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Past and predicted future spread of the gypsy moth.



Malaria in the Asia-Pacific Region By J. Kevin Baird Global Research, November 13, 
2015; The Asia-Pacific Journal, Vol. 13, Issue. 44, No. 1 9 November 2015

Figure 2. Maps showing the distribution of malaria risk globally for Plasmodium 
falciparum (top) and Plasmodium vivax (bottom). See color keys in Figure 3. Courtesy of 
the Malaria Atlas Project, University of Oxford, United Kingdom
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1. Extra terms intended to introduce appropriates 
corrections in the theory to match experimental 
resultsresults
2. Expand the flux potential D∂p/∂x to include higher 
order  terms: 

D1 ∂p/∂x + D2 ∂2p/∂x2 +(D3 ∂p/∂x)2 + D4 ∂4p/∂x4 + …

Other types of phenomena: MBE (thin films deposition), 
lubrication, etc.





SOME EXAMPLES OF DIFFUSION WITH SOME EXAMPLES OF DIFFUSION WITH 

RETENTIONRETENTION

1. Diffusion and Retention Processes in a Bentonite Near Field (WP2.5)

NF-PRO Annual Meeting, 2006, El Escorial, Spain (Euro-Comm)

2. Extracellular space structure revealed by diffusion analysis; C. 
Nicholson, E. Syková

3. Retention phenomena in non-Newtonian fluids flow, 2003, D’Angelo, 3. Retention phenomena in non-Newtonian fluids flow, 2003, D’Angelo, 
Fontana, Chertco, Rosen

4. Hydrogen bulk retention in graphite and kinetics of diffusion, 2002,  
H. Atsumi

5. Effect of Liquid-Phase Diffusion Resistance on Retention Time in Gas-
Liquid    Chromatography, Jan-Chan Huang. Richard Madey

6. Laboratory determination of water retention and diffusion coefficient 
in unsaturated sand, 2004, K. Badv and M. R. Faridfard



where N is the local concentration of free hydrogen atom, N1 is that of trapped 

hydrogen atom, C is the concentration of vacant trap, D is the true diffusion

coefficient of free hydrogen, ∑d is the thermal detrapping rate constant for 

trapped hydrogen and ∑t is the trappingrate constant for free hydrogen





Hydraulic, Diffusion, and Retention 

Characteristics of Inorganic Chemicals in 

Bentonite  (PhD Thesis)

Naim Muhammad
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Joshua Wand , Enzymes surf the heat wave , Nature, 517, 149-150 (2015) 

Molecular diffusion of some enzymes is enhanced when they catalyse reactions, but the reason for 

this was obscure. Dissipation of heat generated by catalysis through the protein is now thought to 

propel the molecules. 

Figure 1 | The chemoacoustic model of anomalous 

enzyme diffusion.

Riedel et al.2 report that dissipation of heat 

generated during enzymatic reactions increases the 

diffusion of certain enzyme molecules. a–c, They 

suggest that heat released at the active site (yellow 

star) during a catalytic event generates a radial 

deformation wave that causes the enzyme to rapidly 

expand; orange

areas indicate passage of the wave. This causes 

acoustic waves (black arrows) in the surrounding 

solvent. d, If reflected back on the protein, the waves 

cause the molecule to move (green arrow). Because 

enzyme molecules also undergo rotational Brownian 

motion (not shown), this mechanism of locomotion 

will

not generate overall motion in a particular direction.



A stochastic model (detailed in the Supplementary Information and Extended Data Figs 6, 7 and 8) 

describes the enhanced diffusion upon catalysis in terms of the heat released by the chemical 

reaction. In this model, we assume that enzymes transiently diffuse more quickly—with diffusion 

coefficient D1—for some short period of time, dt, following a chemical reaction. Otherwise, the 

enzyme displays its diffusion coefficient in the absence of substrate, D . The net diffusion coefficient in 

Nature, 517, 227-230 (2015) 
The heat released during catalytic turnover enhances the diffusion of an enzyme

Clement Riedel1 , Ronen Gabizon , Christian A. M. Wilson, Kambiz Hamadani1,  

Konstantinos Tsekouras , Susan Marqusee, Steve Presse & Carlos Bustamante

enzyme displays its diffusion coefficient in the absence of substrate, D0. The net diffusion coefficient in 

the presence of substrate, D, is therefore the ensemble average over both subpopulations with the 

probability of observing an enhanced diffusion proportional to V, the reaction rate. We then relate the 

enhanced diffusion coefficient, D1, to the amount of heat, Q, evolved by an enzymatic reaction. To do 

so, we assume that the kinetic energy of the enzyme’s centre-of-mass immediately following a 

reaction is proportional to some fraction c of Q. From this simple model, we obtain the following 

expression

which shows a diffusion coefficient enhancement linear in V and Q, wheremis the mass of the enzyme, 

dt 5 m/f is the relaxation timescale associated with the enzyme displacement following an enzymatic 

turnover, and f is an effective friction coefficient for the enzyme (see Supplementary Materials)
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I. The system is self-contained in the sense that all possible 
internal reactions preserve the total mass in the diffusion 
process.

II. There are neither sinks nor sources in the system. All particles 
are under a continuous state of excitation, that is, moving 
continuously.

III.There are two distinct energy states E (p ,L ) and E (p ,L ), III.There are two distinct energy states E1(p1,L1) and E2(p2,L2), 
corresponding to the two subsets of particles, β and (1− β) 
respectively, where p represents the linear momentum and L
the angular momentum.

IV. Particles in the system are either in the energy state I or in 
the energy state II



Under certain circumstances particles travelling in a 
continuum media may be divided into two distinct sets. The 
first set of particles βp(x,t) is excited with a linear velocity 
|v1|  −  energy state I – corresponding to the flux Ψ1 and 
the second set (1-β)p(x,t) is composed by particles excited 
with linear velocity |v2| −  energy state II – corresponding 
to the flux Ψ2
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Reduce the right hand side terms to the reference time t-1
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Subtract to get



Taking  the limit when Δx → 0 and Δt → 0  and assuming p(x,t) 
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Taking  the limit when Δx → 0 and Δt → 0  and assuming p(x,t) 
sufficiently smooth the continuum equivalent to the discrete 
formulation is obtained:
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Primary Flux (Fick´s law)
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From the discrete approach to the mass conservation principle Equation
for the bi-flux diffusion
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Secondary Flux. Subsidiary to the principal flux 

D: diffusion coefficient

R: reactivity coefficient
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According to the previous 
hypothesis the net flux through 
the boundary element  dS is:
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Introducing this expression in the mass conservation equation 
and since the specific mass ρ is constant we arrive at:

0< β <1
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The concentration :

The gradient of the concentration

( )tp0

( )( )tpgradThe gradient of the concentration :                                Ψ1

The time variation of the concentration:

The gradient of the time variation of 
the concentration :                                                                  Ψ2
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Two cases of closed solutions will be consideredTwo cases of closed solutions will be considered

( ) ( ) ( )2cos, 0 xtgtx πφφ =
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ρ>0  densification
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ρ<0 rarefaction

ρ>0  densification

Stagnation
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D = 10-3 ,  β= 0,5

R = 6x10-6

Broadbridge P. (2008) Entropy diagnosis for 

fourth order partial differential equations in 

conservative form. Entropy 10:365-379
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