat{s}_k \) being bigger than the quantile must be bigger than \(1 - \alpha \). Issue: can’t use \(\hat{s}_k \) for the quantile, but can you can assume it’s infinite:

\[
\hat{s}_k > \hat{q}_{1-\alpha}(\{\hat{s}_j\}_{j \in I_{cal}} \cup \{\hat{s}_k\}) \iff \hat{s}_k > \hat{q}_{1-\alpha}(\{\hat{s}_j\}_{j \in I_{cal}} \cup \{\infty\}).
\]
Split Conformal Prediction: Results

Marginal coverage

Given exchangeable data \((X_i, y_i)\)\(^{n}_{i=1}\) and level \(1 - \alpha \in (0, 1)\), consider the calibrated quantile \(\hat{q}(1+1/n_{cal})(1-\alpha)\) and define

\[
C_{1-\alpha}(x) = \{y \in Y : \hat{s}_{tr}(x, y) \leq \hat{q}(1+1/n_{cal})(1-\alpha)\}.
\]

Then, for any single test data point \((X_k, y_k)\), \(k \in I_{test}\),

\[
P[y_k \in C_{1-\alpha}(X_k)] \geq 1 - \alpha.
\]

Additionally, if \(\hat{s}_j\) are almost surely distinct, then

\[
P[y_k \in C_{1-\alpha}(X_k)] \leq 1 - \alpha + 1/(n_{cal} + 1).
\]

Proof sketch: since data is exchangeable, \(\hat{s}_j\) are also exchangeable. Consider the \(1 - \alpha\) quantile of \(\{\hat{s}_j\}_{j \in I_{cal}} \cup \{\hat{s}_k\}\); the probability of \(\hat{s}_k\) being bigger than the quantile must be bigger than \(1 - \alpha\). Issue: can’t use \(\hat{s}_k\) for the quantile, but can you can assume it’s infinite:

\[
\hat{s}_k > \hat{q}_{1-\alpha}(\{\hat{s}_j\}_{j \in I_{cal}} \cup \{\hat{s}_k\}) \iff \hat{s}_k > \hat{q}_{1-\alpha}(\{\hat{s}_j\}_{j \in I_{cal}} \cup \{\infty\}).
\]

So:

\[
P[\hat{s}_k \leq \hat{q}(1+1/n_{cal})(1-\alpha)(\{\hat{s}_j\}_{j \in I_{cal}})] = P[\hat{s}_k \leq \hat{q}(1-\alpha)(\{\hat{s}_j\}_{j \in I_{cal}} \cup \{\infty\})] \geq 1 - \alpha. \quad \square\]
Split Conformal Prediction: Results

Empirical coverage

If the data \(\{(X_i, y_i)\}_{i=1}^n \) is iid, then for any \(\varepsilon > 0 \) there exists \(c_\varepsilon > 0 \) such that

\[
\Pr\left[\frac{1}{n_{\text{test}}} \sum_{k \in I_{\text{test}}} I\left[y_k \in C_{1-\alpha}(X_k) \right] \geq 1 - \alpha - \varepsilon \right] \geq 1 - e^{-c_\varepsilon n_{\text{test}}}.
\]

So, empirically over the entire test set, \(C_{1-\alpha} \) approximates the \(1 - \alpha \) quantile (with a penalty).

Conditional coverage

If the data \(\{(X_i, y_i)\} \) is iid and \(A \subset X \) has finite VC dimension, then for any \(A \in \mathcal{A} \) where \(\Pr[X_k \in A] \) is not too small,

\[
\Pr\left[y_k \in C_{1-\alpha}(X_k; K) \mid X_k \in A \right] \geq 1 - \alpha - \varepsilon.
\]

Thus, split CP can guarantee coverage even if conditioned on some events.
Split Conformal Prediction: Results

Empirical coverage

If the data \(\{(X_i, y_i)\}_{i=1}^n \) is iid, then for any \(\epsilon > 0 \) there exists \(c_\epsilon > 0 \) such that

\[
P\left[\frac{1}{n_{test}} \sum_{k \in I_{test}} \mathbb{1}_{[y_k \in C_{1-\alpha}(X_k)]} \geq 1 - \alpha - \epsilon \right] \geq 1 - e^{-c_\epsilon n_{test}}.
\]

So, empirically over the entire test set, \(C_{1-\alpha} \) approximates the \(1-\alpha \) quantile (with a penalty).

Conditional coverage

If the data \(\{(X_i, y_i)\}_{i=1}^n \) is iid and \(A \subset X \) has finite VC dimension, then for any \(A \in A \) where \(P[X_k \in A] \) is not too small,

\[
P[y_k \in C_{1-\alpha}(X_k) | X_k \in A] \geq 1 - \alpha - \epsilon.
\]

Thus, split CP can guarantee coverage even if conditioned on some events.
Split Conformal Prediction: Results

Empirical coverage

If the data \(\{(X_i, y_i)\}_{i=1}^n \) is iid, then for any \(\epsilon > 0 \) there exists \(c_\epsilon > 0 \) such that

\[
P\left[\frac{1}{n_{test}} \sum_{k \in \text{test}} \mathbb{I}_{[y_k \in C_{1-\alpha}(X_k)]} \geq 1 - \alpha - \epsilon \right] \geq 1 - e^{-c_\epsilon n_{test}}.
\]

So, empirically over the entire test set, \(C_{1-\alpha} \) approximates the \(1 - \alpha \) quantile (with a penalty).

Conditional coverage
Split Conformal Prediction: Results

Empirical coverage

If the data \(\{(X_i, y_i)\}_{i=1}^n \) is iid, then for any \(\varepsilon > 0 \) there exists \(c_\varepsilon > 0 \) such that

\[
\mathbb{P} \left[\frac{1}{n_{\text{test}}} \sum_{k \in I_{\text{test}}} \mathbb{I}[y_k \in C_{1-\alpha}(X_k)] \geq 1 - \alpha - \varepsilon \right] \geq 1 - e^{-c_\varepsilon n_{\text{test}}}.
\]

So, empirically over the entire test set, \(C_{1-\alpha} \) approximates the \(1 - \alpha \) quantile (with a penalty).

Conditional coverage

If the data \(\{(X_i, y_i)\} \) is iid and \(\mathcal{A} \subset \mathcal{X} \) has finite VC dimension, then for any \(A \in \mathcal{A} \) where \(\mathbb{P}[X_k \in A] \) is not too small,

\[
\mathbb{P} [y_k \in C_{1-\alpha}(X_k; K) \mid X_k \in A] \geq 1 - \alpha - \varepsilon.
\]
Split Conformal Prediction: Results

Empirical coverage

If the data \(\{(X_i, y_i)\}_{i=1}^n \) is iid, then for any \(\varepsilon > 0 \) there exists \(c_{\varepsilon} > 0 \) such that

\[
\mathbb{P}\left[\frac{1}{n_{\text{test}}} \sum_{k \in I_{\text{test}}} \mathbb{I}_{[y_k \in C_{1-\alpha}(X_k)]} \geq 1 - \alpha - \varepsilon \right] \geq 1 - e^{-c_{\varepsilon} n_{\text{test}}}.
\]

So, empirically over the entire test set, \(C_{1-\alpha} \) approximates the \(1 - \alpha \) quantile (with a penalty).

Conditional coverage

If the data \(\{(X_i, y_i)\} \) is iid and \(A \subset \mathcal{X} \) has finite VC dimension, then for any \(A \in \mathcal{A} \) where \(\mathbb{P}[X_k \in A] \) is not too small,

\[
\mathbb{P}\left[y_k \in C_{1-\alpha}(X_k; K) \mid X_k \in A \right] \geq 1 - \alpha - \varepsilon.
\]

Thus, split CP can guarantee coverage even if conditioned on some events.
Split Conformal Prediction: General Tool

▶ Provides valid coverage and finite-sample statistical guarantees
Split Conformal Prediction: General Tool

- Provides valid coverage and finite-sample statistical guarantees
- Works for any exchangeable data $\{(X_i, y_i)\}_{i=1}^n$, any model $\hat{\mu}$
Split Conformal Prediction: General Tool

- Provides valid coverage and finite-sample statistical guarantees
- Works for any exchangeable data \(\{(X_i, y_i)\}_{i=1}^{n} \), any model \(\hat{\mu} \)
- Simple to implement, computationally cheap
Split Conformal Prediction: General Tool

- Provides valid coverage and finite-sample statistical guarantees
- Works for any exchangeable data \(\{(X_i, y_i)\}_{i=1}^n\), any model \(\hat{\mu}\)
- Simple to implement, computationally cheap

- Arbitrary discrepancy score \(\hat{s}_{tr} : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}\):
 - residuals: \(\hat{s}_{tr}(x, y) = |y - \hat{\mu}(x)|\)
 - conditional likelihood: \(\hat{s}_{tr}(x, y) = -\log \hat{p}(y|x)\)
 - conformalized quantile: \(\hat{s}_{tr}(x, y) = \max\{\hat{\mu}_{\alpha/2}(x) - y, y - \hat{\mu}_{1-\alpha/2}(x)\}\)
Split Conformal Prediction: General Tool

- Provides valid coverage and finite-sample statistical guarantees
- Works for any exchangeable data \(\{(X_i, y_i)\}_{i=1}^{n} \), any model \(\hat{\mu} \)
- Simple to implement, computationally cheap
- Arbitrary discrepancy score \(\hat{s}_{tr}: X \times Y \rightarrow \mathbb{R} \):
 - residuals: \(\hat{s}_{tr}(x, y) = |y - \hat{\mu}(x)| \)
 - conditional likelihood: \(\hat{s}_{tr}(x, y) = -\log \hat{p}(y|x) \)
 - conformalized quantile: \(\hat{s}_{tr}(x, y) = \max\{\hat{\mu}_{\alpha/2}(x) - y, y - \hat{\mu}_{1-\alpha/2}(x)\} \)
- Many more generalizations: e.g., prediction masks*

* Bates, Angelopoulos, Lei, Malik, and Jordan, “Distribution-free, risk-controlling prediction sets”
Results: Split CP
Results: Split CP
Results: Split CP

![Graph showing a scatter plot with predicted volume on the x-axis and target volume on the y-axis. The graph includes error bars for each data point.]

Predicted volume (L) vs Target volume (L)
Results: Split CP
But severe limitation: without exchangeability theory falls apart
But severe limitation: without exchangeability theory falls apart

(For us, some exams came from the same mother at different stages in the pregnancy.)
Dealing with Dependence

- Recent interest in independent data with distributional drift

Dealing with Dependence

- Recent interest in independent data with distributional drift

- Our work\(^\dagger\): rebuild split conformal prediction without exchangeability

Dealing with Dependence

- Recent interest in independent data with distributional drift
- Our work: rebuild split conformal prediction without exchangeability

Intuition: see how data CDF concentrates when exchangeability is replaced by looser conditions:

\[P[y_k \in C_{1-\alpha+\eta}(X_k)] \geq 1 - \alpha, \text{ so } P[y_k \in C_{1-\alpha}(X_k)] \geq 1 - \alpha - \eta, \]

where \(\eta \) is an added penalty due to non-exchangeability
Dealing with Dependence

- Recent interest in independent data with distributional drift

- Our work: rebuild split conformal prediction without exchangeability

- Intuition: see how data CDF concentrates when exchangeability is replaced by looser conditions:

\[\Pr[y_k \in C_{1-\alpha+\eta}(X_k)] \geq 1 - \alpha, \text{ so } \Pr[y_k \in C_{1-\alpha}(X_k)] \geq 1 - \alpha - \eta, \]

where \(\eta \) is an added penalty due to non-exchangeability

- Tools: concentration inequalities and decoupling properties
Theoretical Results

▶ Assumptions on data:

- Stationarity:
 \[(Z_t, \ldots, Z_m) \overset{d}{=} (Z_{t+k}, \ldots, Z_{t+m+k})\]

- β-mixing:
 \[\beta(a) = \|P_{-\infty}^a : 0, a : \infty - P_{-\infty}^a \otimes P_a : \infty\|_{TV} \to 0\]

Data is time-invariant and asymptotically independent

- Examples: Markov chains, renewal processes, AR(1)

- Main theoretical tool: Blocking technique
Theoretical Results

- Assumptions on data:
 - Stationarity: \((Z_t, \ldots, Z_m) \overset{d}{=} (Z_{t+k}, \ldots, Z_{t+m+k})\)
 - \(\beta\)-mixing: \(\beta(a) = ||P_{-\infty:0,a:0} - P_{-\infty:0} \otimes P_{a:0}||_{TV} \overset{a \to \infty}{\to} 0\)
Theoretical Results

- Assumptions on data:
 - Stationarity: \((Z_t, \ldots, Z_m) \overset{d}{=} (Z_{t+k}, \ldots, Z_{t+m+k})\)
 - \(\beta\)-mixing: \(\beta(a) = \|\mathbb{P}_{-\infty, 0, a, \infty} - \mathbb{P}_{-\infty, 0} \otimes \mathbb{P}_{a, \infty}\|_{TV} \xrightarrow{a \to \infty} 0\)

- Data is time-invariant and asymptotically independent
Theoretical Results

▶ Assumptions on data:

- Stationarity: \((Z_t, \ldots, Z_m) \overset{d}{=} (Z_{t+k}, \ldots, Z_{t+m+k})\)

- \(\beta\)-mixing: \(\beta(a) = \|P_{-\infty:0,a:\infty} - P_{-\infty:0} \otimes P_{a:\infty}\|_{TV} \xrightarrow{a \to \infty} 0\)

▶ Data is time-invariant and asymptotically independent

▶ Examples: Markov chains, renewal processes, AR(1)
Theoretical Results

- Assumptions on data:
 - Stationarity: \((Z_t, \ldots, Z_m) \overset{d}{=} (Z_{t+k}, \ldots, Z_{t+m+k})\)
 - \(\beta\)-mixing: \(\beta(a) = \|P_{-\infty:0,a:0} - P_{-\infty:0} \otimes P_{a:0}\|_{TV} \xrightarrow{a \to \infty} 0\)

- Data is time-invariant and asymptotically independent

- Examples: Markov chains, renewal processes, AR(1)

- Main theoretical tool: Blocking technique*

Main Theoretical Results

Marginal coverage

Suppose that \(\{(X_i, y_i)\}_{i=1}^n \) is stationary \(\beta \)-mixing. Given \(\alpha \in (0, 1) \) and \(\delta_{cal} > 0 \), for \(k \in I_{test} \),

\[
P\left[y_k \in C_1 - \alpha(X_k) \right] \geq 1 - \alpha - \eta,
\]

with \(\eta = \epsilon_{cal} + \epsilon_{tr} + \delta_{cal} \), where \(\epsilon_{tr} = \beta(k - n_{tr}) \).

Empirical coverage

Suppose that \(\{(X_i, y_i)\}_{i=1}^n \) is stationary \(\beta \)-mixing. Given \(\alpha \in (0, 1) \) and \(\delta_{cal} > 0 \), \(\delta_{test} > 0 \):

\[
P\left[\frac{1}{n_{test}} \sum_{k \in I_{test}} I\left[y_k \in C_1 - \alpha(X_k) \right] \right] \geq 1 - \alpha - \eta \geq 1 - \delta_{cal} - \delta_{test},
\]

with \(\eta = \epsilon_{cal} + \epsilon_{test} \).
Main Theoretical Results

Marginal coverage

Suppose that \(\{(X_i, y_i)\}_{i=1}^n \) is stationary \(\beta \)-mixing. Given \(\alpha \in (0, 1) \) and \(\delta_{\text{cal}} > 0 \), for \(k \in I_{\text{test}} \),

\[
P[y_k \in C_{1-\alpha}(X_k)] \geq 1 - \alpha - \eta,
\]

with \(\eta = \epsilon_{\text{cal}} + \epsilon_{\text{tr}} + \delta_{\text{cal}} \), where \(\epsilon_{\text{tr}} = \beta(k - n_{\text{tr}}) \).

Empirical coverage
Main Theoretical Results

Marginal coverage

Suppose that \(\{(X_i, y_i)\}_{i=1}^{n} \) is stationary \(\beta \)-mixing. Given \(\alpha \in (0, 1) \) and \(\delta_{\text{cal}} > 0 \), for \(k \in I_{\text{test}} \),

\[
P[y_k \in C_{1-\alpha}(X_k)] \geq 1 - \alpha - \eta,
\]

with \(\eta = \epsilon_{\text{cal}} + \epsilon_{\text{tr}} + \delta_{\text{cal}} \), where \(\epsilon_{\text{tr}} = \beta(k - n_{\text{tr}}) \).

Empirical coverage

Suppose that \(\{(X_i, y_i)\}_{i=1}^{n} \) is stationary \(\beta \)-mixing. Given \(\alpha \in (0, 1) \) and \(\delta_{\text{cal}} > 0 \), \(\delta_{\text{test}} > 0 \):

\[
P \left[\frac{1}{n_{\text{test}}} \sum_{k \in I_{\text{test}}} \mathbb{I}_{[y_k \in C_{1-\alpha}(X_k)]} \geq 1 - \alpha - \eta \right] \geq 1 - \delta_{\text{cal}} - \delta_{\text{test}},
\]

with \(\eta = \epsilon_{\text{cal}} + \epsilon_{\text{test}} \).
The Details

\[F_{\text{cal}} = \{ (a, m, r) \in \mathbb{N}^3_+ : 2ma = n_{\text{cal}} - r + 1, \delta_{\text{cal}} > 4(m - 1)\beta(a) + \beta(r) \} \]

\[F_{\text{test}} = \{ (a, m, s) \in \mathbb{N}^3_+ : 2ma = n_{\text{test}} - s, \delta_{\text{test}} > 4(m - 1)\beta(a) + \beta(n_{\text{cal}}) \} \]

\[\bar{\sigma}(a) = \sqrt{1/4 + (2/a) \sum_{j=1}^{a-1} (a - j)\beta(j)} \]

\[\varepsilon_{\text{cal}} = \inf_{(a,m,r)\in F_{\text{cal}}} \left\{ \bar{\sigma}(a)\sqrt{\frac{4}{n_{\text{cal}}-r+1}} \log \left(\frac{4}{\delta_{\text{cal}}-4(m-1)\beta(a)-\beta(r)} \right) + \frac{1}{3m} \log \left(\frac{4}{\delta_{\text{cal}}-4(m-1)\beta(a)-\beta(r)} \right) + \frac{r-1}{n_{\text{cal}}} \right\} \]

\[\varepsilon_{\text{test}} = \inf_{(a,m,s)\in F_{\text{test}}} \left\{ \bar{\sigma}(a)\sqrt{\frac{4}{n_{\text{test}}}} \log \left(\frac{4}{\delta_{\text{test}}-4(m-1)\beta(a)-\beta(n_{\text{cal}})} \right) + \frac{1}{3m} \log \left(\frac{4}{\delta_{\text{test}}-4(m-1)\beta(a)-\beta(n_{\text{cal}})} \right) + \frac{s}{n_{\text{test}}} \right\} \]
Conditional Theoretical Results

Marginal coverage, conditional version

Empirical coverage, conditional version
Conditional Theoretical Results

Marginal coverage, conditional version

Suppose that \(\{(X_i, y_i)\}_{i=1}^n \) is stationary \(\beta \)-mixing. Given \(\alpha \in (0, 1) \) and \(\delta_{\text{cal}} > 0 \), for any \(k \in I_{\text{test}} \) and \(K \in \mathcal{K} \) (with \(\text{VC}(\mathcal{K}) = d \), \(\mathbb{P}[X_k \in K] > \gamma \)),

\[
\mathbb{P}[y_k \in C_{1-\alpha}(X_k; K) \mid X_k \in K] \geq 1 - \alpha - \eta,
\]

with \(\eta = \varepsilon_{\text{cal}} + \varepsilon_{\text{test}} \).

Empirical coverage, conditional version

Conditional Theoretical Results

Marginal coverage, conditional version

Suppose that \(\{(X_i, y_i)\}_{i=1}^n \) is stationary \(\beta \)-mixing. Given \(\alpha \in (0, 1) \) and \(\delta_{\text{cal}} > 0 \), for any \(k \in I_{\text{test}} \) and \(K \in \mathcal{K} \) (with \(\text{VC}(\mathcal{K}) = d, \mathbb{P}[X_k \in K] > \gamma)\),

\[
\mathbb{P}[y_k \in C_{1-\alpha}(X_k; K) \mid X_k \in K] \geq 1 - \alpha - \eta,
\]

with \(\eta = \epsilon_{\text{cal}} + \epsilon_{\text{test}} \).

Empirical coverage, conditional version

Suppose that \(\{(X_i, y_i)\}_{i=1}^n \) is stationary \(\beta \)-mixing. Given \(\alpha \in (0, 1) \) and \(\delta_{\text{cal}} > 0, \delta_{\text{test}} > 0 \) and \(K \in \mathcal{K} \):

\[
\mathbb{P} \left[\inf_{K \in \mathcal{K}} \frac{1}{n_{\text{test}}(K)} \sum_{k \in I_{\text{test}}(K)} \mathbb{I}[y_k \in C_{1-\alpha}(X_k; K)] \geq 1 - \alpha - \eta \right] \geq 1 - \delta_{\text{cal}} - \delta_{\text{test}},
\]

with \(\eta = \epsilon_{\text{cal}} + \epsilon_{\text{test}} \).
The Details

\[G_{\text{cal}} = \{ (a, m, r) \in \mathbb{N}_+^3 : 2ma = n_{\text{cal}} - r + 1, \delta_{\text{cal}} > 16(m - 1)\beta(a) + \beta(r) \} \]

\[G_{\text{test}} = \{ (a, m, s) \in \mathbb{N}_+^3 : 2ma = n_{\text{test}} - s, \delta_{\text{test}} > 8(m - 1)\beta(a) + \beta(n_{\text{cal}}) \} \]

\[\epsilon_{\text{cal}} = \inf_{(a,m,r)\in G_{\text{cal}}} \left\{ \frac{1}{\gamma} \left(4\sqrt{\frac{\log(2(m+1)^d)}{m}} + \frac{2(r-1)}{n_{\text{cal}}} + 2\sqrt{\frac{1}{2m} \log \left(\frac{16}{\delta_{\text{cal}} - 16(m-1)\beta(a) - \beta(r)} \right)} \right) \right\} \]

\[\epsilon_{\text{test}} = \inf_{(a,m,s)\in G_{\text{test}}} \left\{ \frac{1}{\gamma} \left(4\sqrt{\frac{\log(2(m+1)^d)}{m}} + \frac{2s}{n_{\text{test}}} + 2\sqrt{\frac{1}{2m} \log \left(\frac{8}{\delta_{\text{test}} - 8(m-1)\beta(a) - \beta(n_{\text{cal}})} \right)} \right) \right\} \]
Application: Autoregressive Process

- For every 11 points in AR(1) time series, predict the following point
Application: Autoregressive Process

- For every 11 points in AR(1) time series, predict the following point
- Get predictive set via split conformal quantile regression
Application: Autoregressive Process

- For every 11 points in AR(1) time series, predict the following point
- Get predictive set via split conformal quantile regression
Application: Finance

- Time series with EUR/USD spot exchange rate; predictions with boosting
Application: Finance

- Time series with EUR/USD spot exchange rate; predictions with boosting

- Sliding window of 1000 training points, 500 calibration points and 1 test point
Application: Finance

- Time series with EUR/USD spot exchange rate; predictions with boosting
- Sliding window of 1000 training points, 500 calibration points and 1 test point
- Get predictive set via split conformal quantile regression
Application: Finance

- Time series with EUR/USD spot exchange rate; predictions with boosting
- Sliding window of 1000 training points, 500 calibration points and 1 test point
- Get predictive set via split conformal quantile regression
Application: Empirical Coverage

- Two-state hidden Markov model
Application: Empirical Coverage

- Two-state hidden Markov model
- Gradient boosting model with 1000 training points, 15000 calibration points and 15000 test points
Application: Empirical Coverage

- Two-state hidden Markov model
- Gradient boosting model with 1000 training points, 15000 calibration points and 15000 test points
- Average over 1000 simulations to ascertain empirical coverage: \[
\frac{1}{n_{\text{test}}} \sum_{k \in I_{\text{test}}} I[y_k \in C_{1-\alpha}(X_k)]
\]
Application: Empirical Coverage

- Two-state hidden Markov model
- Gradient boosting model with 1000 training points, 15000 calibration points and 15000 test points
- Average over 1000 simulations to ascertain empirical coverage: \[\frac{1}{n_{\text{test}}} \sum_{k \in h_{\text{test}}} \mathbb{I}[y_k \in C_{1-\alpha}(X_k)] \]
Conclusion

▶ Uncertainty quantification is crucial for the deployment of ML systems.
Uncertainty quantification is crucial for the deployment of ML systems.

Conformal prediction is a set of tools that yield marginal, empirical and conditional coverage.
Conclusion

- Uncertainty quantification is crucial for the deployment of ML systems.

- Conformal prediction is a set of tools that yield marginal, empirical and conditional coverage.

- It traditionally requires little beyond exchangeability; we show it works even for dependent data.
Conclusion

- Uncertainty quantification is crucial for the deployment of ML systems.

- Conformal prediction is a set of tools that yield marginal, empirical and conditional coverage.

- It traditionally requires little beyond exchangeability; we show it works even for dependent data.

- Our results can be extended beyond stationarity and to non-split CP (e.g., rank-one-out, risk-controlling prediction sets).
Uncertainty quantification is crucial for the deployment of ML systems.

Conformal prediction is a set of tools that yield marginal, empirical and conditional coverage.

It traditionally requires little beyond exchangeability; we show it works even for dependent data.

Our results can be extended beyond stationarity and to non-split CP (e.g., rank-one-out, risk-controlling prediction sets).

There is much more theory and algorithms to be developed on top of it.
References

- Csillag, Monteiro, Ramos, Romano, Schuller, Seixas, Oliveira, O., “AmnioML: Amniotic Fluid Segmentation and Volume Prediction with Uncertainty Quantification,” in submission, 2022

- Barber, Candès, Ramdas, Tibshirani. “Conformal Prediction Beyond Exchangeability,” *arXiv*, 2022

- Oliveira, O., Ramos, Romano, “Split Conformal Prediction for Dependent Data”, *arXiv*, 2022