

Nuno Araújo

Centro de Física Teórica e Computacional, Universidade de Lisboa, Portugal

Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Portugal

with C. Dias, H. P. Melo (U. Lisboa)

http://www.namaraujo.net nmaraujo@fc.ul.pt

R. da Costa, S. N. Dorogovtsev, J. F. F. Mendes (U. Aveiro)

Origami

irigami @microscale

Mechanisms of folding at different scale

http://www.ks.uiuc.edu/ Research/folding/

Science 359, 1386 (2018)

interactions are relevant

excluded volume

stress relaxation

minimum of the free energy

kinetically trapped

unique folded state

Technological challenge of self-folding

C. D. Santangelo. Annu. Rev. Condens. Matter Phys. 8, 165 (2017)

Theoretical challenges of self-folding

- single, simply **connected** piece;
- the unfolding is a **union of polyhedron faces**;
- the unfolding does **not self-overlap**.

E. D. Demaine, J. O'Rourke. *Geometric folding algorithms*. Cambridge University Press (2007)

Theoretical challenges to self-folding

S. Pandey, M. Ewing, A. Kunas, N. Nguyen, D. H. Gracias, G. Menon. *PNAS* **108**, 19885 (2011) N.A.M. Araújo, R. A. da Costa, S. N. Dorogovtsev, J. F. F. Mendes, *Physical Review Letters* **120**, 188001 (2018)

Theoretical challenges to self-folding

Weisstein, Eric W. "Boat." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Boat.html

Theoretical challenges to self-folding

S. Pandey, M. Ewing, A. Kunas, N. Nguyen, D. H. Gracias, G. Menon. *PNAS* **108**, 19885 (2011) P. M. Dodd, P. F. Damasceno, S. C. Glotzer, *PNAS* **115**, E6690 (2018)

Experimental realization

ng, A. Kunas, N. Nguyen, D. H. Gracias, G. Menon. PNAS 108, 19885 (2011)

Topologications geometrical compactness

number of vertex connections (Vc) VS radius of gyration (Rg)

S. Pandey,

ing, A. Kunas, N. Nguyen, D. H. Gracias, G. Menon. PNAS 108, 19885 (2011)

Topological vs geome ical compactness

vs **radius of gyration (Rg)**

S. Pandey, M. Ewing, A. Kunas, N. Nguyen, D. H. Gracias, G. Menon. PNAS 108, 19885 (2011)

Fraction of optimal nets

The use of **random methods** is practically **impossible** for large shells.

Fraction of optimal nets (exponential decay)

upper bound:

$$N_{ST} = \begin{pmatrix} E \\ V - 1 \end{pmatrix}$$

$$N_{MLST} = \begin{pmatrix} V \\ L \end{pmatrix}$$

$$L \sim E/4 + 2$$

 $V \sim E/2 + 1$

$$N_{MLST}/N_{ST} \sim 2^{-E/2+3/2}$$

Second criterion (Radius of gyration?)

S. Pandey, M. Ewing, A. Kunas, N. Nguyen, D. H. Gracias, G. Menon. PNAS 108, 19885 (201

Second criterion (Radius of gyration?)

Numerical simulations

Yukawa type potential:

$$V_Y(r) = \frac{A}{k} \exp(-k \left[r - \left(R_i + R_j\right)\right])$$

Inverse screening length

Gaussian potential

number of faces

H. P. Melo, C. S. Dias, N.A.M. Araújo, Communications Physics 3, 154 (2020)

H. P. Melo, C. S. Dias, N.A.M. Araújo, *Communications Physics* **3**, 154 (2020)

Two time scales

H. P. Melo, C. S. Dias, N.A.M. Araújo, *Communications Physics* **3**, 154 (2020)

Food for thought: 3 faces

Where is the **third one**, when the first two close?

Final remarks

- Folding at the microscale is a N to M problem;
- Finding the nets that maximize the number of single vertex connections corresponds to finding the maximum leaf spanning tree of the shell graph;
- Our method provides a unique and optimal solution;
- From the complete list of maximum leaf spanning trees it is possible to apply other criteria;
- The optimal net does not have the lowest folding time;
- The folding time is a non-monotonic function of the number of faces.

N.A.M. Araújo, R. A. da Costa, S. N. Dorogovtsev, J. F. F. Mendes, *Physical Review Letters* **120**, 188001 (2018) H. P. Melo, C. S. Dias, N.A.M. Araújo, *Communications Physics* **3**, 154 (2020) T. S. A. N. Simões, H. P. M. Melo, N. A. M. Araújo. *The European Physical Journal E* **44**, 46 (2021)

Financial support from the Portuguese Foundation for Science and Technology (FCT) under Contracts no. http://www.namaraujo.net UIDB/00618/2020, UIDP/00618/2020, and PTDC/FIS-MAC/28146/2017 (LISBOA-01-0145-FEDER-028146). nmaraujo@fc.ul.pt