Energy Decay Rates in Linear Thermoelasticity

By
Jaime E. Muñoz Rivera
(National Laboratory of Scientific Computation and IMUFRJ, Brazil)

1. Introduction

C. Defermos [2] studied the classical linear thermoelastic system for inhomogeneous anisotropic materials and proved that there exists only one solution which is differentiable and asymptotically stable as \(t \to +\infty \). Dassios and Grillakis [3] studied the decay of energy for an isotropic model in \(\mathbb{R}^3 \), and for which the authors divided into three parts, kinetic energy, strain energy and thermal energy. They concluded that whenever the initial data are smooth with compact support, then the three parts of the energy decay to zero as \(t \to +\infty \) at the rate \(t^{-(m+3/2)} \), for a suitable positive number \(m \) which depends on the initial data. Recently D. Henry, O. Lopes and A. Perisinotto [4], (see also [5]), showed that the three parts of the energy decay exponentially to zero in the unidimensional case but not for \(n > 1 \). The authors proved the asymptotic behaviour studying the essential spectrum of the semigroup associated to the thermoelastic system. In special situations, that is, when the restoring force is proportional to the vector velocity of the displacement field D. Carvalho and G. P. Menzala [8] proved that in a bounded, isotropic and inhomogeneous medium the kinetic energy, the strain energy and the thermal energy approach exponentially to zero as \(t \to +\infty \).

In this paper we study the one dimensional linear thermoelastic system and present a new proof, much elementary than the one given in [4]. We use basically the energy method, regularity results and some technical ideas to show that the total energy decays exponentially as \(t \to +\infty \). The one dimensional linear thermoelastic system is given by

\[
\begin{align*}
(1.1) & \quad u_{tt} - u_{xx} + \alpha \theta_x = 0, \quad 0 < x < L, \quad 0 < t < T, \\
(1.2) & \quad \theta_t - \theta_{xx} + \beta u_{xt} = 0, \quad 0 < x < L, \quad 0 < t < T,
\end{align*}
\]

with initial conditions

\[
(1.3) \quad u(x, 0) = u_0(x), \quad u_t(x, 0) = u_1(x), \quad \theta(x, 0) = \theta_0(x) \quad \text{in }]0, L[\]

and boundary conditions

\[
(1.4) \quad u(0, t) = u(L, t) = \theta(0, t) = \theta(L, t) = 0 \quad \forall t \in]0, T[\]
In (1.1) and (1.2) a and β are constants. The existence, uniqueness and regularity of the solution of the above system is well known by now and was due to the pioneer work of C. Dafermos [2]. We sketch the proof just for matter of completeness. In section 3 we will prove that the energy of this system decay to zero at the rate $e^{-\gamma t}$ for a suitable positive constant γ as $t \to +\infty$. Our notations are standard and follow the terminology given in the book of J. L. Lions [6].

2. Existence, uniqueness and regularity

Let's denote by A the operator of $L^2(\Omega)$ defined by $Aw = -w_{xx}$, with domain

$$D(A) = H^1_0(\Omega) \cap H^2(\Omega)$$

where $\Omega =]0, L[$. It's well known that A is a positive self adjoint operator in the Hilbert space $L^2(\Omega)$. Let's denote by B the operator defined by $Bw = w_x$, with domain $D(B) = H^1_0(\Omega)$. We denote by \mathcal{H} the space $\mathcal{H} = H^1_0(\Omega) \times L^2(\Omega) \times L^2(\Omega)$, with norm

$$\|V\|_{\mathcal{H}}^2 = \int_0^L u_x^2 dx + \int_0^L v^2 dx + \int_0^L \theta^2 dx,$$

where $V = (u, v, \theta)^t$. Let's define the operator $\mathcal{A} : D(\mathcal{A}) \subseteq \mathcal{H} \to \mathcal{H}$

$$\mathcal{A} = - \begin{bmatrix} 0 & -1 & 0 \\ A & 0 & \alpha B \\ 0 & \beta B & A \end{bmatrix}$$

with domain:

$$D(\mathcal{A}) = H^1_0(\Omega) \cap H^2(\Omega) \times H^1_0(\Omega) \times H^1_0(\Omega) \cap H^2(\Omega)$$

Let \mathcal{A} as above, then we have

Theorem 2.1. (Existence and uniqueness) Let $(u_0, u_1, \theta_0) \in D(\mathcal{A})$ and $T > 0$, then for any $\alpha, \beta \in \mathbb{R}$, there exist only one strong solution of system (1.1), ..., (1.4) satisfying

$$u \in C(0, T; D(A)) \cap C^1(0, T; H^1_0(\Omega)) \cap C^2(0, T; L^2(\Omega))$$

$$\theta \in C(0, T; D(A)) \cap C^1(0, T; L^2(\Omega))$$

Proof. System (1.1), ..., (1.4) is equivalent to

$$\frac{d}{dt} U = \mathcal{A} U , \quad U(0) = U_0 , \quad U \in D(\mathcal{A})$$
where

\[
U = \begin{bmatrix} u \\ u_t \\ \theta \end{bmatrix}, \quad U_0 = \begin{bmatrix} u_0 \\ u_t \theta_0 \end{bmatrix}
\]

It is sufficient to prove that \(\mathcal{A} \) is the infinitesimal generator of a strongly continuous semigroup. In order to show this, let's define the operator \(\mathcal{B} = -(\alpha - \beta)^2 I + \mathcal{A} \), with \(D(\mathcal{B}) = D(\mathcal{A}) \), where \(I \) denotes the identity operator in \(\mathcal{H} \). First of all, note that \(\mathcal{B} \) is dissipative, in fact, set \(V = (u, v, \theta)^t \), then we have

\[
(\mathcal{A} V, V)_{\mathcal{H}} = (\alpha - \beta) \int_0^L v \theta_x dx - \int_0^L \theta_x^2 dx
\]

\[
\leq \frac{1}{2} (\alpha - \beta)^2 \int_0^L v^2 dx - \frac{1}{2} \int_0^L \theta_x^2 dx
\]

\[
\leq \frac{1}{2} (\alpha - \beta)^2 \| V \|_{\mathcal{H}}^2 - \frac{1}{2} \int_0^L \theta_x^2 dx
\]

Consequently

\[
(\mathcal{B} V, V)_{\mathcal{H}} \leq -\frac{1}{2} (\alpha - \beta)^2 \| V \|_{\mathcal{H}}^2 - \frac{1}{2} \int_0^L \theta_x^2 dx
\]

Our next goal is to prove that \(\text{Im}[I - \mathcal{B}] = \mathcal{H} \). That is, for all \((F_1, F_2, F_3) \in \mathcal{H} \), there exist \(V = (u, v, \theta) \in D(\mathcal{A}) = D(I - \mathcal{B}) \) satisfying

\[
(2.1) \quad (\mathcal{B} V, V)_{\mathcal{H}} \leq -\frac{1}{2} (\alpha - \beta)^2 \| V \|_{\mathcal{H}}^2 - \frac{1}{2} \int_0^L \theta_x^2 dx
\]

where \(\mu = 1 + (\alpha + \beta)^2 \). In fact, let's denote by \(w_1, w_2, \ldots, w_m \) and by \(\lambda_1, \lambda_2, \ldots, \lambda_m \) the first \(m \) eigenfunctions and eigenvalues of the operator \(A \) respectively. Set \(V_m \) to be the finite dimensional space generated by the first \(m \) eigenfunctions, and put \(\mathcal{V}_m = V_m \times V_m \times V_m \). Then, the approximated problem is given by:

\[
(2.5) \quad ([I - \mathcal{B}] U^{(m)}, W_j)_{\mathcal{H}} = (F, W_j)_{\mathcal{H}}, \quad j = 1, \ldots, 3m
\]

where

\[
U^{(m)} = (u^{(m)}, v^{(m)}, \theta^{(m)})^t, \quad F = (F_1, F_2, F_3)^t \quad \text{and} \quad U^{(m)} = \sum_{i=1}^{3m} c_{i,m} W_i
\]
and \(\{W_i; i = 1, \ldots, 3m\} \) is a basis of \(V_m \). By (2.1) we have that the matrix
\((\mathcal{L}[I]W_i, W_j)_{3m \times 3m} \) is positive definite, thus system (2.5) has only one solution. Multiplying by \(c_{j,m} \) and adding up in \(k \) we have that:

\[
(\mathcal{L}[I]U^{(m)}, U^{(m)})_{3m} = (F, U^{(m)})_{3m}.
\]

From (2.1) and the last relation we conclude that there exist a positive constant \(C \) such that:

\[
\|U^{(m)}\|_\mathcal{L} \leq C\|F\|_\mathcal{L}
\]

(2.6)

\[
\int_0^L |\theta^{(m)}_x|^2 \, dx \leq C\|F\|^2_\mathcal{L}
\]

(2.7)

Denoting by

\[
 u^{(m)} = \sum_{i=1}^m a_{i,m}w_i, \quad v^{(m)} = \sum_{i=1}^m b_{i,m}w_i, \quad \theta^{(m)} = \sum_{i=1}^m c_{i,m}w_i
\]

we conclude that system (2.5) is equivalent to

\[
\mu \int_0^L u^{(m)}_x v^{(m)}_x \, dx - \int_0^L v^{(m)}_x w_j \, dx = \int_0^L F_1 w_j \, dx
\]

(2.8)

\[
\mu \int_0^L v^{(m)}_x w_j \, dx + \int_0^L u^{(m)}_{xx} \, dx + \alpha \int_0^L \theta^{(m)}_x w_j \, dx = \int_0^L F_2 w_j \, dx
\]

(2.9)

\[
\mu \int_0^L \theta^{(m)} w_j \, dx + \int_0^L \theta^{(m)}_{xx} \, dx + \beta \int_0^L v^{(m)}_x w_j \, dx = \int_0^L F_3 w_j \, dx
\]

(2.10)

for \(j = 1, \ldots, m \). Let's multiply equation (2.8), (2.9) and (2.10) by \(-b_j \lambda_j, a_j \lambda_j \) and \(c_j \lambda_j \) respectively and add up in \(j \), to obtain

\[
-\mu \int_0^L u^{(m)}_x v^{(m)}_x \, dx + \int_0^L |v^{(m)}_x|^2 \, dx = -\int_0^L (F_1)_x v^{(m)}_x \, dx
\]

(2.11)

\[
\mu \int_0^L v^{(m)}_x u^{(m)}_{xx} \, dx + \int_0^L |u^{(m)}_{xx}|^2 \, dx + \alpha \int_0^L \theta^{(m)}_x u^{(m)}_{xx} \, dx = \int_0^L \theta^{(m)} u^{(m)}_{xx} \, dx
\]

(2.12)

\[
\mu \int_0^L \theta^{(m)}_x \theta^{(m)}_{xx} \, dx + \int_0^L |\theta^{(m)}_{xx}|^2 \, dx + \beta \int_0^L v^{(m)}_x \theta^{(m)}_{xx} \, dx = \int_0^L \theta^{(m)} \theta^{(m)}_{xx} \, dx
\]

(2.13)

From (2.6) and (2.11) we conclude that there exists a positive constant \(C \) such that

\[
\int_0^L |v^{(m)}_x|^2 \, dx \leq C\|F\|^2_\mathcal{L}.
\]

(2.14)
From (2.7), (2.12), (2.13) and (2.14) we conclude that there exists a positive constant \(C \) satisfying

\[
\int_0^L |u_{xx}^{(m)}|^2 \, dx + \int_0^L |\theta_{xx}^{(m)}|^2 \, dx \leq C \| F \|_{\mathcal{F}}^2 .
\]

(2.15)

From (2.15) it follows that there exist a subsequence of \((u^{(m)})_{m \in \mathbb{N}} \) and \((\theta^{(m)})_{m \in \mathbb{N}} \), (which we still denote in the same way) such that

\[
u^{(m)} \to u \quad \text{weakly in } D(A) \\
\theta^{(m)} \to \theta \quad \text{weakly in } D(A)
\]

From (2.8), ..., (2.10) and the above two convergences we conclude that \(u, v \) and \(\theta \) satisfy

\[
\mu \int_0^L uv_j \, dx - \int_0^L vw_j \, dx = \int_0^L F_1 w_j \, dx \\
\mu \int_0^L vw_j \, dx + \int_0^L u_{xx} w_j \, dx + \alpha \int_0^L \theta_x w_j \, dx = \int_0^L F_2 w_j \, dx \\
\mu \int_0^L \theta w_j \, dx + \int_0^L \theta_{xx} w_j \, dx + \beta \int_0^L v_x w_j \, dx = \int_0^L F_3 w_j \, dx
\]

for all \(j \). Since finite linear combinations of the eigenfunctions are dense in \(L^2(\Omega) \), we conclude that \(u, v \) and \(\theta \) satisfy (2.2), (2.3) and (2.4), that is \(D(I - \mathcal{B}) = \mathcal{H} \). Finally since \(D(\mathcal{B}) \) is dense in \(\mathcal{H} \), from Lummer-Phillips's theorem we conclude that \(\mathcal{B} \) is the infinitesimal generator of a strongly continuous semigroup, so is \(\mathcal{A} \), hence the result follows.

\[\square\]

Remark 2.1. If we define \(D(\mathcal{A}^2) \) and \(D(\mathcal{A}^3) \) as:

\[
D(\mathcal{A}^2) = \{ V \in D(\mathcal{A}); \mathcal{A} V \in D(\mathcal{A}) \} , \\
D(\mathcal{A}^3) = \{ V \in D(\mathcal{A}^2); \mathcal{A} V \in D(\mathcal{A}^2) \} ,
\]

then it is easy to see that whenever \(U_0 = (u_0, u_1, \theta_0) \in D(\mathcal{A}^3) \), we have

\[
U = (u, u_t, \theta)^t \in C^2(0, T; D(\mathcal{A}))
\]

or, in particular

\[
u \in C^3(0, T; D(H_0^1(\Omega))) , \quad \theta \in C^2(0, T; D(A)) .
\]

Remark 2.2. \(D(\mathcal{A}^3) \) is dense in \(\mathcal{H} \). In fact, take \(F \in \mathcal{H} \) such that

\[
(F, v)_{\mathcal{H}} = 0 \quad \forall v \in D(\mathcal{A}) .
\]

(2.16)

Since \(\mathcal{A} \) is the infinitesimal generator of a strongly continuous semigroup,
there exist $U \in \mathcal{H}$, such that $(\alpha - \beta)^2 U - \mathcal{A} U = F$, taking $V = U$ in (2.16) we conclude that $U = 0$, that is $F = 0$. With the same reasoning we can prove that $D(\mathcal{A}^2)$ is dense in $D(\mathcal{A})$, and $D(\mathcal{A}^2)$ is dense in $D(\mathcal{A}^2)$, with the corresponding graph norm. From here our claim follows.

3. Asymptotic behaviour

Before we prove the main result of this paper let's recall the simple lemma

Lemma 3.1. Let $v (= v(x, t))$ be the solution of the inhomogeneous scalar wave equation

\begin{equation}
\begin{aligned}
&v_{tt} - v_{xx} = f(x, t) \quad \text{for } 0 < x < L, \quad 0 < t < T, \\
v(x, 0) = v_0(x), \quad v_t(x, 0) = v_1(x) \quad \text{for } 0 < x < L, \\
v(0, t) = v(L, t) = 0 \quad \text{for } 0 < t < T,
\end{aligned}
\end{equation}

where v_0, v_1 and f belong to $H^1_0(\Omega) \cap H^2(\Omega), H^1_0(\Omega)$ and $H^4(0, T; L^2(\Omega))$ respectively. Then, the identity

\[
\frac{1}{4} \left[v_x^2(L, t) + v_x^2(0, t) \right] = \frac{d}{dt} \int_0^L (x - \frac{L}{2}) v_t v_x dx \\
+ \frac{1}{2} \int_0^L \left[v_x^2(x, t) + v_t^2(x, t) \right] dx \\
- \int_0^L (x - \frac{L}{2}) f(x, t) v_x dx
\]

holds.

Proof. Multiply (3.1) by $(x - (L/2))v_x$ and integrate in x to obtain

\begin{equation}
\int_0^L \left(x - \frac{L}{2} \right) v_x v_x dx - \int_0^L \left(x - \frac{L}{2} \right) v_{xx} v_x dx = \int_0^L \left(x - \frac{L}{2} \right) f v_x dx.
\end{equation}

Since $v_t(0, t) = v_t(L, t) = 0$, direct calculation give us the identities

\begin{equation}
\int_0^L \left(x - \frac{L}{2} \right) v_x v_x dx = \frac{d}{dt} \int_0^L \left(x - \frac{L}{2} \right) v_x v_x dx - \int_0^L \left(x - \frac{L}{2} \right) v_x v_{xt} dx \\
= \frac{d}{dt} \int_0^L \left(x - \frac{L}{2} \right) v_x v_x dx - \frac{1}{2} \int_0^L \left(x - \frac{L}{2} \right) (v_t^2)_x dx \\
= \frac{d}{dt} \int_0^L \left(x - \frac{L}{2} \right) v_x v_x dx + \frac{1}{2} \int_0^L v_t^2 dx.
\end{equation}
On the other hand,\[\int_0^L \left(x - \frac{L}{2} \right) v_{xx} v_x dx = \frac{1}{2} \int_0^L \left(x - \frac{L}{2} \right) (v_x^2) dx\]
\[= \frac{1}{4} L \left[v_x^2(L, t) + v_x^2(0, t) \right] - \frac{1}{2} \int_0^L v_x^2 dx . \]

From (3.2), (3.3) and (3.4) the result follows.

Let's define the following auxiliary functions:

\[E_1(t) = \frac{1}{2} \int_0^L \left[u_t^2(x, t) + u_x^2(x, t) + \frac{\alpha}{\beta} \theta^2(x, t) \right] dx , \]
\[E_2(t) = \frac{1}{2} \int_0^L \left[u_{tt}^2(x, t) + u_{xx}^2(x, t) + \frac{\alpha}{\beta} \theta_t^2(x, t) \right] dx , \]
\[E_3(t) = \frac{1}{2} \int_0^L \left[u_{xt}^2(x, t) + u_{xx}^2(x, t) + \frac{\alpha}{\beta} \theta_x^2(x, t) \right] dx . \]

Theorem 3.1. Let \((u_0, u_1, \theta_0) \in D(\mathcal{A})\) and \(\alpha \beta > 0\). Then there exist positive constants \(C\) and \(\gamma\) such that the solution of system (1.1), \ldots, (1.4) satisfies
\[E_1(t) + E_2(t) + E_3(t) \leq Ce^{-\gamma t} . \]

Proof. Let's take \((u_0, u_1, \theta_0)\) in \(D(\mathcal{A}^3)\). Multiply equations (1.1) and (1.2) by \(u_t\) and \(\theta\) respectively, then we have\[\frac{1}{2} \frac{d}{dt} \int_0^L \left[u_t^2(x, t) + u_x^2(x, t) \right] dx = -\alpha \int_0^L \theta_x(x, t) u_t(x, t) dx , \]
\[\frac{1}{2} \frac{d}{dt} \int_0^L \theta^2(x, t) dx + \int_0^L \theta_t^2(x, t) dx = -\beta \int_0^L \theta(x, t) u_{xt}(x, t) dx . \]

From (3.6) it follows that\[\int_0^L \theta_x(x, t) u_t(x, t) dx = \frac{1}{\beta} \left\{ \frac{1}{2} \frac{d}{dt} \int_0^L \theta^2(x, t) dx + \int_0^L \theta_x^2(x, t) dx \right\} \]
and the substitution of this identity in (3.5) implies that\[\frac{d}{dt} E_1(t) = -\frac{\alpha}{\beta} \int_0^L \theta_x^2(x, t) dx . \]

Next we find the derivative of \(E_2\). Differentiate equations (1.1) and (1.2) with respect to \(t\) (this is possible from Remark 2.1), multiply by \(u_{tt}\) and \(\theta_t\) respectively and apply a similar idea as above to obtain.
\begin{equation}
\frac{d}{dt} E_2(t) = -\frac{\alpha}{\beta} \int_0^L \theta_{xx}^2(x, t) dx.
\end{equation}

Let's multiply equations (1.1) and (1.2) by \(u_{xxt}\) and \(\theta_{xx}\) respectively to obtain
\begin{equation}
\frac{1}{2} \frac{d}{dt} \int_0^L \left(u_{xt}^2(x, t) + u_{xx}^2(x, t) \right) dx = -\alpha \int_0^L \theta_x(x, t) u_{txx}(x, t) dx
+ \alpha \int_0^L \theta_{xx}(x, t) u_{tx}(x, t) dx.
\end{equation}

The above two identities imply that
\begin{equation}
\frac{d}{dt} E_3(t) = -\frac{\alpha}{\beta} \int_0^L \theta_{xx}^2(x, t) dx - \alpha \theta_x(x, t) u_{tx}(x, t)\big|_{x=0}^{x=L}.
\end{equation}

On the other hand, for any \(\epsilon > 0\) and any pair of numbers we have \(\pm ab \leq a^2/\epsilon + \epsilon b^2/4\), therefore
\begin{equation}
\theta_x(x, t) u_{tx}(x, t)\big|_{x=0}^{x=L} \leq \frac{1}{\epsilon} \sup_{\Omega} \{ \theta_x^2(\xi, t); \ \xi \in \overline{\Omega} \} + \frac{\epsilon}{4} \int_0^L \theta_{xx}^2(x, t) dx.
\end{equation}

From Gagliardo-Nirenberg's inequality (see Adams [1]) we know that there exists a positive constant \(c\) satisfying:
\begin{equation}
\sup_{\Omega} \{ \theta_x^2(\xi, t); \ \xi \in \overline{\Omega} \} \leq c \left(\int_0^L \theta_x^2(x, t) dx \right)^{1/2} \left(\int_0^L \theta_x^2(x, t) dx + \int_0^L \theta_{xx}^2(x, t) dx \right)^{1/2}
\leq \left[c + \left(\frac{\epsilon}{\alpha} \right)^2 \right] \int_0^L \theta_x^2(x, t) dx + \frac{\epsilon^2}{4} \int_0^L \theta_{xx}^2(x, t) dx.
\end{equation}

From (3.9), (3.10) and (3.11) we obtain
\begin{equation}
\frac{d}{dt} E_3(t) = -\left(\frac{\alpha}{\beta} - \frac{\epsilon}{2} \right) \int_0^L \theta_{xx}^2(x, t) dx
+ \frac{\epsilon}{4} \alpha [u_{xt}^2(L, t) + u_{xt}^2(0, t)] + C(\epsilon) \int_0^L \theta_x^2(x, t) dx,
\end{equation}
where $C(\epsilon)$ is a constant approaching $+\infty$ when $\epsilon \to 0$. On the other hand, let's differentiate equation (1.1) respect to t and set $v = u$, and $f = -\alpha \theta_{xt}$. Since $(u_0, u_1, \theta_0) \in D(\omega^3)$ we conclude that $v(0) = u_1 \in H_0^1(\Omega) \cap H^2(\Omega)$ and $v_t(0) = u_{0,xx} - \theta_{0,x} \in H_0^1(\Omega)$. From Remark 2.1 it follows that $f \in C^1(0, T; H^1(\Omega))$, and from Lemma 3.1 we have that the following identity is valid:

\begin{equation}
\frac{1}{4} \int_0^L (u_{xx}^2(L, t) + u_{xt}^2(0, t)) = \frac{d}{dt} \int_0^L \left(x - \frac{L}{2} \right) u_t(x, t)u_{xt}(x, t) dx + \frac{1}{2} \int_0^L \left\{ u_{xx}^2(x, t) + u_{xt}^2(x, t) \right\} dx + \alpha \int_0^L \left(x - \frac{L}{2} \right) \theta_{xt}(x, t)u_{xt}(x, t) dx.
\end{equation}

Let's define the auxiliary functions:

$H(t) = -\int_0^L \left(x - \frac{L}{2} \right) u_t(x, t)u_{xt}(x, t) dx,$

$I(t) = \int_0^L \theta(x, t)u_{xt}(x, t) dx,$

$J(t) = \int_0^L u_x(x, t)u_{xt}(x, t) dx.$

Clearly

\begin{equation}
|H(t)| \leq \frac{L}{2} \int_0^L \left[u_{xx}^2(x, t) + u_{xt}^2(x, t) + \alpha^2 \theta_x^2(x, t) \right] dx,
\end{equation}

\begin{equation}
|I(t)| \leq \frac{1}{2} \int_0^L \left[\theta_x^2(x, t) + u_t^2(x, t) \right] dx,
\end{equation}

\begin{equation}
|J(t)| \leq \frac{1}{2} \int_0^L \left[u_{xx}^2(x, t) + u_{xt}^2(x, t) \right] dx.
\end{equation}

From (3.12), (3.13) and the definition of H we obtain

$$
\frac{d}{dt} \left\{ E_3(t) + \frac{\alpha \epsilon}{L} H(t) \right\} \leq -\left(\frac{\alpha}{\beta} - \frac{\alpha \epsilon}{2} \right) \int_0^L \theta_{xx}^2(x, t) dx + C(\epsilon) \int_0^L \theta_x^2(x, t) dx + \frac{\alpha \epsilon}{2L} \int_0^L \left[u_{xx}^2(x, t) + u_{xt}^2(x, t) \right] dx + \alpha^2 \frac{\epsilon}{L} \int_0^L \left(x - \frac{L}{2} \right) \theta_{xt}(x, t)u_{xt}(x, t) dx.
$$

From (1.1) and the above inequality it follows that there exists a positive constant c which does not depend of ϵ, such that:
(3.17) \[
\frac{d}{dt} \left\{ E_3(t) + \frac{\epsilon}{L} H(t) \right\} \leq - \left(\frac{\alpha}{\beta} - \frac{\epsilon}{2} \right) \int_0^L \theta_{xx}^2(x, t) dx + \int_0^L \left[C(e) + 2x^3 \frac{\epsilon}{L} \right] \theta_x^2(x, t) dx + ce \int_0^L \left[u_{xt}^2(x, t) + u_{xx}^2(x, t) + \theta_{xt}^2(x, t) \right] dx.
\]

Let's differentiate \(I(t) \) and \(J(t) \) and use (1.1) and (1.2) to obtain
\[
\frac{d}{dt} I(t) = \int_0^L \theta_{xx}(x, t) u_{xt}(x, t) dx - \beta \int_0^L u_{xt}^2(x, t) dx - \int_0^L \theta_x(x, t) u_{xx}(x, t) dx + \alpha \int_0^L \theta_x^2(x, t) dx,
\]
\[
\frac{d}{dt} J(t) = \int_0^L u_{xt}^2(x, t) dx - \frac{1}{2} \int_0^L u_{xx}^2(x, t) dx + \frac{\alpha^2}{2} \int_0^L \theta_x^2(x, t) dx.
\]

From (3.18) and (3.19) we deduce
\[
\frac{d}{dt} \left\{ I(t) + \frac{\beta}{4} J(t) \right\} \leq - \left(\frac{\alpha}{\beta} - \frac{\epsilon}{2} - 4\epsilon c/\beta^2 \right) \int_0^L \theta_{xx}^2(x, t) dx + ce \int_0^L \left[u_{xt}^2(x, t) + u_{xx}^2(x, t) \right] dx + C(e) \int_0^L \left[\theta_x^2(x, t) + \theta_{xt}^2(x, t) \right] dx.
\]
Let K the following function

$$K(t) = \frac{\alpha}{L} H(t) + \frac{32}{\beta} c \varphi(t) + 8c J(t).$$

Taking $\varepsilon > 0$ such that $\varepsilon((\alpha/2) + 4c/\beta^2) < \alpha/\beta$, we obtain

$$\frac{d}{dt} \left(E_3(t) + \varepsilon K(t) \right) \leq -c \varepsilon \int_0^L \left[u_x^2(x, t) + u_{xx}^2(x, t) \right] dx$$

$$+ C(\varepsilon) \int_0^L \left[\theta_x^2(x, t) + \theta_{xx}^2(x, t) \right] dx .$$

From (3.7), (3.9) and the last inequality we have

$$\begin{aligned}
(3.20) \quad & \frac{d}{dt} \left\{ E_3(t) + \varepsilon K(t) + C(\varepsilon) [E_1(t) + E_2(t)] \right\} \\
& \leq -c \varepsilon \int_0^L \left[u_x^2(x, t) + u_{xx}^2(x, t) + \theta_x^2(x, t) + \theta_{xx}^2(x, t) \right] dx ,
\end{aligned}$$

where c denotes various positive constants independent of ε. From (3.14), (3.15) and (3.16) we have that there exists a positive constant, say c_1 such that:

$$\begin{aligned}
(3.21) \quad & E_3(t) + \varepsilon K(t) + C(\varepsilon) [E_1(t) + E_2(t)] \\
& \leq c_1 \int_0^L \left[\theta_x^2(x, t) + u_x^2(x, t) + u_{xx}^2(x, t) + \theta_x^2(x, t) + \theta_{xx}^2(x, t) \right] dx ,
\end{aligned}$$

where $C(\varepsilon)$ denote various positive constants. Multiplying (3.20) by c_0 and (3.21) by c_1, adding the resulting inequalities and integrating, we conclude that there exists a positive constant γ, such that

$$E_3(t) + \varepsilon K(t) + C(\varepsilon) [E_1(t) + E_2(t)] \leq C(\varepsilon) \{ E_1(0) + E_2(0) + E_3(0) \} e^{-\gamma t} .$$

Taking $0 < \varepsilon$ small enough we have that

$$E_3(t) + \varepsilon K(t) + C(\varepsilon) [E_1(t) + E_2(t)] \geq E_1(t) + E_2(t) + E_3(t)$$

From the last two inequalities we obtain:

$$E_1(t) + E_2(t) + E_3(t) \leq C(\varepsilon) \{ E_1(0) + E_2(0) + E_3(0) \} e^{-\gamma t}$$

for all $t > 0$. Finally from Remark 2.2 the result follows.

Acknowledgment. The author is very grateful to Professor Gustavo Perla Menzala for fruitful discussions concerning this paper.
References

nuna adreso:
National Laboratory of Scientific Computation
Department of Research and Development
Rua Lauro Muller 455
Botafogo, CEP. 22290
Rio de Janeiro, RJ
Brazil

(Ricevita la 17-an de januaro, 1990)