Geodesics in first-passage percolation

Daniel Ahlberg Stockholm University

Based on joint work with Christopher Hoffman (and Jack Hanson).

A model for spatial growth

In **first-passage percolation** the edges of \mathbb{Z}^2 are assigned i.i.d. weights $\omega_e \geq 0$ from a continuous distribution with finite mean. A random metric:

$$T(x,y) := \inf \Big\{ \sum_{e \in \pi} \omega_e : \pi \text{ is a path from } x \text{ to } y \Big\}.$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Goal: Understand the asymptotics of distances, balls and geodesics.

Key property: $T(x,y) \leq T(x,z) + T(z,y)$ for all $x, y, z \in \mathbb{Z}^2$.

Hammersley-Welsh (1965): $\exists \mu(z) := \lim_{n \to \infty} \frac{1}{n} T(0, nz)$ in probability.

A D > 4 回 > 4 □ > 4

Kingman (1968): The limit exists almost surely.

The shape theorem

Richardson (1973), Cox-Durrett (1981): There exists a compact and convex set $\text{Ball} \subset \mathbb{R}^2$ such that, almost surely, for all large *t*

$$(1-arepsilon)\mathsf{Ball}\subset rac{1}{t}ig\{z\in\mathbb{Z}^2: \mathcal{T}(0,z)\leq tig\}\subset (1+arepsilon)\mathsf{Ball}.$$

▲ロト ▲ 理 ト ▲ 臣 ト ▲ 臣 ト ● 臣 ● のへで

Kardar-Parisi-Zhang (1986): Predictions due to physicists suggest that $T(0, n\mathbf{e}_1)$ fluctuates around its mean by order n^{χ} Geo $(0, n\mathbf{e}_1)$ fluctuates vertically by order n^{ξ} where the exponents should equal $\chi = 1/3$ and $\xi = 2/3$, so $\chi = 2\xi - 1$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Geodesics in first-passage percolation

The **geodesic** between x and y is the path whose weight-sum equals T(x, y). Consider the geodesics from the origin to sites at distance n. We want to describe the geometry of this object when n is large.

(Simulation for exponential weights, from mathoverflow.)

500

Geodesics in first-passage percolation

An infinite path is an **infinite geodesic** if every finite segment is a geodesic. A geodesic $g = (v_1, v_2, ...)$ has **asymptotic direction** θ if

$$\lim_{k\to\infty}\frac{v_k}{|v_k|}=\theta$$

Two infinite geodesics g and g' coalesce if $g\Delta g'$ is finite.

・ロト ・ 同ト ・ ヨト ・ ヨト

SQC

Newman's conjectures

Conditional work of Newman (1995) led to the following conjectures:

- (I) With probability one, every infinite geodesic has a direction.
- (II) For every θ there is an a.s. unique geodesic in \mathscr{T}_0 with direction θ .
- (III) For every θ any two geodesics with direction θ coalesce a.s.

A model for competing growth

In the **two-type Richardson model** we initially color (0,0) red and (1,0) blue. As time evolves, uncolored sites of \mathbb{Z}^2 turn red at rate $1 \cdot \#\{\text{red neighbors}\}$ blue at rate $\lambda \cdot \#\{\text{blue neighbors}\}$ A colored site keeps its color forever.

- コント 4 日 > ト 4 日 > ト 4 日 > - シックク

Central question: For which values of $\lambda \ge 1$ is it possible for both red and blue to conquer infinitely many sites?

Coexistence and existence of multiple geodesics

Let \mathscr{T}_0 denote the set of infinite geodesics starting at the origin.

Häggström-Pemantle (1998):

(i) When $\lambda = 1$, coexistence occurs with positive probability.

- コント 4 日 > ト 4 日 > ト 4 日 > - シックク

(ii) For exponential weights, $\mathbb{P}(|\mathscr{T}_0| \ge 2) > 0.064$.

Hoffman (2008): $\mathbb{P}(|\mathscr{T}_0| \ge 4) > 0$.

Damron-Hanson (2014): $\mathbb{P}(|\mathscr{T}_0| \ge 4) = 1.$

Busemann functions

For a geodesic $g = (v_1, v_2, \ldots)$ we define its **Busemann function** as

$$B_g(x,y) := \lim_{k \to \infty} \big[T(x,v_k) - T(y,v_k) \big].$$

The limit exists for all g and satisfies

$$B_g(0, y) = T(0, y)$$
 for all $y \in g$.
 $B_g(0, y) < 0$ iff y further 'from infinity' than the origin along g

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Busemann functions

A linear functional $\rho : \mathbb{R}^2 \to \mathbb{R}$ is called **supporting** if the line $\{x \in \mathbb{R}^2 : \rho(x) = 1\}$ is a supporting line to Ball. Given a supporting functional ρ and a geodesic g we say that the Busemann function of g is **asymptotically linear** to ρ if

$$\limsup_{|y| o \infty} rac{1}{|y|} ig| B_{g}(0,y) -
ho(y) ig| = 0.$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Asymptotic directions

From ρ we can read out the **direction** of $g = (v_1, v_2, ...)$.

$$ho(\mathbf{v}_k/|\mathbf{v}_k|) pprox rac{1}{|\mathbf{v}_k|} B_g(0,\mathbf{v}_k) = rac{1}{|\mathbf{v}_k|} T(0,\mathbf{v}_k) pprox \mu(\mathbf{v}_k/|\mathbf{v}_k|).$$

So any limit point x of $(\frac{v_k}{|v_k|})_{k\geq 1}$ must satisfy $\rho(x) = \mu(x)$.

Damron-Hanson (2014): For every **tangent** functional ρ there exists a geodesic in \mathscr{T}_0 with Busemann function linear to ρ .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Newman's conjectures

Conditional work of Newman (1995) led to the following conjectures:

- (I) With probability one, every infinite geodesic has a direction.
- (II) For every θ there is an a.s. unique geodesic in \mathscr{T}_0 with direction θ .
- (III) For every θ any two geodesics with direction θ coalesce a.s.

Versions of Newman's conjectures

(I) With probability one, every infinite geodesic has a direction.

Theorem I: (A.-Hoffman) With probability one, every infinite geodesic has a linear Busemann function.

- 日本 - 4 日本 - 日本 - 日本

200

(II) For every direction θ there is an a.s. *unique* geodesic with direction θ .

Theorem II: (A.-Hoffman) There is a deterministic set \mathscr{C} such that, a.s., the set of functionals ρ for which there exists a geodesic in \mathscr{T}_0 with Busemann function linear to ρ equals \mathscr{C} . Moreover, for every $\rho \in \mathscr{C}$

 $\mathbb{P}(\exists \text{ two geodesics in } \mathscr{T}_0 \text{ with Busemann function linear to } \rho) = 0.$

(III) For every direction θ any two geodesics with direction θ coalesce a.s.

Theorem III: (A.-Hoffman) For every $\rho \in \mathscr{C}$, any two geodesics with Busemann function linear to ρ coalesce a.s.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem I: (A.-Hoffman) With probability one, every infinite geodesic has a linear Busemann function.

Theorem II: (A.-Hoffman) There is a deterministic set \mathscr{C} such that, a.s., the set of functionals ρ for which there exists a geodesic in \mathscr{T}_0 with Busemann function linear to ρ equals \mathscr{C} . Moreover, for every $\rho \in \mathscr{C}$

 $\mathbb{P}(\exists \text{ two geodesics in } \mathscr{T}_0 \text{ with Busemann function linear to } \rho) = 0.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem III: (A.-Hoffman) For every $\rho \in \mathscr{C}$, any two geodesics with Busemann function linear to ρ coalesce a.s.

Benjamini-Kalai-Schramm (2003): Does the geodesic between (-n, 0) and (n, 0) visit the midpoint?

Theorem: (A.-Hoffman) For diverging sequences $(u_n)_{n\geq 1}$ and $(v_n)_{n\geq 1}$

$$\mathbb{P}ig(0\in \operatorname{Geo}(u_n,v_n)ig) o 0 \quad ext{as } n o\infty.$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Application II: The highways and byways problem

Hammersley-Welsh (1965): What fraction of points at distance *n* from the origin lie on geodesics in \mathcal{T}_0 ?

Theorem: (A.-Hanson-Hoffman) The expected fraction tends to zero.

Application III: Existence and coexistence

In the **two-type Richardson model**, initially color (0,0) **red** and (1,0) **blue**. Uncoloured sites turn **red** at rate $1 \cdot \#\{\text{red neighbors}\}$ **blue** at rate $\lambda \cdot \#\{\text{blue neighbors}\}$ Equivalent to FPP with exponential weights.

- コント 4 日 > ト 4 日 > ト 4 日 > - シックク

Corollary: (A.) For $\lambda = 1$ and $k \ge 1$ (including $k = \infty$) we have $\mathbb{P}(|\mathscr{T}_0| \ge k) > 0 \quad \Leftrightarrow \quad \exists x_1, x_2, \dots, x_k \text{ s.t. } \mathbb{P}(\text{Coex}(x_1, x_2, \dots, x_k)) > 0.$ \Leftarrow : On the event Coex($x_1, x_2, ..., x_k$), there are k disjoint infinite geodesics. Since disjoint they correspond to different functionals ρ. Since the set of functionals is constant, we have $|\mathscr{T}_0| = |\mathscr{C}| \ge k$.

⇒: Suppose $|\mathscr{T}_0| \ge k$. Pick distinct functionals $\rho_1, \rho_2, \ldots, \rho_k$ in \mathscr{C} . Position k points x_1, x_2, \ldots, x_k at distance n from the origin in directions given by the gradients of $\rho_1, \rho_2, \ldots, \rho_k$. Since Busemann functions are linear, for large n we have for every $i = 1, 2, \ldots, k$

$$B_{\rho_i}(x_i, x_j) < 0$$
 for all $j \neq i$.

Hence, x_i is closer to far-out points on the geodesic corresponding to ρ_i .

Corollary: (of Theorems I-III) Every shift-invariant measure on families of geodesics that **do not cross** is supported on families of geodesics containing at most four disjoint paths.

Solution to the midpoint problem

Theorem: (A.-Hoffman) For diverging sequences $(u_n)_{n\geq 1}$ and $(v_n)_{n\geq 1}$

$$\mathbb{P}ig(0\in \operatorname{Geo}(u_n,v_n)ig) o 0 \quad ext{as } n o\infty.$$

Suppose: $\limsup_{n\to\infty} \mathbb{P}(0 \in \text{Geo}(-n\mathbf{e}_1, n\mathbf{e}_1)) > \delta$, derive contradiction.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Solution to the midpoint problem

- Consider vertical translates of this event.
- Construct a family of finite non-crossing geodesics.
- The construction induces a measure on non-crossing geodesics.
- Average and take a weak limit. The limiting measure is shift-invariant and supported on infinite non-coalescing geodesics.

ふちゃう 御 マネボマネ (中) ふんち