Water: A Complex Liquid

Marcia C. Barbosa

What is the mistery?

Why should we care?

What are the clues?

What is our hypothesis?

What are our results?

What do we predict?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Conclusions

Our Group

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 つくぐ

What is the mistery? M. Chaplin, Water structure and science (2010).

Such a simple liquid

69 anomalies

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Specific Heat methanol: Lombari, Ferrari, Salvetti, CPL 300 (99)

•
$$C_P = \{\frac{dQ}{dT}\}_P$$

Compressibility water: Speedy, Angell, JCP 65, 351 (76) toluene: Minassian, Bouzar, Alba, JPC 92, 487 (88)

•
$$K_T = -\frac{1}{V} \{ \frac{\partial V}{\partial P} \}_T$$

Thermal Expansion Kell, J. Chem. Eng. Data 20, 97 (75)

$$\bullet \ \alpha_P = \frac{1}{V} \{ \frac{\partial V}{\partial T} \}_P$$

▲□▶ ▲□▶ ▲ ○▶ ▲ ○ ▶ ▲ □ ● ● ● ●

Density Kell, J. Chem. Eng. Data 12, 66 (67)

Diffusion

Angell, Finch, Bach 65, 3063 (76)

• $\langle r(t)r(0)\rangle = 6Dt$

▲御▶ ▲臣▶ ★臣▶ 三臣 - のへで

Why should we care?

 Specific Heat, Thermal Coductivity, High Vaporization Heat – Life

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Low Compressibility – More land

Density – Rivers freeze on top

Diffusion anomaly – Transport of nutrients

Bonds

Two Scales

▲ロト ▲母 ト ▲ ヨ ト ▲ ヨ - 一 の へ ()

Specific Heat = Fluctuation in the Entropy Stanley, Pramana 53, 53 (99)

•
$$C_p \propto \langle (S - \langle S \rangle)^2
angle$$

Specific Heat = Fluctuation in the Entropy Stanley, Pramana 53, 53 (99)

•
$$C_p \propto \langle (S - \langle S \rangle)^2
angle$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ = 目 - のへぐ

Specific Heat = Fluctuation in the Entropy

• $C_p \propto \langle (S - \langle S \rangle)^2 \rangle$

▲□▶ ▲□▶ ▲目▶ ▲目▶ = 目 - のへぐ

Compressibility = Fluctuation in the Volume

• $K_T \propto \langle (V - \langle V \rangle)^2 \rangle$

Thermal Expansion = Fluctuation in the Volume and Entropy

$$\alpha \propto \langle (S - \langle S \rangle)(V - \langle V \rangle) \rangle$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Diffusion - SPC/E Berendsen, Grigera, Straatsma, JCP 91, 6269 (87)

Diffusion - SPC/E Netz, Starr, Stanley, Barbosa JCP 115, 344 (01)

Rotation Diffusion - SPC/E

Netz, Starr, Barbosa, Stanley, JML 101, 159-168 (02)

Mazza, Giovanbaptista, Stanley, Starr, PRE 76, 31203 (07)

Frequency - SPC/E

Netz, Starr, MCB and Stanley, Physica A 314, 470 (2002)

Sac

Water SPC/E Angell, Finch, Bach 65, 3063 (76)

Netz, Starr, Stanley, Barbosa JCP 115, 344 (01)

Two Length Scales Potential

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣�?

Structure

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Structure

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Effective Potential

Radial Distribution Function of WATER:

Ornstein-Zernike Equation:

$$h(r) = g(r) - 1 = c(r) + \rho \int c(r - r')h(r')dr'$$

Hypernetted Chain Approximation (HNC):

$$U(r) = k_B T\{g(r) - 1 - \ln[g(r)] - c(r)\}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Effective Potential

Barraz, Salcedo, Barbosa, JCP 131, 094504 (09)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Critical Points

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Critical Points

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣��

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▲ロト ▲圖ト ▲ヨト ▲ヨト 三ヨー のへで

- 4 日 1 4 日 1 4 日 1 4 日 1 日 - のへで

▲□▶ ▲□▶ ▲注▶ ▲注▶ 三注 - 釣��

Rapid Flow in Nanotubes - Simulations A.B. Farinami, JPCB 115, 12145 (2012)

Water Channels- What is our Model?

Structure N. M. Barraz, E. Salcedo and MCB, JCP 135 104507 (2011)

▲ロト ▲理 ▶ ▲ ヨ ▶ ▲ ヨ ■ ● の Q ()

Structure

N. M. Barraz, E. Salcedo and MCB, JCP 135 104507 (2011)

Effective Potential

A. B. de Oliveira, P. E. Netz, T. Colla and MCB, JCP 124 84505 (2006)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Model for Confining J. R. Bordin, A. Diehl and MCB, PRE (2013)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Effective Potential J. R. Bordin, A. Diehl and MCB, PRE (2013)

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへで

Diffusion

J. R. Bordin, A. Diehl and MCB, PRE (2013)

Density vs. r - a=10 J. R. Bordin, A. Diehl and MCB, PRE (2013)

Density vs. r - a=7 J. R. Bordin, A. Diehl and MCB, PRE (2013)

Density vs. r - a=4 J. R. Bordin, A. Diehl and MCB, PRE (2013)

Density vs. r - a=2 J. R. Bordin, A. Diehl and MCB, PRE (2013)

▲ 上 臣 めへの

Density vs. r - a=1.5 J. R. Bordin, A. Diehl and MCB, PRE (2013)

∃ \u00e9

Density vs. r - a=1.25 J. R. Bordin, A. Diehl and MCB, PRE (2013)

Density vs. r - a=1.25 J. R. Bordin, A. Diehl and MCB, PRE (2013)

Density vs. r - a=1.25 J. R. Bordin, A. Diehl and MCB, PRE (2013)

Flux in Nanotubes

X. Qin et al, Nanoletters 11, 2173 (2011) - experimental - SPC/E

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Water Channel - Enhancement Flow

J. A. Thomas and A. J. H. McGaughey, Nanoletters 8, 2788 (2008)

▲□▶ ▲圖▶ ★国▶ ★国▶ - 国 - のへで

Effective Potential J. da Silva and MCB, JCP (2010)

 \mathcal{O}

Model for Nanotubes

J. R. Bordin, A. Diehl and MCB, JPCB (2013)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Enhancement Flow

J. R. Bordin, A. Diehl and MCB, JPCB (2013)

$$\langle v_x \rangle = \gamma_{MD} \frac{\Delta p}{L_{NT}}$$

$$\epsilon = \frac{\gamma_{MD}}{\gamma_{HP}}$$

(1)

(ロ)、(型)、(E)、(E)、 E) の(の)

Layers J. R. Bordin, A. Diehl and MCB, JPCB (2013)

Enhancement Flow

J. R. Bordin, A. Diehl and MCB, JPCB (2013)

Potential J. R. Bordin, A. Diehl and MCB, JPCB (2013)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Layers J. R. Bordin, A. Diehl and MCB, JPCB (2013)

Enhancement Flow

J. R. Bordin, A. Diehl and MCB, JPCB (2013)

Distribution - Attractive

J. R. Bordin, A. Diehl and MCB, JPCB (2013)

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 = ∽へ⊙

Distribution - Repulsive

J. R. Bordin, A. Diehl and MCB, JPCB (2013)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Density - Attractive J. R. Bordin, A. Diehl and MCB, JPCB (2013)

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ■ ののの

Density - Repulsive J. R. Bordin, A. Diehl and MCB, JPCB (2013)

▲□▶▲圖▶▲≣▶▲≣▶ = つへの

 Effective Model Reproduces the Thermodynamic Anomalies of Water

Effective Model Reproduces the Dynamic Anomalies of Water

(ロ)、(型)、(E)、(E)、 E) の(の)