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assembly paradigm would apply to diverse materials. Polyhedral
self-assembly occurs after patterned nets are released from the
silicon substrate on which they are fabricated and heated above
the melting point of the hinge material, which in the present case
requires that the templates are heated in a high boiling point sol-
vent (N-methylpyrrolidone) above the melting point of solder
(183 °C). Assembly is driven by the minimization of surface ten-
sion of the liquid hinges both at the folding hinges which rotate
the panels and at the locking hinges which self-align (26) and fuse
the self-folding panels into place (Fig. 1 and Movie S1).

The use of liquid locking hinges at the edges of the panels is
critical to enable self-assembly of higher order polyhedra with
large numbers of panels, because they introduce favorable sec-
ondary interactions at the edges of the panels. As compared
to solid mechanical latches utilized in earlier self-folding studies
of optoelectronic structures on substrates (27), the introduction
(28) of liquefiable locking hinges has lead to the facile assembly
of polyhedra with high yields (9). The reason is that liquid locking
hinges are deformable, and hence allow for small relative motions
of the panels, thereby increasing fabrication defect tolerance. The
small panel fluctuations are driven primarily by convective agita-
tion of the solvent during heating. Our experimental methodol-
ogy is also amenable to the use of alternate agitation schemes
such as stirring or bubbling of an inert gas during heating. Be-
cause molten solder has a relatively high surface energy, large
motions or complete separation of panels during assembly is rare.
The angles between panels can be controlled by the volume of
solder deposited, but panels are not programmed to fold in a par-
ticular sequence, nor are they actively controlled externally.

When building polyhedra from nets, a prescription of folding
rules is essential. Simple examples show that the same net may
sometimes be folded into different polyhedra. Thus it is surpris-
ing that, in many of our experiments, nets self-fold with high yield
into a specified 3D polyhedron.

Compactness as a Design Criterion. The nets were rarely varied in
the first experiments on self-folding polyhedra. For example, a
cruciform was almost always chosen to self-fold a cube. However,
a recent study of the self-folding of all 11 nets for the cube and
octahedron revealed that different nets fold through different
pathways and have different yield (29). In particular, it was found
that compact nets had higher yield. Both metric and topological
measures of compactness were used. A metric measure of com-
pactness is the radius of gyration, Rg, defined in Eq. 1 below. A
topological measure of compactness, denoted Vc, is defined as
follows. A vertex shared by two faces in the net that do not share
an edge is called a vertex connection, and we say that the faces are
topological neighbors. Vc is defined to be the total number of
distinct vertex connections in a net. For example, the reader
may count that nets in Fig. 2 A–C have Vc ¼ 2, 6, and 10, respec-
tively. These notions of compactness are correlated but distinct.

In this work, we test compactness as a design criterion for high-
er polyhedra, specifically the dodecahedron, icosahedron, and
truncated octahedron. The number of nets for these polyhedra
is too large for a complete experimental study. Instead, we com-
putationally search the set of all nets, choose representative nets
according to compactness, and test the selected nets for self-fold-
ing in experiments.

Summary of Results
We tabulated all 43,380 nets for the dodecahedron and icosahe-
dron, and 123,452 nets (of 2.3 million estimated nets) for the
truncated octahedron, using a Monte Carlo scheme. We then
chose three nets for each polyhedron: the most compact, the least
compact, and the median for each of the two compactness criter-
ion. Several nets may have the same Vc, so when choosing nets
according to Vc we made the following choice: Among all max-
imum Vc nets, we chose the net with smallest Rg; among all mini-
mum Vc nets, we chose the net with highest Rg; and among all
nets with the median Vc, we chose the net with median Rg. Fifty
samples of each of these nets were self-folded experimentally and
the resulting 3D structures were graded in three categories—A,

Fig. 1. Schematic diagram of net geometry in experiments. Folding hinges
melt and cause panels to rotate. Locking hinges meet and fuse when panels
linked at the vertex connection have rotated through approximately the
dihedral angle about a folding hinge.

Fig. 2. Self-folding experiments on nets with varying Vc and Rg. Optical and SEM images showing photolithographically fabricated panels connected by solder
hinges and the corresponding self-folded 3D structures respectively. (A–F) Dodecahedra in the order Vc ¼ 2, 6, and 10, and Rg ¼ 1;102.2, 800.9, and 693.7 μm,
respectively. (G–L) Truncated octahedra in the order Vc ¼ 2, 7, and 12, and Rg ¼ 1;306.3, 912.7, and 795.0 μm, respectively. (M–R) Icosahedra in the order
Vc ¼ 26, 38, and 50, and Rg ¼ 711.1, 514.6, and 445.4 μm, respectively. (Scale bar: 300 μm.)
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Technological challenge of self-folding
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Figure 2
(a) A trilayer geometry for creating mountain and valley folds (16). The swelling of the central layer is constrained by the stiff, thin
layers on either side, except where there is a trench (16). (b) A prestressed, polystyrene sheet (or a Shrinky DinksTM) with heat- or
light-absorbing ink that locally shrinks where heated (13). (c) The surface tension of a shrinking droplet folds a thin sheet (56).

One way of achieving inhomogeneous distributions of stress begins with a thin sheet of pre-
stressed polymer glass. When made from polystyrene, this is commercially known as a Shrinky
DinksTM. When heated locally, the release of the prestress causes the material to shrink locally
and, when properly designed, fold (13) (Figure 2b). An easy way to achieve this local release
of prestress is to decorate the sheet with heat- or light-absorbing ink. This is a one-way pro-
cess: The material becomes rigid in its folded state. Along similar lines, one can decorate a sheet
with a shrinking material and rely on tension to fold a structure along a predetermined pathway
(Figure 2c) (9, 52, 53, 56).

A second approach is by designing multilayer sheets of different materials (Figure 2a). The basic
principle is already found in old thermostatics: the bimetallic strip. Two metal films exhibiting
different degrees of thermal expansion are bonded together. As the temperature changes, one
surface expands to a greater extent than the other and the strip bends. The modified Stoney
equation predicts the resulting degree of bending (57). Calling η ≡ tthin/tthick " 1 the ratio of
thickness of the stiff outer poly(para-methyl styrene) (PpMS) layer and tthick the thickness of
the soft, swelling poly(N-isopropylacrylamide) (PNIPAM) layer, the radius of curvature of the
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Theoretical challenges of self-folding

E. D. Demaine, J. O’Rourke. Geometric folding algorithms. Cambridge University Press (2007)

polyhedron
net

edge

unfolding

• single, simply connected piece;


• the unfolding is a union of polyhedron faces;


• the unfolding does not self-overlap.

Does every convex 
polyhedron have a net?
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for self-folding?
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What are the kinetic 
pathways of folding?

assembly paradigm would apply to diverse materials. Polyhedral
self-assembly occurs after patterned nets are released from the
silicon substrate on which they are fabricated and heated above
the melting point of the hinge material, which in the present case
requires that the templates are heated in a high boiling point sol-
vent (N-methylpyrrolidone) above the melting point of solder
(183 °C). Assembly is driven by the minimization of surface ten-
sion of the liquid hinges both at the folding hinges which rotate
the panels and at the locking hinges which self-align (26) and fuse
the self-folding panels into place (Fig. 1 and Movie S1).

The use of liquid locking hinges at the edges of the panels is
critical to enable self-assembly of higher order polyhedra with
large numbers of panels, because they introduce favorable sec-
ondary interactions at the edges of the panels. As compared
to solid mechanical latches utilized in earlier self-folding studies
of optoelectronic structures on substrates (27), the introduction
(28) of liquefiable locking hinges has lead to the facile assembly
of polyhedra with high yields (9). The reason is that liquid locking
hinges are deformable, and hence allow for small relative motions
of the panels, thereby increasing fabrication defect tolerance. The
small panel fluctuations are driven primarily by convective agita-
tion of the solvent during heating. Our experimental methodol-
ogy is also amenable to the use of alternate agitation schemes
such as stirring or bubbling of an inert gas during heating. Be-
cause molten solder has a relatively high surface energy, large
motions or complete separation of panels during assembly is rare.
The angles between panels can be controlled by the volume of
solder deposited, but panels are not programmed to fold in a par-
ticular sequence, nor are they actively controlled externally.

When building polyhedra from nets, a prescription of folding
rules is essential. Simple examples show that the same net may
sometimes be folded into different polyhedra. Thus it is surpris-
ing that, in many of our experiments, nets self-fold with high yield
into a specified 3D polyhedron.

Compactness as a Design Criterion. The nets were rarely varied in
the first experiments on self-folding polyhedra. For example, a
cruciform was almost always chosen to self-fold a cube. However,
a recent study of the self-folding of all 11 nets for the cube and
octahedron revealed that different nets fold through different
pathways and have different yield (29). In particular, it was found
that compact nets had higher yield. Both metric and topological
measures of compactness were used. A metric measure of com-
pactness is the radius of gyration, Rg, defined in Eq. 1 below. A
topological measure of compactness, denoted Vc, is defined as
follows. A vertex shared by two faces in the net that do not share
an edge is called a vertex connection, and we say that the faces are
topological neighbors. Vc is defined to be the total number of
distinct vertex connections in a net. For example, the reader
may count that nets in Fig. 2 A–C have Vc ¼ 2, 6, and 10, respec-
tively. These notions of compactness are correlated but distinct.

In this work, we test compactness as a design criterion for high-
er polyhedra, specifically the dodecahedron, icosahedron, and
truncated octahedron. The number of nets for these polyhedra
is too large for a complete experimental study. Instead, we com-
putationally search the set of all nets, choose representative nets
according to compactness, and test the selected nets for self-fold-
ing in experiments.

Summary of Results
We tabulated all 43,380 nets for the dodecahedron and icosahe-
dron, and 123,452 nets (of 2.3 million estimated nets) for the
truncated octahedron, using a Monte Carlo scheme. We then
chose three nets for each polyhedron: the most compact, the least
compact, and the median for each of the two compactness criter-
ion. Several nets may have the same Vc, so when choosing nets
according to Vc we made the following choice: Among all max-
imum Vc nets, we chose the net with smallest Rg; among all mini-
mum Vc nets, we chose the net with highest Rg; and among all
nets with the median Vc, we chose the net with median Rg. Fifty
samples of each of these nets were self-folded experimentally and
the resulting 3D structures were graded in three categories—A,

Fig. 1. Schematic diagram of net geometry in experiments. Folding hinges
melt and cause panels to rotate. Locking hinges meet and fuse when panels
linked at the vertex connection have rotated through approximately the
dihedral angle about a folding hinge.

Fig. 2. Self-folding experiments on nets with varying Vc and Rg. Optical and SEM images showing photolithographically fabricated panels connected by solder
hinges and the corresponding self-folded 3D structures respectively. (A–F) Dodecahedra in the order Vc ¼ 2, 6, and 10, and Rg ¼ 1;102.2, 800.9, and 693.7 μm,
respectively. (G–L) Truncated octahedra in the order Vc ¼ 2, 7, and 12, and Rg ¼ 1;306.3, 912.7, and 795.0 μm, respectively. (M–R) Icosahedra in the order
Vc ¼ 26, 38, and 50, and Rg ¼ 711.1, 514.6, and 445.4 μm, respectively. (Scale bar: 300 μm.)
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Experimental realization

S. Pandey, M. Ewing, A. Kunas, N. Nguyen, D. H. Gracias, G. Menon. PNAS 108, 19885 (2011)assembly paradigm would apply to diverse materials. Polyhedral
self-assembly occurs after patterned nets are released from the
silicon substrate on which they are fabricated and heated above
the melting point of the hinge material, which in the present case
requires that the templates are heated in a high boiling point sol-
vent (N-methylpyrrolidone) above the melting point of solder
(183 °C). Assembly is driven by the minimization of surface ten-
sion of the liquid hinges both at the folding hinges which rotate
the panels and at the locking hinges which self-align (26) and fuse
the self-folding panels into place (Fig. 1 and Movie S1).

The use of liquid locking hinges at the edges of the panels is
critical to enable self-assembly of higher order polyhedra with
large numbers of panels, because they introduce favorable sec-
ondary interactions at the edges of the panels. As compared
to solid mechanical latches utilized in earlier self-folding studies
of optoelectronic structures on substrates (27), the introduction
(28) of liquefiable locking hinges has lead to the facile assembly
of polyhedra with high yields (9). The reason is that liquid locking
hinges are deformable, and hence allow for small relative motions
of the panels, thereby increasing fabrication defect tolerance. The
small panel fluctuations are driven primarily by convective agita-
tion of the solvent during heating. Our experimental methodol-
ogy is also amenable to the use of alternate agitation schemes
such as stirring or bubbling of an inert gas during heating. Be-
cause molten solder has a relatively high surface energy, large
motions or complete separation of panels during assembly is rare.
The angles between panels can be controlled by the volume of
solder deposited, but panels are not programmed to fold in a par-
ticular sequence, nor are they actively controlled externally.

When building polyhedra from nets, a prescription of folding
rules is essential. Simple examples show that the same net may
sometimes be folded into different polyhedra. Thus it is surpris-
ing that, in many of our experiments, nets self-fold with high yield
into a specified 3D polyhedron.

Compactness as a Design Criterion. The nets were rarely varied in
the first experiments on self-folding polyhedra. For example, a
cruciform was almost always chosen to self-fold a cube. However,
a recent study of the self-folding of all 11 nets for the cube and
octahedron revealed that different nets fold through different
pathways and have different yield (29). In particular, it was found
that compact nets had higher yield. Both metric and topological
measures of compactness were used. A metric measure of com-
pactness is the radius of gyration, Rg, defined in Eq. 1 below. A
topological measure of compactness, denoted Vc, is defined as
follows. A vertex shared by two faces in the net that do not share
an edge is called a vertex connection, and we say that the faces are
topological neighbors. Vc is defined to be the total number of
distinct vertex connections in a net. For example, the reader
may count that nets in Fig. 2 A–C have Vc ¼ 2, 6, and 10, respec-
tively. These notions of compactness are correlated but distinct.

In this work, we test compactness as a design criterion for high-
er polyhedra, specifically the dodecahedron, icosahedron, and
truncated octahedron. The number of nets for these polyhedra
is too large for a complete experimental study. Instead, we com-
putationally search the set of all nets, choose representative nets
according to compactness, and test the selected nets for self-fold-
ing in experiments.

Summary of Results
We tabulated all 43,380 nets for the dodecahedron and icosahe-
dron, and 123,452 nets (of 2.3 million estimated nets) for the
truncated octahedron, using a Monte Carlo scheme. We then
chose three nets for each polyhedron: the most compact, the least
compact, and the median for each of the two compactness criter-
ion. Several nets may have the same Vc, so when choosing nets
according to Vc we made the following choice: Among all max-
imum Vc nets, we chose the net with smallest Rg; among all mini-
mum Vc nets, we chose the net with highest Rg; and among all
nets with the median Vc, we chose the net with median Rg. Fifty
samples of each of these nets were self-folded experimentally and
the resulting 3D structures were graded in three categories—A,

Fig. 1. Schematic diagram of net geometry in experiments. Folding hinges
melt and cause panels to rotate. Locking hinges meet and fuse when panels
linked at the vertex connection have rotated through approximately the
dihedral angle about a folding hinge.

Fig. 2. Self-folding experiments on nets with varying Vc and Rg. Optical and SEM images showing photolithographically fabricated panels connected by solder
hinges and the corresponding self-folded 3D structures respectively. (A–F) Dodecahedra in the order Vc ¼ 2, 6, and 10, and Rg ¼ 1;102.2, 800.9, and 693.7 μm,
respectively. (G–L) Truncated octahedra in the order Vc ¼ 2, 7, and 12, and Rg ¼ 1;306.3, 912.7, and 795.0 μm, respectively. (M–R) Icosahedra in the order
Vc ¼ 26, 38, and 50, and Rg ¼ 711.1, 514.6, and 445.4 μm, respectively. (Scale bar: 300 μm.)
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assembly paradigm would apply to diverse materials. Polyhedral
self-assembly occurs after patterned nets are released from the
silicon substrate on which they are fabricated and heated above
the melting point of the hinge material, which in the present case
requires that the templates are heated in a high boiling point sol-
vent (N-methylpyrrolidone) above the melting point of solder
(183 °C). Assembly is driven by the minimization of surface ten-
sion of the liquid hinges both at the folding hinges which rotate
the panels and at the locking hinges which self-align (26) and fuse
the self-folding panels into place (Fig. 1 and Movie S1).

The use of liquid locking hinges at the edges of the panels is
critical to enable self-assembly of higher order polyhedra with
large numbers of panels, because they introduce favorable sec-
ondary interactions at the edges of the panels. As compared
to solid mechanical latches utilized in earlier self-folding studies
of optoelectronic structures on substrates (27), the introduction
(28) of liquefiable locking hinges has lead to the facile assembly
of polyhedra with high yields (9). The reason is that liquid locking
hinges are deformable, and hence allow for small relative motions
of the panels, thereby increasing fabrication defect tolerance. The
small panel fluctuations are driven primarily by convective agita-
tion of the solvent during heating. Our experimental methodol-
ogy is also amenable to the use of alternate agitation schemes
such as stirring or bubbling of an inert gas during heating. Be-
cause molten solder has a relatively high surface energy, large
motions or complete separation of panels during assembly is rare.
The angles between panels can be controlled by the volume of
solder deposited, but panels are not programmed to fold in a par-
ticular sequence, nor are they actively controlled externally.

When building polyhedra from nets, a prescription of folding
rules is essential. Simple examples show that the same net may
sometimes be folded into different polyhedra. Thus it is surpris-
ing that, in many of our experiments, nets self-fold with high yield
into a specified 3D polyhedron.

Compactness as a Design Criterion. The nets were rarely varied in
the first experiments on self-folding polyhedra. For example, a
cruciform was almost always chosen to self-fold a cube. However,
a recent study of the self-folding of all 11 nets for the cube and
octahedron revealed that different nets fold through different
pathways and have different yield (29). In particular, it was found
that compact nets had higher yield. Both metric and topological
measures of compactness were used. A metric measure of com-
pactness is the radius of gyration, Rg, defined in Eq. 1 below. A
topological measure of compactness, denoted Vc, is defined as
follows. A vertex shared by two faces in the net that do not share
an edge is called a vertex connection, and we say that the faces are
topological neighbors. Vc is defined to be the total number of
distinct vertex connections in a net. For example, the reader
may count that nets in Fig. 2 A–C have Vc ¼ 2, 6, and 10, respec-
tively. These notions of compactness are correlated but distinct.

In this work, we test compactness as a design criterion for high-
er polyhedra, specifically the dodecahedron, icosahedron, and
truncated octahedron. The number of nets for these polyhedra
is too large for a complete experimental study. Instead, we com-
putationally search the set of all nets, choose representative nets
according to compactness, and test the selected nets for self-fold-
ing in experiments.

Summary of Results
We tabulated all 43,380 nets for the dodecahedron and icosahe-
dron, and 123,452 nets (of 2.3 million estimated nets) for the
truncated octahedron, using a Monte Carlo scheme. We then
chose three nets for each polyhedron: the most compact, the least
compact, and the median for each of the two compactness criter-
ion. Several nets may have the same Vc, so when choosing nets
according to Vc we made the following choice: Among all max-
imum Vc nets, we chose the net with smallest Rg; among all mini-
mum Vc nets, we chose the net with highest Rg; and among all
nets with the median Vc, we chose the net with median Rg. Fifty
samples of each of these nets were self-folded experimentally and
the resulting 3D structures were graded in three categories—A,

Fig. 1. Schematic diagram of net geometry in experiments. Folding hinges
melt and cause panels to rotate. Locking hinges meet and fuse when panels
linked at the vertex connection have rotated through approximately the
dihedral angle about a folding hinge.

Fig. 2. Self-folding experiments on nets with varying Vc and Rg. Optical and SEM images showing photolithographically fabricated panels connected by solder
hinges and the corresponding self-folded 3D structures respectively. (A–F) Dodecahedra in the order Vc ¼ 2, 6, and 10, and Rg ¼ 1;102.2, 800.9, and 693.7 μm,
respectively. (G–L) Truncated octahedra in the order Vc ¼ 2, 7, and 12, and Rg ¼ 1;306.3, 912.7, and 795.0 μm, respectively. (M–R) Icosahedra in the order
Vc ¼ 26, 38, and 50, and Rg ¼ 711.1, 514.6, and 445.4 μm, respectively. (Scale bar: 300 μm.)
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Topological vs geometrical compactness

S. Pandey, M. Ewing, A. Kunas, N. Nguyen, D. H. Gracias, G. Menon. PNAS 108, 19885 (2011)

assembly paradigm would apply to diverse materials. Polyhedral
self-assembly occurs after patterned nets are released from the
silicon substrate on which they are fabricated and heated above
the melting point of the hinge material, which in the present case
requires that the templates are heated in a high boiling point sol-
vent (N-methylpyrrolidone) above the melting point of solder
(183 °C). Assembly is driven by the minimization of surface ten-
sion of the liquid hinges both at the folding hinges which rotate
the panels and at the locking hinges which self-align (26) and fuse
the self-folding panels into place (Fig. 1 and Movie S1).

The use of liquid locking hinges at the edges of the panels is
critical to enable self-assembly of higher order polyhedra with
large numbers of panels, because they introduce favorable sec-
ondary interactions at the edges of the panels. As compared
to solid mechanical latches utilized in earlier self-folding studies
of optoelectronic structures on substrates (27), the introduction
(28) of liquefiable locking hinges has lead to the facile assembly
of polyhedra with high yields (9). The reason is that liquid locking
hinges are deformable, and hence allow for small relative motions
of the panels, thereby increasing fabrication defect tolerance. The
small panel fluctuations are driven primarily by convective agita-
tion of the solvent during heating. Our experimental methodol-
ogy is also amenable to the use of alternate agitation schemes
such as stirring or bubbling of an inert gas during heating. Be-
cause molten solder has a relatively high surface energy, large
motions or complete separation of panels during assembly is rare.
The angles between panels can be controlled by the volume of
solder deposited, but panels are not programmed to fold in a par-
ticular sequence, nor are they actively controlled externally.

When building polyhedra from nets, a prescription of folding
rules is essential. Simple examples show that the same net may
sometimes be folded into different polyhedra. Thus it is surpris-
ing that, in many of our experiments, nets self-fold with high yield
into a specified 3D polyhedron.

Compactness as a Design Criterion. The nets were rarely varied in
the first experiments on self-folding polyhedra. For example, a
cruciform was almost always chosen to self-fold a cube. However,
a recent study of the self-folding of all 11 nets for the cube and
octahedron revealed that different nets fold through different
pathways and have different yield (29). In particular, it was found
that compact nets had higher yield. Both metric and topological
measures of compactness were used. A metric measure of com-
pactness is the radius of gyration, Rg, defined in Eq. 1 below. A
topological measure of compactness, denoted Vc, is defined as
follows. A vertex shared by two faces in the net that do not share
an edge is called a vertex connection, and we say that the faces are
topological neighbors. Vc is defined to be the total number of
distinct vertex connections in a net. For example, the reader
may count that nets in Fig. 2 A–C have Vc ¼ 2, 6, and 10, respec-
tively. These notions of compactness are correlated but distinct.

In this work, we test compactness as a design criterion for high-
er polyhedra, specifically the dodecahedron, icosahedron, and
truncated octahedron. The number of nets for these polyhedra
is too large for a complete experimental study. Instead, we com-
putationally search the set of all nets, choose representative nets
according to compactness, and test the selected nets for self-fold-
ing in experiments.

Summary of Results
We tabulated all 43,380 nets for the dodecahedron and icosahe-
dron, and 123,452 nets (of 2.3 million estimated nets) for the
truncated octahedron, using a Monte Carlo scheme. We then
chose three nets for each polyhedron: the most compact, the least
compact, and the median for each of the two compactness criter-
ion. Several nets may have the same Vc, so when choosing nets
according to Vc we made the following choice: Among all max-
imum Vc nets, we chose the net with smallest Rg; among all mini-
mum Vc nets, we chose the net with highest Rg; and among all
nets with the median Vc, we chose the net with median Rg. Fifty
samples of each of these nets were self-folded experimentally and
the resulting 3D structures were graded in three categories—A,

Fig. 1. Schematic diagram of net geometry in experiments. Folding hinges
melt and cause panels to rotate. Locking hinges meet and fuse when panels
linked at the vertex connection have rotated through approximately the
dihedral angle about a folding hinge.

Fig. 2. Self-folding experiments on nets with varying Vc and Rg. Optical and SEM images showing photolithographically fabricated panels connected by solder
hinges and the corresponding self-folded 3D structures respectively. (A–F) Dodecahedra in the order Vc ¼ 2, 6, and 10, and Rg ¼ 1;102.2, 800.9, and 693.7 μm,
respectively. (G–L) Truncated octahedra in the order Vc ¼ 2, 7, and 12, and Rg ¼ 1;306.3, 912.7, and 795.0 μm, respectively. (M–R) Icosahedra in the order
Vc ¼ 26, 38, and 50, and Rg ¼ 711.1, 514.6, and 445.4 μm, respectively. (Scale bar: 300 μm.)
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assembly paradigm would apply to diverse materials. Polyhedral
self-assembly occurs after patterned nets are released from the
silicon substrate on which they are fabricated and heated above
the melting point of the hinge material, which in the present case
requires that the templates are heated in a high boiling point sol-
vent (N-methylpyrrolidone) above the melting point of solder
(183 °C). Assembly is driven by the minimization of surface ten-
sion of the liquid hinges both at the folding hinges which rotate
the panels and at the locking hinges which self-align (26) and fuse
the self-folding panels into place (Fig. 1 and Movie S1).

The use of liquid locking hinges at the edges of the panels is
critical to enable self-assembly of higher order polyhedra with
large numbers of panels, because they introduce favorable sec-
ondary interactions at the edges of the panels. As compared
to solid mechanical latches utilized in earlier self-folding studies
of optoelectronic structures on substrates (27), the introduction
(28) of liquefiable locking hinges has lead to the facile assembly
of polyhedra with high yields (9). The reason is that liquid locking
hinges are deformable, and hence allow for small relative motions
of the panels, thereby increasing fabrication defect tolerance. The
small panel fluctuations are driven primarily by convective agita-
tion of the solvent during heating. Our experimental methodol-
ogy is also amenable to the use of alternate agitation schemes
such as stirring or bubbling of an inert gas during heating. Be-
cause molten solder has a relatively high surface energy, large
motions or complete separation of panels during assembly is rare.
The angles between panels can be controlled by the volume of
solder deposited, but panels are not programmed to fold in a par-
ticular sequence, nor are they actively controlled externally.

When building polyhedra from nets, a prescription of folding
rules is essential. Simple examples show that the same net may
sometimes be folded into different polyhedra. Thus it is surpris-
ing that, in many of our experiments, nets self-fold with high yield
into a specified 3D polyhedron.

Compactness as a Design Criterion. The nets were rarely varied in
the first experiments on self-folding polyhedra. For example, a
cruciform was almost always chosen to self-fold a cube. However,
a recent study of the self-folding of all 11 nets for the cube and
octahedron revealed that different nets fold through different
pathways and have different yield (29). In particular, it was found
that compact nets had higher yield. Both metric and topological
measures of compactness were used. A metric measure of com-
pactness is the radius of gyration, Rg, defined in Eq. 1 below. A
topological measure of compactness, denoted Vc, is defined as
follows. A vertex shared by two faces in the net that do not share
an edge is called a vertex connection, and we say that the faces are
topological neighbors. Vc is defined to be the total number of
distinct vertex connections in a net. For example, the reader
may count that nets in Fig. 2 A–C have Vc ¼ 2, 6, and 10, respec-
tively. These notions of compactness are correlated but distinct.

In this work, we test compactness as a design criterion for high-
er polyhedra, specifically the dodecahedron, icosahedron, and
truncated octahedron. The number of nets for these polyhedra
is too large for a complete experimental study. Instead, we com-
putationally search the set of all nets, choose representative nets
according to compactness, and test the selected nets for self-fold-
ing in experiments.

Summary of Results
We tabulated all 43,380 nets for the dodecahedron and icosahe-
dron, and 123,452 nets (of 2.3 million estimated nets) for the
truncated octahedron, using a Monte Carlo scheme. We then
chose three nets for each polyhedron: the most compact, the least
compact, and the median for each of the two compactness criter-
ion. Several nets may have the same Vc, so when choosing nets
according to Vc we made the following choice: Among all max-
imum Vc nets, we chose the net with smallest Rg; among all mini-
mum Vc nets, we chose the net with highest Rg; and among all
nets with the median Vc, we chose the net with median Rg. Fifty
samples of each of these nets were self-folded experimentally and
the resulting 3D structures were graded in three categories—A,

Fig. 1. Schematic diagram of net geometry in experiments. Folding hinges
melt and cause panels to rotate. Locking hinges meet and fuse when panels
linked at the vertex connection have rotated through approximately the
dihedral angle about a folding hinge.

Fig. 2. Self-folding experiments on nets with varying Vc and Rg. Optical and SEM images showing photolithographically fabricated panels connected by solder
hinges and the corresponding self-folded 3D structures respectively. (A–F) Dodecahedra in the order Vc ¼ 2, 6, and 10, and Rg ¼ 1;102.2, 800.9, and 693.7 μm,
respectively. (G–L) Truncated octahedra in the order Vc ¼ 2, 7, and 12, and Rg ¼ 1;306.3, 912.7, and 795.0 μm, respectively. (M–R) Icosahedra in the order
Vc ¼ 26, 38, and 50, and Rg ¼ 711.1, 514.6, and 445.4 μm, respectively. (Scale bar: 300 μm.)
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assembly paradigm would apply to diverse materials. Polyhedral
self-assembly occurs after patterned nets are released from the
silicon substrate on which they are fabricated and heated above
the melting point of the hinge material, which in the present case
requires that the templates are heated in a high boiling point sol-
vent (N-methylpyrrolidone) above the melting point of solder
(183 °C). Assembly is driven by the minimization of surface ten-
sion of the liquid hinges both at the folding hinges which rotate
the panels and at the locking hinges which self-align (26) and fuse
the self-folding panels into place (Fig. 1 and Movie S1).

The use of liquid locking hinges at the edges of the panels is
critical to enable self-assembly of higher order polyhedra with
large numbers of panels, because they introduce favorable sec-
ondary interactions at the edges of the panels. As compared
to solid mechanical latches utilized in earlier self-folding studies
of optoelectronic structures on substrates (27), the introduction
(28) of liquefiable locking hinges has lead to the facile assembly
of polyhedra with high yields (9). The reason is that liquid locking
hinges are deformable, and hence allow for small relative motions
of the panels, thereby increasing fabrication defect tolerance. The
small panel fluctuations are driven primarily by convective agita-
tion of the solvent during heating. Our experimental methodol-
ogy is also amenable to the use of alternate agitation schemes
such as stirring or bubbling of an inert gas during heating. Be-
cause molten solder has a relatively high surface energy, large
motions or complete separation of panels during assembly is rare.
The angles between panels can be controlled by the volume of
solder deposited, but panels are not programmed to fold in a par-
ticular sequence, nor are they actively controlled externally.

When building polyhedra from nets, a prescription of folding
rules is essential. Simple examples show that the same net may
sometimes be folded into different polyhedra. Thus it is surpris-
ing that, in many of our experiments, nets self-fold with high yield
into a specified 3D polyhedron.

Compactness as a Design Criterion. The nets were rarely varied in
the first experiments on self-folding polyhedra. For example, a
cruciform was almost always chosen to self-fold a cube. However,
a recent study of the self-folding of all 11 nets for the cube and
octahedron revealed that different nets fold through different
pathways and have different yield (29). In particular, it was found
that compact nets had higher yield. Both metric and topological
measures of compactness were used. A metric measure of com-
pactness is the radius of gyration, Rg, defined in Eq. 1 below. A
topological measure of compactness, denoted Vc, is defined as
follows. A vertex shared by two faces in the net that do not share
an edge is called a vertex connection, and we say that the faces are
topological neighbors. Vc is defined to be the total number of
distinct vertex connections in a net. For example, the reader
may count that nets in Fig. 2 A–C have Vc ¼ 2, 6, and 10, respec-
tively. These notions of compactness are correlated but distinct.

In this work, we test compactness as a design criterion for high-
er polyhedra, specifically the dodecahedron, icosahedron, and
truncated octahedron. The number of nets for these polyhedra
is too large for a complete experimental study. Instead, we com-
putationally search the set of all nets, choose representative nets
according to compactness, and test the selected nets for self-fold-
ing in experiments.

Summary of Results
We tabulated all 43,380 nets for the dodecahedron and icosahe-
dron, and 123,452 nets (of 2.3 million estimated nets) for the
truncated octahedron, using a Monte Carlo scheme. We then
chose three nets for each polyhedron: the most compact, the least
compact, and the median for each of the two compactness criter-
ion. Several nets may have the same Vc, so when choosing nets
according to Vc we made the following choice: Among all max-
imum Vc nets, we chose the net with smallest Rg; among all mini-
mum Vc nets, we chose the net with highest Rg; and among all
nets with the median Vc, we chose the net with median Rg. Fifty
samples of each of these nets were self-folded experimentally and
the resulting 3D structures were graded in three categories—A,

Fig. 1. Schematic diagram of net geometry in experiments. Folding hinges
melt and cause panels to rotate. Locking hinges meet and fuse when panels
linked at the vertex connection have rotated through approximately the
dihedral angle about a folding hinge.

Fig. 2. Self-folding experiments on nets with varying Vc and Rg. Optical and SEM images showing photolithographically fabricated panels connected by solder
hinges and the corresponding self-folded 3D structures respectively. (A–F) Dodecahedra in the order Vc ¼ 2, 6, and 10, and Rg ¼ 1;102.2, 800.9, and 693.7 μm,
respectively. (G–L) Truncated octahedra in the order Vc ¼ 2, 7, and 12, and Rg ¼ 1;306.3, 912.7, and 795.0 μm, respectively. (M–R) Icosahedra in the order
Vc ¼ 26, 38, and 50, and Rg ¼ 711.1, 514.6, and 445.4 μm, respectively. (Scale bar: 300 μm.)
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B, and C—and the yield tabulated. “A” polyhedra were defect-
free, “B” had minor defects, and “C” were defective. The experi-
ments, grading scheme, and mathematics involved are described
in greater detail in Materials and Methods.

Optical and SEM images showing the photolithographically
fabricated 2D panels connected by solder hinges and representa-
tive self-folded 3D structures for all three polyhedra for both
compactness criteria are shown in Fig. 2. Histograms of the yield
are shown in Fig. 3. The yield is tabulated in Tables S1 and S2. We
observe that both measures of compactness determine yield for
these higher polyhedra just as for the cube and octahedron. Of
the two measures, Vc is a better predictor. For the dodecahedron,
the percentage of A-grade self-folded polyhedra from nets with
the maximum Vc is more than five times that from nets with the
lowest Rg, Rg ¼ 693.7 μm. In addition, almost 80% of the max-
imum Vc samples are of grade A and B as compared with about
20% for the minimum Rg samples. For the truncated octahedron,
the percentage of grade-A self-folded polyhedra from nets with
the maximum Vc net is two times that of A-grade samples for
minimum Rg , Rg ¼ 795 μm. Moreover, almost 60% of the max-
imum Vc samples are of grade A and B as compared with about
30% for the minimum Rg samples. In contrast with these polyhe-
dra, we were unable to fold any of the icosahedral nets. However,
it is still the case that the more compact nets are less malformed
than the others. Typical optical and SEM images for the icosahe-
dron are shown in Fig. 2. SEM images of pathways are shown in
Figs. S1 and S2.

There are 21 dodecahedron nets that have maximal Vc and
we found four truncated octahedron nets that have maximal
Vc (Fig. S3). As we have remarked above, the maximum Vc nets
in Figs. 2 and 3 were chosen to have the lowest Rg among all nets
with the same Vc. A finer investigation of maximum Vc nets was
carried out in a second round of experiments. We repeated the
self-folding experiments with 50 samples and the same grading
scheme for four new dodecahedron nets (nets denoted 2, 5,
17, and 21 from Fig. S3A) and all four high Vc truncated octahe-
dron nets (Fig. S3B). Images for these experiments are presented
in Fig. 4 and histograms for the yield in Fig. 5. The yield is tabu-
lated in Tables S3 and S4. We find again that the compact nets (as
measured by low Rg now) have higher yield. We note that there is
one common net (Fig. 2I and Fig. 4H for truncated octahedra).
The yields of A-grade polyhedra from this net in two 50-sample
experiments done months apart was 24% and 30%. This variation

in the yield corresponds to a standard deviation of 4.2% in the
plots of Figs. 3 and 5 and is consistent with the variation in our
experiments.

Discussion
Algorithmic Design for Self-Assembly. We have found that the
optimality criterion best suited to our experiments is to first max-
imize Vc and then minimize Rg. The superior performance of
nets satisfying this criterion illustrates the importance of an algo-
rithmic search. Of 123,452 truncated octahedron nets found, only
four had Vc ¼ 12. In contrast, the expected Vc for a random net
chosen uniformly is approximately seven. Similarly, of the 43,380
dodecahedron nets, only 21 had Vc ¼ 10 and the expected Vc is
approximately six. For these polyhedra, Fig. 3 shows that the dif-
ference in yield between an optimal net and a uniformly chosen
random net is dramatic.

Vertex Connections and Error-Correction. The effectiveness of com-
pactness as a design criterion stems from its influence on the
self-folding pathway. In experiments, we observe that topological
compactness has two main consequences: (i) error correction at
edges, and (ii) error correction in the pathway through partially
rigid intermediates.
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Fig. 3. Yield measured in self-folding experiments on nets with varying Vc

and Rg. (A–F) Dodecahedral nets in the order Vc ¼ 2, 6, and 10, and
Rg ¼ 1;102.2, 800.9, and 693.7 μm, respectively. (G–L) Truncated octahedral
nets in the order Vc ¼ 2, 7, and 12, and Rg ¼ 1;306.3, 912.7, and 795.0 μm,
respectively.

Fig. 4. Self-folding experiments on high Vc nets with varying Rg. Optical and
SEM images. (A–D) Dodecahedral nets with Vc ¼ 10 and Rg ¼ 810.2, 797.4,
755.4, and 747.7 μm, respectively. (E–H) Truncated octahedral nets with
Vc ¼ 12 and Rg ¼ 911.6, 870.2, 867.4, and 852.8 μm, respectively. (Scale
bar: 300 μm.)
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Fig. 5. Yieldmeasured in self-folding experiments on highVc nets with vary-
ing Rg. (A–D) Dodecahedral nets with Vc ¼ 10 and Rg ¼ 810.2, 797.4, 755.4,
and 747.7 μm, respectively. (E–H) Truncated octahedral nets with Vc ¼ 12 and
Rg ¼ 911.6, 870.2, 867.4, and 852.8 μm, respectively.
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B, and C—and the yield tabulated. “A” polyhedra were defect-
free, “B” had minor defects, and “C” were defective. The experi-
ments, grading scheme, and mathematics involved are described
in greater detail in Materials and Methods.

Optical and SEM images showing the photolithographically
fabricated 2D panels connected by solder hinges and representa-
tive self-folded 3D structures for all three polyhedra for both
compactness criteria are shown in Fig. 2. Histograms of the yield
are shown in Fig. 3. The yield is tabulated in Tables S1 and S2. We
observe that both measures of compactness determine yield for
these higher polyhedra just as for the cube and octahedron. Of
the two measures, Vc is a better predictor. For the dodecahedron,
the percentage of A-grade self-folded polyhedra from nets with
the maximum Vc is more than five times that from nets with the
lowest Rg, Rg ¼ 693.7 μm. In addition, almost 80% of the max-
imum Vc samples are of grade A and B as compared with about
20% for the minimum Rg samples. For the truncated octahedron,
the percentage of grade-A self-folded polyhedra from nets with
the maximum Vc net is two times that of A-grade samples for
minimum Rg , Rg ¼ 795 μm. Moreover, almost 60% of the max-
imum Vc samples are of grade A and B as compared with about
30% for the minimum Rg samples. In contrast with these polyhe-
dra, we were unable to fold any of the icosahedral nets. However,
it is still the case that the more compact nets are less malformed
than the others. Typical optical and SEM images for the icosahe-
dron are shown in Fig. 2. SEM images of pathways are shown in
Figs. S1 and S2.

There are 21 dodecahedron nets that have maximal Vc and
we found four truncated octahedron nets that have maximal
Vc (Fig. S3). As we have remarked above, the maximum Vc nets
in Figs. 2 and 3 were chosen to have the lowest Rg among all nets
with the same Vc. A finer investigation of maximum Vc nets was
carried out in a second round of experiments. We repeated the
self-folding experiments with 50 samples and the same grading
scheme for four new dodecahedron nets (nets denoted 2, 5,
17, and 21 from Fig. S3A) and all four high Vc truncated octahe-
dron nets (Fig. S3B). Images for these experiments are presented
in Fig. 4 and histograms for the yield in Fig. 5. The yield is tabu-
lated in Tables S3 and S4. We find again that the compact nets (as
measured by low Rg now) have higher yield. We note that there is
one common net (Fig. 2I and Fig. 4H for truncated octahedra).
The yields of A-grade polyhedra from this net in two 50-sample
experiments done months apart was 24% and 30%. This variation

in the yield corresponds to a standard deviation of 4.2% in the
plots of Figs. 3 and 5 and is consistent with the variation in our
experiments.

Discussion
Algorithmic Design for Self-Assembly. We have found that the
optimality criterion best suited to our experiments is to first max-
imize Vc and then minimize Rg. The superior performance of
nets satisfying this criterion illustrates the importance of an algo-
rithmic search. Of 123,452 truncated octahedron nets found, only
four had Vc ¼ 12. In contrast, the expected Vc for a random net
chosen uniformly is approximately seven. Similarly, of the 43,380
dodecahedron nets, only 21 had Vc ¼ 10 and the expected Vc is
approximately six. For these polyhedra, Fig. 3 shows that the dif-
ference in yield between an optimal net and a uniformly chosen
random net is dramatic.

Vertex Connections and Error-Correction. The effectiveness of com-
pactness as a design criterion stems from its influence on the
self-folding pathway. In experiments, we observe that topological
compactness has two main consequences: (i) error correction at
edges, and (ii) error correction in the pathway through partially
rigid intermediates.
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Fig. 3. Yield measured in self-folding experiments on nets with varying Vc

and Rg. (A–F) Dodecahedral nets in the order Vc ¼ 2, 6, and 10, and
Rg ¼ 1;102.2, 800.9, and 693.7 μm, respectively. (G–L) Truncated octahedral
nets in the order Vc ¼ 2, 7, and 12, and Rg ¼ 1;306.3, 912.7, and 795.0 μm,
respectively.

Fig. 4. Self-folding experiments on high Vc nets with varying Rg. Optical and
SEM images. (A–D) Dodecahedral nets with Vc ¼ 10 and Rg ¼ 810.2, 797.4,
755.4, and 747.7 μm, respectively. (E–H) Truncated octahedral nets with
Vc ¼ 12 and Rg ¼ 911.6, 870.2, 867.4, and 852.8 μm, respectively. (Scale
bar: 300 μm.)
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Rg ¼ 911.6, 870.2, 867.4, and 852.8 μm, respectively.
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vertex connections are leaves

Maximum leaf spanning treeassembly paradigm would apply to diverse materials. Polyhedral
self-assembly occurs after patterned nets are released from the
silicon substrate on which they are fabricated and heated above
the melting point of the hinge material, which in the present case
requires that the templates are heated in a high boiling point sol-
vent (N-methylpyrrolidone) above the melting point of solder
(183 °C). Assembly is driven by the minimization of surface ten-
sion of the liquid hinges both at the folding hinges which rotate
the panels and at the locking hinges which self-align (26) and fuse
the self-folding panels into place (Fig. 1 and Movie S1).

The use of liquid locking hinges at the edges of the panels is
critical to enable self-assembly of higher order polyhedra with
large numbers of panels, because they introduce favorable sec-
ondary interactions at the edges of the panels. As compared
to solid mechanical latches utilized in earlier self-folding studies
of optoelectronic structures on substrates (27), the introduction
(28) of liquefiable locking hinges has lead to the facile assembly
of polyhedra with high yields (9). The reason is that liquid locking
hinges are deformable, and hence allow for small relative motions
of the panels, thereby increasing fabrication defect tolerance. The
small panel fluctuations are driven primarily by convective agita-
tion of the solvent during heating. Our experimental methodol-
ogy is also amenable to the use of alternate agitation schemes
such as stirring or bubbling of an inert gas during heating. Be-
cause molten solder has a relatively high surface energy, large
motions or complete separation of panels during assembly is rare.
The angles between panels can be controlled by the volume of
solder deposited, but panels are not programmed to fold in a par-
ticular sequence, nor are they actively controlled externally.

When building polyhedra from nets, a prescription of folding
rules is essential. Simple examples show that the same net may
sometimes be folded into different polyhedra. Thus it is surpris-
ing that, in many of our experiments, nets self-fold with high yield
into a specified 3D polyhedron.

Compactness as a Design Criterion. The nets were rarely varied in
the first experiments on self-folding polyhedra. For example, a
cruciform was almost always chosen to self-fold a cube. However,
a recent study of the self-folding of all 11 nets for the cube and
octahedron revealed that different nets fold through different
pathways and have different yield (29). In particular, it was found
that compact nets had higher yield. Both metric and topological
measures of compactness were used. A metric measure of com-
pactness is the radius of gyration, Rg, defined in Eq. 1 below. A
topological measure of compactness, denoted Vc, is defined as
follows. A vertex shared by two faces in the net that do not share
an edge is called a vertex connection, and we say that the faces are
topological neighbors. Vc is defined to be the total number of
distinct vertex connections in a net. For example, the reader
may count that nets in Fig. 2 A–C have Vc ¼ 2, 6, and 10, respec-
tively. These notions of compactness are correlated but distinct.

In this work, we test compactness as a design criterion for high-
er polyhedra, specifically the dodecahedron, icosahedron, and
truncated octahedron. The number of nets for these polyhedra
is too large for a complete experimental study. Instead, we com-
putationally search the set of all nets, choose representative nets
according to compactness, and test the selected nets for self-fold-
ing in experiments.

Summary of Results
We tabulated all 43,380 nets for the dodecahedron and icosahe-
dron, and 123,452 nets (of 2.3 million estimated nets) for the
truncated octahedron, using a Monte Carlo scheme. We then
chose three nets for each polyhedron: the most compact, the least
compact, and the median for each of the two compactness criter-
ion. Several nets may have the same Vc, so when choosing nets
according to Vc we made the following choice: Among all max-
imum Vc nets, we chose the net with smallest Rg; among all mini-
mum Vc nets, we chose the net with highest Rg; and among all
nets with the median Vc, we chose the net with median Rg. Fifty
samples of each of these nets were self-folded experimentally and
the resulting 3D structures were graded in three categories—A,

Fig. 1. Schematic diagram of net geometry in experiments. Folding hinges
melt and cause panels to rotate. Locking hinges meet and fuse when panels
linked at the vertex connection have rotated through approximately the
dihedral angle about a folding hinge.

Fig. 2. Self-folding experiments on nets with varying Vc and Rg. Optical and SEM images showing photolithographically fabricated panels connected by solder
hinges and the corresponding self-folded 3D structures respectively. (A–F) Dodecahedra in the order Vc ¼ 2, 6, and 10, and Rg ¼ 1;102.2, 800.9, and 693.7 μm,
respectively. (G–L) Truncated octahedra in the order Vc ¼ 2, 7, and 12, and Rg ¼ 1;306.3, 912.7, and 795.0 μm, respectively. (M–R) Icosahedra in the order
Vc ¼ 26, 38, and 50, and Rg ¼ 711.1, 514.6, and 445.4 μm, respectively. (Scale bar: 300 μm.)
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B, and C—and the yield tabulated. “A” polyhedra were defect-
free, “B” had minor defects, and “C” were defective. The experi-
ments, grading scheme, and mathematics involved are described
in greater detail in Materials and Methods.

Optical and SEM images showing the photolithographically
fabricated 2D panels connected by solder hinges and representa-
tive self-folded 3D structures for all three polyhedra for both
compactness criteria are shown in Fig. 2. Histograms of the yield
are shown in Fig. 3. The yield is tabulated in Tables S1 and S2. We
observe that both measures of compactness determine yield for
these higher polyhedra just as for the cube and octahedron. Of
the two measures, Vc is a better predictor. For the dodecahedron,
the percentage of A-grade self-folded polyhedra from nets with
the maximum Vc is more than five times that from nets with the
lowest Rg, Rg ¼ 693.7 μm. In addition, almost 80% of the max-
imum Vc samples are of grade A and B as compared with about
20% for the minimum Rg samples. For the truncated octahedron,
the percentage of grade-A self-folded polyhedra from nets with
the maximum Vc net is two times that of A-grade samples for
minimum Rg , Rg ¼ 795 μm. Moreover, almost 60% of the max-
imum Vc samples are of grade A and B as compared with about
30% for the minimum Rg samples. In contrast with these polyhe-
dra, we were unable to fold any of the icosahedral nets. However,
it is still the case that the more compact nets are less malformed
than the others. Typical optical and SEM images for the icosahe-
dron are shown in Fig. 2. SEM images of pathways are shown in
Figs. S1 and S2.

There are 21 dodecahedron nets that have maximal Vc and
we found four truncated octahedron nets that have maximal
Vc (Fig. S3). As we have remarked above, the maximum Vc nets
in Figs. 2 and 3 were chosen to have the lowest Rg among all nets
with the same Vc. A finer investigation of maximum Vc nets was
carried out in a second round of experiments. We repeated the
self-folding experiments with 50 samples and the same grading
scheme for four new dodecahedron nets (nets denoted 2, 5,
17, and 21 from Fig. S3A) and all four high Vc truncated octahe-
dron nets (Fig. S3B). Images for these experiments are presented
in Fig. 4 and histograms for the yield in Fig. 5. The yield is tabu-
lated in Tables S3 and S4. We find again that the compact nets (as
measured by low Rg now) have higher yield. We note that there is
one common net (Fig. 2I and Fig. 4H for truncated octahedra).
The yields of A-grade polyhedra from this net in two 50-sample
experiments done months apart was 24% and 30%. This variation

in the yield corresponds to a standard deviation of 4.2% in the
plots of Figs. 3 and 5 and is consistent with the variation in our
experiments.

Discussion
Algorithmic Design for Self-Assembly. We have found that the
optimality criterion best suited to our experiments is to first max-
imize Vc and then minimize Rg. The superior performance of
nets satisfying this criterion illustrates the importance of an algo-
rithmic search. Of 123,452 truncated octahedron nets found, only
four had Vc ¼ 12. In contrast, the expected Vc for a random net
chosen uniformly is approximately seven. Similarly, of the 43,380
dodecahedron nets, only 21 had Vc ¼ 10 and the expected Vc is
approximately six. For these polyhedra, Fig. 3 shows that the dif-
ference in yield between an optimal net and a uniformly chosen
random net is dramatic.

Vertex Connections and Error-Correction. The effectiveness of com-
pactness as a design criterion stems from its influence on the
self-folding pathway. In experiments, we observe that topological
compactness has two main consequences: (i) error correction at
edges, and (ii) error correction in the pathway through partially
rigid intermediates.
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Fig. 3. Yield measured in self-folding experiments on nets with varying Vc

and Rg. (A–F) Dodecahedral nets in the order Vc ¼ 2, 6, and 10, and
Rg ¼ 1;102.2, 800.9, and 693.7 μm, respectively. (G–L) Truncated octahedral
nets in the order Vc ¼ 2, 7, and 12, and Rg ¼ 1;306.3, 912.7, and 795.0 μm,
respectively.

Fig. 4. Self-folding experiments on high Vc nets with varying Rg. Optical and
SEM images. (A–D) Dodecahedral nets with Vc ¼ 10 and Rg ¼ 810.2, 797.4,
755.4, and 747.7 μm, respectively. (E–H) Truncated octahedral nets with
Vc ¼ 12 and Rg ¼ 911.6, 870.2, 867.4, and 852.8 μm, respectively. (Scale
bar: 300 μm.)
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Fig. 5. Yieldmeasured in self-folding experiments on highVc nets with vary-
ing Rg. (A–D) Dodecahedral nets with Vc ¼ 10 and Rg ¼ 810.2, 797.4, 755.4,
and 747.7 μm, respectively. (E–H) Truncated octahedral nets with Vc ¼ 12 and
Rg ¼ 911.6, 870.2, 867.4, and 852.8 μm, respectively.
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B, and C—and the yield tabulated. “A” polyhedra were defect-
free, “B” had minor defects, and “C” were defective. The experi-
ments, grading scheme, and mathematics involved are described
in greater detail in Materials and Methods.

Optical and SEM images showing the photolithographically
fabricated 2D panels connected by solder hinges and representa-
tive self-folded 3D structures for all three polyhedra for both
compactness criteria are shown in Fig. 2. Histograms of the yield
are shown in Fig. 3. The yield is tabulated in Tables S1 and S2. We
observe that both measures of compactness determine yield for
these higher polyhedra just as for the cube and octahedron. Of
the two measures, Vc is a better predictor. For the dodecahedron,
the percentage of A-grade self-folded polyhedra from nets with
the maximum Vc is more than five times that from nets with the
lowest Rg, Rg ¼ 693.7 μm. In addition, almost 80% of the max-
imum Vc samples are of grade A and B as compared with about
20% for the minimum Rg samples. For the truncated octahedron,
the percentage of grade-A self-folded polyhedra from nets with
the maximum Vc net is two times that of A-grade samples for
minimum Rg , Rg ¼ 795 μm. Moreover, almost 60% of the max-
imum Vc samples are of grade A and B as compared with about
30% for the minimum Rg samples. In contrast with these polyhe-
dra, we were unable to fold any of the icosahedral nets. However,
it is still the case that the more compact nets are less malformed
than the others. Typical optical and SEM images for the icosahe-
dron are shown in Fig. 2. SEM images of pathways are shown in
Figs. S1 and S2.

There are 21 dodecahedron nets that have maximal Vc and
we found four truncated octahedron nets that have maximal
Vc (Fig. S3). As we have remarked above, the maximum Vc nets
in Figs. 2 and 3 were chosen to have the lowest Rg among all nets
with the same Vc. A finer investigation of maximum Vc nets was
carried out in a second round of experiments. We repeated the
self-folding experiments with 50 samples and the same grading
scheme for four new dodecahedron nets (nets denoted 2, 5,
17, and 21 from Fig. S3A) and all four high Vc truncated octahe-
dron nets (Fig. S3B). Images for these experiments are presented
in Fig. 4 and histograms for the yield in Fig. 5. The yield is tabu-
lated in Tables S3 and S4. We find again that the compact nets (as
measured by low Rg now) have higher yield. We note that there is
one common net (Fig. 2I and Fig. 4H for truncated octahedra).
The yields of A-grade polyhedra from this net in two 50-sample
experiments done months apart was 24% and 30%. This variation

in the yield corresponds to a standard deviation of 4.2% in the
plots of Figs. 3 and 5 and is consistent with the variation in our
experiments.

Discussion
Algorithmic Design for Self-Assembly. We have found that the
optimality criterion best suited to our experiments is to first max-
imize Vc and then minimize Rg. The superior performance of
nets satisfying this criterion illustrates the importance of an algo-
rithmic search. Of 123,452 truncated octahedron nets found, only
four had Vc ¼ 12. In contrast, the expected Vc for a random net
chosen uniformly is approximately seven. Similarly, of the 43,380
dodecahedron nets, only 21 had Vc ¼ 10 and the expected Vc is
approximately six. For these polyhedra, Fig. 3 shows that the dif-
ference in yield between an optimal net and a uniformly chosen
random net is dramatic.

Vertex Connections and Error-Correction. The effectiveness of com-
pactness as a design criterion stems from its influence on the
self-folding pathway. In experiments, we observe that topological
compactness has two main consequences: (i) error correction at
edges, and (ii) error correction in the pathway through partially
rigid intermediates.
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Fig. 3. Yield measured in self-folding experiments on nets with varying Vc

and Rg. (A–F) Dodecahedral nets in the order Vc ¼ 2, 6, and 10, and
Rg ¼ 1;102.2, 800.9, and 693.7 μm, respectively. (G–L) Truncated octahedral
nets in the order Vc ¼ 2, 7, and 12, and Rg ¼ 1;306.3, 912.7, and 795.0 μm,
respectively.

Fig. 4. Self-folding experiments on high Vc nets with varying Rg. Optical and
SEM images. (A–D) Dodecahedral nets with Vc ¼ 10 and Rg ¼ 810.2, 797.4,
755.4, and 747.7 μm, respectively. (E–H) Truncated octahedral nets with
Vc ¼ 12 and Rg ¼ 911.6, 870.2, 867.4, and 852.8 μm, respectively. (Scale
bar: 300 μm.)
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Fig. 5. Yieldmeasured in self-folding experiments on highVc nets with vary-
ing Rg. (A–D) Dodecahedral nets with Vc ¼ 10 and Rg ¼ 810.2, 797.4, 755.4,
and 747.7 μm, respectively. (E–H) Truncated octahedral nets with Vc ¼ 12 and
Rg ¼ 911.6, 870.2, 867.4, and 852.8 μm, respectively.
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B, and C—and the yield tabulated. “A” polyhedra were defect-
free, “B” had minor defects, and “C” were defective. The experi-
ments, grading scheme, and mathematics involved are described
in greater detail in Materials and Methods.

Optical and SEM images showing the photolithographically
fabricated 2D panels connected by solder hinges and representa-
tive self-folded 3D structures for all three polyhedra for both
compactness criteria are shown in Fig. 2. Histograms of the yield
are shown in Fig. 3. The yield is tabulated in Tables S1 and S2. We
observe that both measures of compactness determine yield for
these higher polyhedra just as for the cube and octahedron. Of
the two measures, Vc is a better predictor. For the dodecahedron,
the percentage of A-grade self-folded polyhedra from nets with
the maximum Vc is more than five times that from nets with the
lowest Rg, Rg ¼ 693.7 μm. In addition, almost 80% of the max-
imum Vc samples are of grade A and B as compared with about
20% for the minimum Rg samples. For the truncated octahedron,
the percentage of grade-A self-folded polyhedra from nets with
the maximum Vc net is two times that of A-grade samples for
minimum Rg , Rg ¼ 795 μm. Moreover, almost 60% of the max-
imum Vc samples are of grade A and B as compared with about
30% for the minimum Rg samples. In contrast with these polyhe-
dra, we were unable to fold any of the icosahedral nets. However,
it is still the case that the more compact nets are less malformed
than the others. Typical optical and SEM images for the icosahe-
dron are shown in Fig. 2. SEM images of pathways are shown in
Figs. S1 and S2.

There are 21 dodecahedron nets that have maximal Vc and
we found four truncated octahedron nets that have maximal
Vc (Fig. S3). As we have remarked above, the maximum Vc nets
in Figs. 2 and 3 were chosen to have the lowest Rg among all nets
with the same Vc. A finer investigation of maximum Vc nets was
carried out in a second round of experiments. We repeated the
self-folding experiments with 50 samples and the same grading
scheme for four new dodecahedron nets (nets denoted 2, 5,
17, and 21 from Fig. S3A) and all four high Vc truncated octahe-
dron nets (Fig. S3B). Images for these experiments are presented
in Fig. 4 and histograms for the yield in Fig. 5. The yield is tabu-
lated in Tables S3 and S4. We find again that the compact nets (as
measured by low Rg now) have higher yield. We note that there is
one common net (Fig. 2I and Fig. 4H for truncated octahedra).
The yields of A-grade polyhedra from this net in two 50-sample
experiments done months apart was 24% and 30%. This variation

in the yield corresponds to a standard deviation of 4.2% in the
plots of Figs. 3 and 5 and is consistent with the variation in our
experiments.

Discussion
Algorithmic Design for Self-Assembly. We have found that the
optimality criterion best suited to our experiments is to first max-
imize Vc and then minimize Rg. The superior performance of
nets satisfying this criterion illustrates the importance of an algo-
rithmic search. Of 123,452 truncated octahedron nets found, only
four had Vc ¼ 12. In contrast, the expected Vc for a random net
chosen uniformly is approximately seven. Similarly, of the 43,380
dodecahedron nets, only 21 had Vc ¼ 10 and the expected Vc is
approximately six. For these polyhedra, Fig. 3 shows that the dif-
ference in yield between an optimal net and a uniformly chosen
random net is dramatic.

Vertex Connections and Error-Correction. The effectiveness of com-
pactness as a design criterion stems from its influence on the
self-folding pathway. In experiments, we observe that topological
compactness has two main consequences: (i) error correction at
edges, and (ii) error correction in the pathway through partially
rigid intermediates.
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Fig. 3. Yield measured in self-folding experiments on nets with varying Vc

and Rg. (A–F) Dodecahedral nets in the order Vc ¼ 2, 6, and 10, and
Rg ¼ 1;102.2, 800.9, and 693.7 μm, respectively. (G–L) Truncated octahedral
nets in the order Vc ¼ 2, 7, and 12, and Rg ¼ 1;306.3, 912.7, and 795.0 μm,
respectively.

Fig. 4. Self-folding experiments on high Vc nets with varying Rg. Optical and
SEM images. (A–D) Dodecahedral nets with Vc ¼ 10 and Rg ¼ 810.2, 797.4,
755.4, and 747.7 μm, respectively. (E–H) Truncated octahedral nets with
Vc ¼ 12 and Rg ¼ 911.6, 870.2, 867.4, and 852.8 μm, respectively. (Scale
bar: 300 μm.)
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Fig. 5. Yieldmeasured in self-folding experiments on highVc nets with vary-
ing Rg. (A–D) Dodecahedral nets with Vc ¼ 10 and Rg ¼ 810.2, 797.4, 755.4,
and 747.7 μm, respectively. (E–H) Truncated octahedral nets with Vc ¼ 12 and
Rg ¼ 911.6, 870.2, 867.4, and 852.8 μm, respectively.
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Second criterion (Radius of gyration?)
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Numerical simulations
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tfirst ⇠ 1/ ln [N(N � 1)/2]
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Food for thought: 3 faces

θk θ*

Where is the third one, when 
the first two close?
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Final remarks

• Folding at the microscale is a N to M problem; 
• Finding the nets that maximize the number of single vertex 

connections corresponds to finding the maximum leaf spanning 
tree of the shell graph; 

• Our method provides a unique and optimal solution;
• From the complete list of maximum leaf spanning trees it is 

possible to apply other criteria;
• The optimal net does not have the lowest folding time;
• The folding time is a non-monotonic function of the number of 

faces.
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