Geodesics in first-passage percolation

Daniel Ahlberg
Stockholm University

Based on joint work with Christopher Hoffman (and Jack Hanson).

A model for spatial growth

In first-passage percolation the edges of \mathbb{Z}^{2} are assigned i.i.d. weights $\omega_{e} \geq 0$ from a continuous distribution with finite mean. A random metric:

$$
T(x, y):=\inf \left\{\sum_{e \in \pi} \omega_{e}: \pi \text { is a path from } x \text { to } y\right\}
$$

Goal: Understand the asymptotics of distances, balls and geodesics.

Subadditive ergodic theory

Key property: $T(x, y) \leq T(x, z)+T(z, y)$ for all $x, y, z \in \mathbb{Z}^{2}$.
Hammersley-Welsh (1965): $\exists \mu(z):=\lim _{n \rightarrow \infty} \frac{1}{n} T(0, n z)$ in probability.
Kingman (1968): The limit exists almost surely.

The shape theorem

Richardson (1973), Cox-Durrett (1981): There exists a compact and convex set Ball $\subset \mathbb{R}^{2}$ such that, almost surely, for all large t

$$
(1-\varepsilon) \text { Ball } \subset \frac{1}{t}\left\{z \in \mathbb{Z}^{2}: T(0, z) \leq t\right\} \subset(1+\varepsilon) \text { Ball. }
$$

First Passage Percolation on \mathbb{Z}^{2} : A Simulation Study

KPZ universality

Kardar-Parisi-Zhang (1986): Predictions due to physicists suggest that $T\left(0, n \mathbf{e}_{1}\right)$ fluctuates around its mean by order n^{χ} $\mathrm{Geo}\left(0, n \mathbf{e}_{1}\right)$ fluctuates vertically by order n^{ξ} where the exponents should equal $\chi=1 / 3$ and $\xi=2 / 3$, so $\chi=2 \xi-1$.

Geodesics in first-passage percolation

The geodesic between x and y is the path whose weight-sum equals $T(x, y)$. Consider the geodesics from the origin to sites at distance n. We want to describe the geometry of this object when n is large.

(Simulation for exponential weights, from mathoverflow.)

Geodesics in first-passage percolation

An infinite path is an infinite geodesic if every finite segment is a geodesic. A geodesic $g=\left(v_{1}, v_{2}, \ldots\right)$ has asymptotic direction θ if

$$
\lim _{k \rightarrow \infty} \frac{v_{k}}{\left|v_{k}\right|}=\theta
$$

Two infinite geodesics g and g^{\prime} coalesce if $g \Delta g^{\prime}$ is finite.

Newman's conjectures

Conditional work of Newman (1995) led to the following conjectures:
(I) With probability one, every infinite geodesic has a direction.
(II) For every θ there is an a.s. unique geodesic in \mathscr{T}_{0} with direction θ.
(III) For every θ any two geodesics with direction θ coalesce a.s.

A model for competing growth

In the two-type Richardson model we initially color $(0,0)$ red and $(1,0)$ blue. As time evolves, uncolored sites of \mathbb{Z}^{2} turn

> red at rate $1 \cdot \#\{$ red neighbors $\}$
> blue at rate $\lambda \cdot \#\{$ blue neighbors $\}$

A colored site keeps its color forever.

Central question: For which values of $\lambda \geq 1$ is it possible for both red and blue to conquer infinitely many sites?

Coexistence and existence of multiple geodesics

Let \mathscr{T}_{0} denote the set of infinite geodesics starting at the origin.
Häggström-Pemantle (1998):
(i) When $\lambda=1$, coexistence occurs with positive probability.
(ii) For exponential weights, $\mathbb{P}(|\mathscr{T}| \geq 2)>0.064$.

Hoffman (2008): $\mathbb{P}\left(\left|\mathscr{T}_{0}\right| \geq 4\right)>0$.
Damron-Hanson (2014): $\mathbb{P}\left(\left|\mathscr{T}_{0}\right| \geq 4\right)=1$.

Busemann functions

For a geodesic $g=\left(v_{1}, v_{2}, \ldots\right)$ we define its Busemann function as

$$
B_{g}(x, y):=\lim _{k \rightarrow \infty}\left[T\left(x, v_{k}\right)-T\left(y, v_{k}\right)\right] .
$$

The limit exists for all g and satisfies

$$
\begin{aligned}
& B_{g}(0, y)=T(0, y) \text { for all } y \in g . \\
& B_{g}(0, y)<0 \text { iff } y \text { further 'from infinity' than the origin along } g .
\end{aligned}
$$

Busemann functions

A linear functional $\rho: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is called supporting if the line $\left\{x \in \mathbb{R}^{2}: \rho(x)=1\right\}$ is a supporting line to Ball. Given a supporting functional ρ and a geodesic g we say that the Busemann function of g is asymptotically linear to ρ if

$$
\limsup _{|y| \rightarrow \infty} \frac{1}{|y|}\left|B_{g}(0, y)-\rho(y)\right|=0
$$

Asymptotic directions

From ρ we can read out the direction of $g=\left(v_{1}, v_{2}, \ldots\right)$.

$$
\rho\left(v_{k} /\left|v_{k}\right|\right) \approx \frac{1}{\left|v_{k}\right|} B_{g}\left(0, v_{k}\right)=\frac{1}{\left|v_{k}\right|} T\left(0, v_{k}\right) \approx \mu\left(v_{k} /\left|v_{k}\right|\right) .
$$

So any limit point x of $\left(\frac{v_{k}}{\left|v_{k}\right|}\right)_{k \geq 1}$ must satisfy $\rho(x)=\mu(x)$.
Damron-Hanson (2014): For every tangent functional ρ there exists a geodesic in \mathscr{T}_{0} with Busemann function linear to ρ.

Newman's conjectures

Conditional work of Newman (1995) led to the following conjectures:
(I) With probability one, every infinite geodesic has a direction.
(II) For every θ there is an a.s. unique geodesic in \mathscr{T}_{0} with direction θ.
(III) For every θ any two geodesics with direction θ coalesce a.s.

Versions of Newman's conjectures

(I) With probability one, every infinite geodesic has a direction.

Theorem I: (A.-Hoffman) With probability one, every infinite geodesic has a linear Busemann function.

Versions of Newman's conjectures

(II) For every direction θ there is an a.s. unique geodesic with direction θ.

Theorem II: (A.-Hoffman) There is a deterministic set \mathscr{C} such that, a.s., the set of functionals ρ for which there exists a geodesic in \mathscr{T}_{0} with Busemann function linear to ρ equals \mathscr{C}. Moreover, for every $\rho \in \mathscr{C}$
$\mathbb{P}\left(\exists\right.$ two geodesics in \mathscr{T}_{0} with Busemann function linear to $\left.\rho\right)=0$.

Versions of Newman's conjectures

(III) For every direction θ any two geodesics with direction θ coalesce a.s.

Theorem III: (A.-Hoffman) For every $\rho \in \mathscr{C}$, any two geodesics with Busemann function linear to ρ coalesce a.s.

Versions of Newman's conjectures

Theorem I: (A.-Hoffman) With probability one, every infinite geodesic has a linear Busemann function.

Theorem II: (A.-Hoffman) There is a deterministic set \mathscr{C} such that, a.s., the set of functionals ρ for which there exists a geodesic in \mathscr{T}_{0} with Busemann function linear to ρ equals \mathscr{C}. Moreover, for every $\rho \in \mathscr{C}$

$$
\mathbb{P}(\exists \text { two geodesics in } \mathscr{T} \text { with Busemann function linear to } \rho)=0 .
$$

Theorem III: (A.-Hoffman) For every $\rho \in \mathscr{C}$, any two geodesics with Busemann function linear to ρ coalesce a.s.

Application I: The midpoint problem

Benjamini-Kalai-Schramm (2003): Does the geodesic between $(-n, 0)$ and ($n, 0$) visit the midpoint?

Theorem: (A.-Hoffman) For diverging sequences $\left(u_{n}\right)_{n \geq 1}$ and $\left(v_{n}\right)_{n \geq 1}$

$$
\mathbb{P}\left(0 \in \operatorname{Geo}\left(u_{n}, v_{n}\right)\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

Application II: The highways and byways problem

Hammersley-Welsh (1965): What fraction of points at distance n from the origin lie on geodesics in \mathscr{T}_{0} ?

Theorem: (A.-Hanson-Hoffman) The expected fraction tends to zero.

Application III: Existence and coexistence

In the two-type Richardson model, initially color $(0,0)$ red and $(1,0)$ blue. Uncoloured sites turn red at rate $1 \cdot \#\{$ red neighbors $\}$ blue at rate $\lambda \cdot \#\{$ blue neighbors $\}$
Equivalent to FPP with exponential weights.

Corollary: (A.) For $\lambda=1$ and $k \geq 1$ (including $k=\infty$) we have

$$
\mathbb{P}\left(\left|\mathscr{T}_{0}\right| \geq k\right)>0 \quad \Leftrightarrow \quad \exists x_{1}, x_{2}, \ldots, x_{k} \text { s.t. } \mathbb{P}\left(\operatorname{Coex}\left(x_{1}, x_{2}, \ldots, x_{k}\right)\right)>0 .
$$

Application III: Proof

\Leftarrow : On the event $\operatorname{Coex}\left(x_{1}, x_{2}, \ldots, x_{k}\right)$, there are k disjoint infinite geodesics. Since disjoint they correspond to different functionals ρ. Since the set of functionals is constant, we have $|\mathscr{T}|=|\mathscr{C}| \geq k$.
\Rightarrow : Suppose $|\mathscr{T}| \geq k$. Pick distinct functionals $\rho_{1}, \rho_{2}, \ldots, \rho_{k}$ in \mathscr{C}. Position k points $x_{1}, x_{2}, \ldots, x_{k}$ at distance n from the origin in directions given by the gradients of $\rho_{1}, \rho_{2}, \ldots, \rho_{k}$. Since Busemann functions are linear, for large n we have for every $i=1,2, \ldots, k$

$$
B_{\rho_{i}}\left(x_{i}, x_{j}\right)<0 \text { for all } j \neq i .
$$

Hence, x_{i} is closer to far-out points on the geodesic corresponding to ρ_{i}.

Applications I-II: Proof

Corollary: (of Theorems I-III) Every shift-invariant measure on families of geodesics that do not cross is supported on families of geodesics containing at most four disjoint paths.

Solution to the midpoint problem

Theorem: (A.-Hoffman) For diverging sequences $\left(u_{n}\right)_{n \geq 1}$ and $\left(v_{n}\right)_{n \geq 1}$

$$
\mathbb{P}\left(0 \in \operatorname{Geo}\left(u_{n}, v_{n}\right)\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

Suppose: $\lim \sup \mathbb{P}\left(0 \in G e o\left(-n \mathbf{e}_{1}, n \mathbf{e}_{1}\right)\right)>\delta$, derive contradiction.

$$
n \rightarrow \infty
$$

Solution to the midpoint problem

- Consider vertical translates of this event.
- Construct a family of finite non-crossing geodesics.
- The construction induces a measure on non-crossing geodesics.
- Average and take a weak limit. The limiting measure is shift-invariant and supported on infinite non-coalescing geodesics.

