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A model for spatial growth

ωe

In first-passage percolation the edges of Z2 are
assigned i.i.d. weights ωe ≥ 0 from a continuous
distribution with finite mean. A random metric:

T (x , y) := inf
{∑

e∈π
ωe : π is a path from x to y

}
.

Goal: Understand the asymptotics of distances, balls and geodesics.
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Subadditive ergodic theory

Key property: T (x , y) ≤ T (x , z) + T (z , y) for all x , y , z ∈ Z2.

Hammersley-Welsh (1965): ∃µ(z) := lim
n→∞

1
nT (0, nz) in probability.

Kingman (1968): The limit exists almost surely.



The shape theorem

Richardson (1973), Cox-Durrett (1981): There exists a compact and
convex set Ball ⊂ R2 such that, almost surely, for all large t

(1− ε)Ball ⊂ 1

t

{
z ∈ Z2 : T (0, z) ≤ t

}
⊂ (1 + ε)Ball.



KPZ universality

Kardar-Parisi-Zhang (1986): Predictions due to physicists suggest that

T (0, ne1) fluctuates around its mean by order nχ

Geo(0, ne1) fluctuates vertically by order nξ

where the exponents should equal χ = 1/3 and ξ = 2/3, so χ = 2ξ − 1.
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Geodesics in first-passage percolation

The geodesic between x and y is the path whose weight-sum equals
T (x , y). Consider the geodesics from the origin to sites at distance n.
We want to describe the geometry of this object when n is large.

(Simulation for exponential weights, from mathoverflow.)



Geodesics in first-passage percolation

An infinite path is an infinite geodesic if every finite segment is a
geodesic. A geodesic g = (v1, v2, . . .) has asymptotic direction θ if

lim
k→∞

vk
|vk |

= θ.

Two infinite geodesics g and g ′ coalesce if g∆g ′ is finite.
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Newman’s conjectures

Conditional work of Newman (1995) led to the following conjectures:

(I) With probability one, every infinite geodesic has a direction.

(II) For every θ there is an a.s. unique geodesic in T0 with direction θ.

(III) For every θ any two geodesics with direction θ coalesce a.s.



A model for competing growth

In the two-type Richardson model we initially
color (0, 0) red and (1, 0) blue. As time evolves,
uncolored sites of Z2 turn

red at rate 1 ·#{red neighbors}
blue at rate λ ·#{blue neighbors}

A colored site keeps its color forever.

Central question: For which values of λ ≥ 1 is it possible for both red
and blue to conquer infinitely many sites?



Coexistence and existence of multiple geodesics

Let T0 denote the set of infinite geodesics starting at the origin.

Häggström-Pemantle (1998):

(i) When λ = 1, coexistence occurs with positive probability.

(ii) For exponential weights, P(|T0| ≥ 2) > 0.064.

Hoffman (2008): P(|T0| ≥ 4) > 0.

Damron-Hanson (2014): P(|T0| ≥ 4) = 1.



Busemann functions

For a geodesic g = (v1, v2, . . .) we define its Busemann function as

Bg (x , y) := lim
k→∞

[
T (x , vk)− T (y , vk)

]
.

The limit exists for all g and satisfies

Bg (0, y) = T (0, y) for all y ∈ g .

Bg (0, y) < 0 iff y further ‘from infinity’ than the origin along g .
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Busemann functions

A linear functional ρ : R2 → R is called supporting if the line
{x ∈ R2 : ρ(x) = 1} is a supporting line to Ball. Given a supporting
functional ρ and a geodesic g we say that the Busemann function of g is
asymptotically linear to ρ if

lim sup
|y |→∞

1

|y |
∣∣Bg (0, y)− ρ(y)

∣∣ = 0.

g

{Bg(0, y) < 0}



Asymptotic directions

From ρ we can read out the direction of g = (v1, v2, . . .).

ρ(vk/|vk |) ≈
1

|vk |
Bg (0, vk) =

1

|vk |
T (0, vk) ≈ µ(vk/|vk |).

So any limit point x of ( vk
|vk | )k≥1 must satisfy ρ(x) = µ(x).

Damron-Hanson (2014): For every tangent functional ρ there exists a
geodesic in T0 with Busemann function linear to ρ.



Newman’s conjectures

Conditional work of Newman (1995) led to the following conjectures:

(I) With probability one, every infinite geodesic has a direction.

(II) For every θ there is an a.s. unique geodesic in T0 with direction θ.

(III) For every θ any two geodesics with direction θ coalesce a.s.



Versions of Newman’s conjectures

(I) With probability one, every infinite geodesic has a direction.

Theorem I: (A.-Hoffman) With probability one, every infinite geodesic
has a linear Busemann function.
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Versions of Newman’s conjectures

(II) For every direction θ there is an a.s. unique geodesic with direction θ.

Theorem II: (A.-Hoffman) There is a deterministic set C such that, a.s.,
the set of functionals ρ for which there exists a geodesic in T0 with
Busemann function linear to ρ equals C . Moreover, for every ρ ∈ C

P
(
∃ two geodesics in T0 with Busemann function linear to ρ

)
= 0.



Versions of Newman’s conjectures

(III) For every direction θ any two geodesics with direction θ coalesce a.s.

Theorem III: (A.-Hoffman) For every ρ ∈ C , any two geodesics with
Busemann function linear to ρ coalesce a.s.



Versions of Newman’s conjectures

Theorem I: (A.-Hoffman) With probability one, every infinite geodesic
has a linear Busemann function.

Theorem II: (A.-Hoffman) There is a deterministic set C such that, a.s.,
the set of functionals ρ for which there exists a geodesic in T0 with
Busemann function linear to ρ equals C . Moreover, for every ρ ∈ C

P
(
∃ two geodesics in T0 with Busemann function linear to ρ

)
= 0.

Theorem III: (A.-Hoffman) For every ρ ∈ C , any two geodesics with
Busemann function linear to ρ coalesce a.s.



Application I: The midpoint problem

Benjamini-Kalai-Schramm (2003): Does the geodesic between (−n, 0)
and (n, 0) visit the midpoint?

Theorem: (A.-Hoffman) For diverging sequences (un)n≥1 and (vn)n≥1

P
(
0 ∈ Geo(un, vn)

)
→ 0 as n→∞.
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Application II: The highways and byways problem

Hammersley-Welsh (1965): What fraction of points at distance n from
the origin lie on geodesics in T0?

Theorem: (A.-Hanson-Hoffman) The expected fraction tends to zero.



Application III: Existence and coexistence

In the two-type Richardson model, initially color
(0, 0) red and (1, 0) blue. Uncoloured sites turn

red at rate 1 ·#{red neighbors}
blue at rate λ ·#{blue neighbors}

Equivalent to FPP with exponential weights.

Corollary: (A.) For λ = 1 and k ≥ 1 (including k =∞) we have

P(|T0| ≥ k) > 0 ⇔ ∃x1, x2, . . . , xk s.t. P(Coex(x1, x2, . . . , xk)) > 0.



Application III: Proof

⇐: On the event Coex(x1, x2, . . . , xk), there are k disjoint infinite
geodesics. Since disjoint they correspond to different functionals ρ. Since
the set of functionals is constant, we have |T0| = |C | ≥ k.

⇒: Suppose |T0| ≥ k. Pick distinct functionals ρ1, ρ2, . . . , ρk in C .
Position k points x1, x2, . . . , xk at distance n from the origin in directions
given by the gradients of ρ1, ρ2, . . . , ρk . Since Busemann functions are
linear, for large n we have for every i = 1, 2, . . . , k

Bρi (xi , xj) < 0 for all j 6= i .

Hence, xi is closer to far-out points on the geodesic corresponding to ρi .



Applications I-II: Proof

Corollary: (of Theorems I-III) Every shift-invariant measure on families
of geodesics that do not cross is supported on families of geodesics
containing at most four disjoint paths.



Solution to the midpoint problem

Theorem: (A.-Hoffman) For diverging sequences (un)n≥1 and (vn)n≥1

P
(
0 ∈ Geo(un, vn)

)
→ 0 as n→∞.

Suppose: lim sup
n→∞

P
(
0 ∈ Geo(−ne1, ne1)

)
> δ, derive contradiction.
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Solution to the midpoint problem

Consider vertical translates of this event.

Construct a family of finite non-crossing geodesics.

The construction induces a measure on non-crossing geodesics.

Average and take a weak limit. The limiting measure is
shift-invariant and supported on infinite non-coalescing geodesics.




