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Past and predicted future spread of the gypsy moth.



SPREADING OF INFECTIOUS DISEASES

Malaria in the Asia-Pacific Region By J. Kevin Baird Global Research, November 13,
2015; The Asia-Pacific Journal, Vol. 13, Issue. 44, No. 1 9 November 2015

The spatial distribution of Plasmedium vivax malaria endemicity in 2010
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Figure 2. Maps showing the distribution of malaria risk globally for Plasmodium
falciparum (Yop) and Plasmodium vivax (bottom). See color keys in Figure 3. Courtesy of
the Malaria Atlas Project, University of Oxford, United Kingdom




CLASSICAL APPROACH: REGULAR
AND ANOMALOUS PROCESSES
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ARE THERE REFERENCES OR
EXPERIMENTAL EVIDENCE OF
RETENTION PHENOMENA IN ANY
PHYSIC-CHEMISTRY OR
BIOLOGICAL PROCESS?

THE ANSWER IS YES



SOME EXAMPLES OF DIFFUSION WITH
RETENTION

1. Diffusion and Retention Processes in a Bentonite Near Field (WP2.5)

NF-PRO Annual Meeting, 2006, El Escorial, Spain (Euro-Comm)

2. Extracellular space structure revealed by diffusion analysis; C.
Nicholson, E. Sykova

3. Retention phenomena in non-Newtonian fluids flow, 2003, D’ Angelo,
Fontana, Chertco, Rosen

4. Hydrogen bulk retention in graphite and kinetics of diffusion, 2002,
H. Atsumi

5. Effect of Liquid-Phase Diffusion Resistance on Retention Time in Gas-
Liquid Chromatography, Jan-Chan Huang. Richard Madey

6. Laboratory determination of water retention and diffusion coefficient
in unsaturated sand, 2004, K. Badv and M. R. Faridfard



4

(-
4/.

¥ muglal of
_ Mmaterials

www.elsevier.com/flocate/jnucmat

ELSEVIER Journal of Nuclear Materials 307-311 (2002) 1466-1470

Hydrogen bulk retention in graphite and kinetics of diffusion

H. Atsumi *

Departmment of Nuclear Engineering, Faculty of Science and Engineering, Kinki University, Kowakae 3-4-1, Higashi-Osaka,
Osaka 577-8502, Japan
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where N is the local concentration of free hydrogen atom, N, is that of trapped
hydrogen atom, C is the concentration of vacant trap, D is the true diffusion
coefficient of free hydrogen, }, is the thermal detrapping rate constant for
trapped hydrogen and 3, is the trappingrate constant for free hydrogen



Extracellular space structure revealed by
diffusion analysis

Charles Nicholson and Eva Sykova

Fig. 1. Geometry of extracelluiar space. Electronmicrograph of smail
region of rat cortex with prominent dendritic spine (5) and presynaptic (P)
terminal. The ECS Is outiined in red. Note the foam-like structiire, muitiple
connectivity, simple convex cell surfaces and presence of “lakes’ where
the space widens. The ECS Is probably reduced In width due to fication
procedure. Scale bar, 1 wm. Figure kindly provided by Dr C.B. Jaeger.

proteoglycans and glycosaminoglycans®. The matrix
composition varies with the cytoarchitectonics®, but
we know little about its density and we lack reliable
evidence that it affects diffusion. The ECS allows glu-
cose to reach brain cells from the blood vessels. It pro-
vides a low-resistance path that completes the circuit
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Hydraulic, Diffusion, and Retention
Characteristics of Inorganic Chemicals in
Bentonite (PhD Thesis)

Naim Muhammad

(7.10)

The value of (D* n/Rys), replaced h}'ﬂ’: . 15 defined as the “apparent diffusion

coefficient” by many researchers (Qugley er al. 1987; Li and Gregory, 1974).



LABORATORY DETERMINATION OF WATER RETENTION AND
DIFFUSION COEFFICIENT IN UNSATURATED SAND

K. BADV* and M. R. FARIDFARD
Department of Civil Engineering, Urmia University, P.O. Box 165, Urmia, Iran
(*author for correspondence, e-mail: kK.badvi@mail urmig.ac.r, Tel: 098-441-277-7040,
Fax: 0098-44}-277-7022)

(Received 4 December 2003; accepted 3 August 2004)

It has been reported that, the transport of contaminants through soil by advection
and diffusion can be described by the advection — diffusion equation (King et al.,
1993; Goodal and Quigley, 1977; Desaulniers ef al., 1981; Quigley and Rowe,

1986; Rowe er al., 1988; Rowe and Sawiki, 1992; Schackelford and Daniel, 1991).

In case of diffusion (and absorption, where appropriate) this equation 1s written for
one-dimensional conditions as:
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Retention phenomena in non-Newtonian
fluids flow

M.V. D’Angelo*, E. Fontana, R. Chertcoff, M. Rosen

Grupo de Medios Porosos, Facultad Ingenieria, Universidad de Buenos Aires, Paseo Coldn 8§50,
1063 Buenos Aires, Argentina

PHYSICA A 327 (2003) 44-48

quently modify the concentration tracer profile. Various processes may be at the origin
of the retention phenomena: for instance, the existence of adsorption processes, me-
chanical trapping or inaccessible or stagnant volume zones. In order to take them into
account, a new term has to be added to the dispersion—convection equation which then
expresses as [2]

oC 3 3 P or

— +U.VC=DViC+D ViC - ——, (1)
dt @ Ot
where I’ is the term that represents the total phenomena that produce the retention ef-
fects (usually a non-lineal isotherm); C is the average concentration; p is the medium
density; ¢ is the medium porosity; U is the average velocity; D\ and D, are the dis-

persion coefficients in the parallel and normal flow direction, respectively (in general,




MODELS

NEW BIOLOGICAL

ENZYME DIFFUSION

Joshua Wand , Enzymes surf the heat wave , Nature, 517, 149-150 (2015)

Molecular diffusion of some enzymes is enhanced when they catalyse reactions, but the reason for
this was obscure. Dissipation of heat generated by catalysis through the protein is now thought to
propel the molecules.

a b
Figure 1 | The chemoacoustic model of anomalous areas indicate passage of the wave. This causes
enzyme diffusion. acoustic waves (black arrows) in the surrounding
Riedel et al.2 report that dissipation of heat solvent. d, If reflected back on the protein, the waves
generated during enzymatic reactions increases the cause the molecule to move (green arrow). Because
diffusion of certain enzyme molecules. a—c, They enzyme molecules also undergo rotational Brownian
suggest that heat released at the active site (yellow motion (not shown), this mechanism of locomotion
star) during a catalytic event generates a radial will
deformation wave that causes the enzyme to rapidly not generate overall motion in a particular direction.

expand; orange



NEW BIOLOGICAL MODELS
ENZYME DIFFUSION

Nature, 517, 227-230 (2015)

The heat released during catalytic turnover enhances the diffusion of an enzyme
Clement Riedell , Ronen Gabizon , Christian A. M. Wilson, Kambiz Hamadanil,
Konstantinos Tsekouras , Susan Marqusee, Steve Presse & Carlos Bustamante

A stochastic model (detailed in the Supplementary Information and Extended Data Figs 6, 7 and 8)
describes the enhanced diffusion upon catalysis in terms of the heat released by the chemical
reaction. In this model, we assume that enzymes transiently diffuse more quickly—with diffusion
coefficient D1—for some short period of time, dt, following a chemical reaction. Otherwise, the
enzyme displays its diffusion coefficient in the absence of substrate, D,. The net diffusion coefficient in
the presence of substrate, D, is therefore the ensemble average over both subpopulations with the
probability of observing an enhanced diffusion proportional to . We then relate the
enhanced diffusion coefficient, D,, to the amount of heat, Q, evolved by an enzymatic reaction. To do
so, we assume that the kinetic energy of the enzyme’s centre-of-mass immediately following a
reaction is proportional to some fraction c of Q. From this simple model, we obtain the following
expression

270

D=Dy+——mV =Dy+alV

302
which shows a diffusion coefficient enhancement linear in V and Q, wheremis the mass of the enzyme,
dt 5 m/f is the relaxation timescale associated with the enzyme displacement following an enzymatic
turnover, and f is an effective friction coefficient for the enzyme (see Supplementary Materials)



CONTINUUM FORMULATION
OF DISTURBED (DELAYED)
DIFFUSION PROCESSES



A NEW ANALYTICAL FORMULATION
OF DISTURBING EFFECTS ON
PARTICLE DIFFUSION PROCESSES

INTRODUCTION OF A BIMODAL
SPEED DISTRIBUTION TO MASS
TRANSFER PROBLEMS



FUNDAMENTAL HYPOTHESIS

I. The system is self-contained in the sense that all possible
internal reactions preserve the total mass in the diffusion
process.

IT. There are neither sinks nor sources in the system. All particles
are under a continuous state of excitation, that is, moving
continuously.

ITT. There are two distinct energy states E;(p;.L,) and E,(p,.L5),
corresponding to the two subsets of particles, A and (1- f)
respectively, where p represents the linear momentum and £
the angular momentum.

IV. Particles in the system are either in the energy state I or in
the energy state IT



FUNDAMENTAL HYPOTHESIS

Under certain circumstances particles travelling in a
continuum media may be divided into two distinct sets. The
first set of particles Bp(x,7) is excited with a linear velocity
lv;| - energy state I - corresponding to the flux ¥; and
the second set (1-B)p(x,7) is composed by particles excited
with linear velocity |v,| - energy state IT - corresponding

to the flux ¥, .
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DERIVATION OF THE
FUNDAMENTAL EQUATION

THE DISCRETE APPROACH




DISCRETE FORMULATION
DIFFUSION WITH RETENTION
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DISCRETE APPROACH TO DIFFUSION PHENOMENA

Reduce the right hand side terms to the reference time #-/

1 1
py=ap, +(=a)pi+- (1-a)pi)
r+1 2 -1 -1
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Subtract to get
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DISCRETE APPROACH TO DIFFUSION PHENOMENA

Taking the limit when Ax — 0 and At — O and assuming p(x,t)
sufficiently smooth the continuum equivalent to the discrete
formulation is obtained:
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GENERALIZED BI-FLUX DIFFUSION
EQUATION

From the discrete approach to the mass conservation principle Equation
for the bi-flux diffusion

b _p0 9
ot =/ Ox Ox
Primary Flux (Fick”s law)

-(1- )

W - 8p(x,t) 1
Ox

D: diffusion coefficient

Secondary Flux. Subsidiary to the principal flux

3
¥, = R,B(ﬁ 159 (f’t))él R: reactivity coefficient
X



MASS CONSERVATION

‘Pl
n According to the previous

v, hypothesis the net flux through
the boundary element ds is:

FT) ¥.ndS = (¥, +(1- B)¥,)ndS

0< B<1

2

Introducing this expression in the mass conservation equation
and since the specific mass p is constant we arrive aft:

%IZ’(’”)"’” [(p¥,+(1-p)¥,).nds =0



GOVERNING EQUATION OF TWO-SPEED
DIFFUSION PROCESS

8p(X, t)) = div(ﬁgmd (Dp(x, t)))— a’iv(R,B(l — ,B)Vz (gmd (p(X, t))))
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PHYSICAL MEANING OF THE BOUNDARY

THE BOUNDARY CONDITIONS ARE DETERMINED ONCE WE
KNOW AT THE BOUNDARY:

The concentration : p,(t)
The gradient of the concentration: grad (po (t)) W, =
The time variation of the concentration: @21190(t)/@t2

The gradient of the time variation of
the concentration : Berad (67 p,(t)/or*) w,—



THE DIFFERENT TYPES OF SOLUTIONS FOR
THE FOURTH ORDER EQUATION
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Two cases of closed solutions will be considered
p(x,t) = d,g(t)cos(mx/2)

#(x,t)=,g(t)cosh(x)



SIMPLE PROBLEMS-CLOSED SOLUTIONS
CASE I

#(x,t) = ¢, g(t)cos(mx/2)
83¢/8x3‘x:():0; 0¢/ox| _ =0; az¢/ax\ =0; ¢ _ =0

Solut1on
JIX
£ o) d(x,t)= B e” cos( , j
— t>tot , ,
t p:—’ZDﬁ[H’Zr@—ﬂ)j
; I\ :2: D(7/2)sen(mx/2)e, =R/D
5 _» Flow

; ¥, = Ro(7/2) Psen(mx/2)é,



SIMPLE PROBLEMS-CLOSED SOLUTIONS

p>-0.0025
delay

p<-0.0025
aceleration

exponent

.0.0005 |
.0.001 |
.0.0015 |
.0.002 |

-0.0025 F

-0.003

CASE I

Drt /4=0.0025




SIMPLE PROBLEMS-CLOSED SOLUTIONS
CASE II

#(x,1)= gg(t)cosh(x)

opjox =0  dg/ax’| =0 o'glax’| =4 0'gfox’| =og/ox|

xX=

X= X=

Solution

#(x,1) = g,e” cosh(x)

p=Dp1-r(-p)

W, = —Dsenh(x)é

=
= = » xFlow
o b

=

r=R/D

Y, = Rgfsenh(x)e,
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P(Xt)
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Broadbridge P. (2008) Entropy diagnosis for
fourth order partial differential equations in
conservative form. Entropy 10:365-379
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