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Plan for today

Problem
What are trees and why are interested in them?

MCMC in tree space
A journey through a strange land

Validation
Checking against exchangeable phylogenetic distributions
and simulation-based calibration (SBC).

Perspectives
Open problems!
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Trees are hypotheses
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Trees and the coalescent
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Central object: time-calibrated trees

Figure: Figure 4 from Volz et al.
(2013).

Let 𝑇𝑛 denote the time for 𝑛 lineages to coalesce, i.e.,
merge into one ancestral lineage, in a population of
size 𝑁𝑒 . Then:

𝑃𝑟(𝑇𝑛 = 𝑡) = 𝜆𝑛 𝑒
−𝜆𝑛 𝑡

𝜆𝑛 =

(
𝑛

2

)
1
𝑁𝑒

=

(
𝑛

2

)
1
𝑁𝑒𝜏

where 𝑁𝑒 is the effective population size and 𝜏 is
the generation time. Let 𝑇mrca denote the age of the
most recent common ancestor:

𝔼[𝑇mrca] = 𝔼[𝑇𝑛 ] + 𝔼[𝑇𝑛−1] + . . . + 𝔼[𝑇2]
= 1/𝜆𝑛 + 1/𝜆𝑛−1 + . . . + 1/𝜆2

= 2𝑁𝑒
(
1 − 1

𝑛

)
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https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002947
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002947


Motivation
Phylodynamics of fast-evolving viruses
Inferring spatial and temporal dynamics from genomic data:

Phylogenies∗!
∗ plus complicated models
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Discrete tree space: tree surgery

Subtree prune-and-regraft (SPR):
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Discrete tree space: SPR graph

For curvature results, see Whidden & Matsen(2017).

8 / 45

https://matsen.fhcrc.org/papers/Whidden2017-rg.pdf


Continuous tree space: BHV

Billera, Holmes & Vogtmann (2001).
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http://131.220.132.162/people/galazg/docs/phyl_trees_01.pdf


Tree space: a strange land

Tree space
Tree space

Likelihood

Tree space
Tree space

Likelihood
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Target

𝑝(𝑡 , 𝒃,𝝎 |𝐷) =
𝑓 (𝐷 |𝑡 , 𝒃,𝝎)𝜋(𝑡 , 𝒃,𝝎)∑

𝑡𝑖∈𝑻𝑛
∫
𝑩

∫
𝛀
𝑓 (𝐷 |𝑡𝑖 , 𝒃𝑖 ,𝝎)𝜋(𝑡𝑖 , 𝒃𝑖 ,𝝎)𝑑𝝎𝑑𝒃𝑖

(1)

⊚ 𝐷: observed sequence (DNA) data;
⊚ 𝑻𝑛 : set of all binary ranked trees (𝔾(2𝑛−3)!!);
⊚ 𝒃𝑘 : set of branch lengths of 𝑡𝑘 ∈ 𝑻𝑛 (ℝ2𝑛−2

+ , kind of) ;
⊚ 𝝎: set of parameters of interest such as substitution model

parameters, migration rates, heritability coefficients, etc.
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(Adaptive) Metropolis-Hastings for trees

General MH setup.

Let 𝜏 = (𝑡 , 𝒃) denote a tree with topology 𝑡 and branch lengths
𝒃. For two trees 𝜏 and 𝜏′, denote the transition kernel by
𝑞𝛾(𝜏|𝜏′) := Pr(𝜏′ → 𝜏|𝛾).

Accepting with probability

𝐴𝛾(𝜏|𝜏′) = min
(
1,
𝑝(𝜏′,𝝎 |𝐷)𝑞𝛾(𝜏|𝜏′)
𝑝(𝜏,𝝎 |𝐷)𝑞𝛾(𝜏′ |𝜏)

)
leads to the desired target.

Note: Here 𝛾 > 0 is a so-called tuning parameter.
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Height-constrained kernels: SubTreeLeap (STL)

1. Excluding the root, pick a node 𝑖 in 𝜏 uniformly at random,
i.e., with probability 1/(2𝑛 − 3);

2. Draw a patristic distance 𝛿 from the distance kernel 𝑘(𝛿 |𝜎);
3. Find the set of destination nodes Di

𝛿 that are within
distance 𝛿 and whose heights are not less than ℎ(𝑖) − 𝛿;
If Di

𝛿 = :
◦ prune 𝑝𝑖 and regraft it at height ℎ𝑏 = ℎ(𝑝𝑖) − 𝛿 or
ℎ𝑎 = ℎ(𝑝𝑖) + 𝛿 with probability 1/2, creating a new tree 𝜏′,
else

◦ pick a node 𝑗 ∈ Di
𝛿 with probability 𝑃𝑟(𝑖 → 𝑗) = 1/|Di

𝛿 |,
prune the tree at 𝑝𝑖 and regraft it at 𝑝 𝑗 , creating a new tree
𝜏′;
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STL – illustration

Pick a node Disconnect its parent Draw a new height from a
normal centred on old height
of parent. Also consider the
symmetrical height above or 
below the old height.

Pick uniformally from branches
subtending that height and the
symmetrical height above or 
below (in this case 5).

Attach parent to the chosen
location.

Hastings ratio: ratio of reverse probability 
(1 / number of reverse locations, i.e., 1/2) to 
forwards probability (i.e., 1/5).
Hastings ratio  = 5 / 2

1) 2) 3)

4) 5) 6)

There is always at least 1 target
location (above the root).

6)

In this case the HR would be 1/3

7)
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STL – properties

⊚ Adaptive → more efficient (?);
⊚ Height-constrained → time-precedence constraints are

respected;
⊚ Changes topology and branch lengths simultaneously →

presumably more efficient;
⊚ Inherits cool properties from SPR.

◦ We know a bunch of things about the SPR graph;
◦ SPR graph admits a Hamiltonian (Gordon et al., 2013).
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https://stjohn.github.io/research/hamPaths.pdf


STL – ergodicity

Carvalho (2019), Chapter 2.

Remark
Assume strictly positive branch lengths. Then SubTreeLeap induces
an irreducible Markov chain on 𝔾.

Sketch: Starting at 𝑥 ∈ 𝔾, notice there exists 𝛿★𝑦 > 0 such that

𝑃
(
𝑥 → 𝑦 | 𝛿★𝑦

)
> 0 for any tree 𝑦 ∈ 𝔾 in the SPR

neighbourhood of 𝑥.

Theorem
Assume the target satisfies 𝑝(𝐴) > 0 for all 𝐴 ⊂ 𝚿. Then,
SubTreeLeap induces an ergodic Markov chain on 𝚿.

Sketch: Employ the remark to get to the case where
𝑑SPR(𝑥, 𝑦) = 0 and then establish Harris recurrence.
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https://era.ed.ac.uk/handle/1842/35510


Traversing tree space – Topology

Default kernels
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Traversing tree space – Topology + branch lengths

Default kernels
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Ebola virus full genome (1610 taxa (!), 18990 NT sites)
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Metazoans (contemporaneous, 55 taxa, 30257 AA sites)
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A lower-dimensional projection

A clade is a partition of the set of leaves and two clades
𝐴 = 𝐴1 |𝐴2 and 𝐵 = 𝐵1 |𝐵2 are said to be compatible if at least
one of 𝐴𝑖 ∩ 𝐵 𝑗 , 𝑖 , 𝑗 = 1, 2 is empty. Here’s a picture1:

1Pictures taken from Wikipedia and from https:

//evolution.berkeley.edu/evolibrary/news/080301_elephantshrew
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https://evolution.berkeley.edu/evolibrary/news/080301_elephantshrew
https://evolution.berkeley.edu/evolibrary/news/080301_elephantshrew


Why clades?

⊚ Dimension: |𝕋𝑛 | = (2𝑛 − 3)!! vs |ℂ𝑛 | = 2𝑛−1 − 1
⊚ Interpretability;
⊚ Under simplifying assumptions, clades are independent

(Larget, 20132);
⊚ Clade distribution is known under popular prior

distributions.

2but see Whidden & Matsen, 2015 and Zang & Matsen, 2018.
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https://doi.org/10.1093/sysbio/syt014
https://arxiv.org/pdf/1405.2120.pdf
https://papers.nips.cc/paper/2018/hash/b137fdd1f79d56c7edf3365fea7520f2-Abstract.html


Setup

Let 𝑋(𝑖)
𝑗

∈ {0, 1} be the indicator of whether clade 𝑗 in the tree

sampled at the 𝑖-th iteration and 𝑝̂ 𝑗 = 𝑀−1 ∑𝑀
𝑖=1 𝑋

(𝑖)
𝑗

be a simple
MCMC estimator of its marginal success probability.
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Playing pretend

Theorem
The Metropolis-Hastings process (with uniform invariant) on the
SPR graph is 𝜖-lumpable w.r.t. clades.

Pretend for a second
(
𝑋

(𝑖)
𝑗

)
𝑖≥0

is Markov on X= {0, 1} and
reparametrise the usual two-state model as

𝑷̃𝑥 :=

[
1 − 𝛼 𝛼

𝛼
1−𝑝
𝑝

𝑝−𝛼(1−𝑝)
𝑝

]
, (2)
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What an explicit model buys you

Under this model we can derive

⊚ Distribution of occupation times;
⊚ Distribution of state-transitions (0 → 1 or 1 → 0);
⊚ Effective sample size:

ESS =
𝑀

1 + 2
∑∞
𝑡=1 𝜌𝑡

,

=
𝑀

1 + 2 𝑝−𝛼𝛼
,

=
𝛼

2𝑝 − 𝛼
𝑀. (3)

25 / 45



Looking cool!

We can fake phylogenetic MCMC quite well. In particular we
can sample from the posterior “exactly".
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Autocorrelation spectra in practice
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Properties of PDA models

Zhu, Degnan & Steel (2011) show that:

Theorem (Joint distribution of clades)

Let 𝐴 and 𝐵 be two clades with |𝐴| = 𝑎 and |𝐵| = 𝑏. Under a PDA
model, the joint probability of 𝐴 and 𝐵 is

𝑝𝑛(𝐴, 𝐵) =



𝑝𝑛(𝑎), if 𝐴 ≡ 𝐵;
𝑅𝑛(𝑎, 𝑏), if 𝐴 ⊊ 𝐵;
𝑅𝑛(𝑏, 𝑎), if 𝐵 ⊊ 𝐴;
𝑝̄(𝑎, 𝑛 − 𝑎), if 𝐴 ∩ 𝐵 = ∅ and 𝐴 ∩ 𝐵 = X;
𝑟𝑛(𝑎, 𝑏), if 𝐴 ∩ 𝐵 = ∅ and 𝐴 ∩ 𝐵 ⊊ X;
0, otherwise,

(4)
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https://pubmed.ncbi.nlm.nih.gov/21420994/


Properties of PDA models (cont.)

where

𝑝𝑛(𝑎) :=

{
2𝑛

𝑎(𝑎+1)
(𝑛
𝑎

)−1
, if 1 ≤ 𝑎 ≤ 𝑛 − 1;

0, otherwise,
,

𝑝̄𝑛(𝑎, 𝑏) := 4𝑎!𝑏!(𝑛 − 𝑎 − 𝑏))!
(𝑛 − 1)!(𝑎 + 𝑏)([𝑎 + 𝑏]2 − 1)! ,

𝑅𝑛(𝑎, 𝑏) := 4𝑛
𝑎(𝑎 + 1)(𝑏 + 1)

(
𝑛

𝑏

)−1 (
𝑏

𝑎

)−1
,

𝑟𝑛(𝑎, 𝑏) := 4𝑎!𝑏!(𝑛 − 𝑎 − 𝑏))!
(𝑛 − 1)! 𝐺𝑛(𝑎, 𝑏), with

𝐺𝑛(𝑎, 𝑏) := 𝑛

𝑎𝑏(𝑎 + 1)(𝑏 + 1)

− 𝑎(𝑎 + 1) + 𝑏(𝑏 + 1) + 𝑎𝑏
𝑎𝑏(𝑎 + 1)(𝑏 + 1)(𝑎 + 𝑏 + 1)

+ 1
(𝑎 + 𝑏)[(𝑎 + 𝑏)2 − 1] .
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Clade correlations

𝜌𝑛(𝐴, 𝐵) =
𝑝𝑛(𝐴, 𝐵) − 𝑝𝑛(𝐴)𝑝𝑛(𝐵)√

𝑝𝑛(𝐴)[1 − 𝑝𝑛(𝐴)]𝑝𝑛(𝐵)[1 − 𝑝𝑛(𝐵)]
.

Theorem (Minimum and maximum correlation)
For 𝑛 ≥ 4, the minimum and maximum values for 𝜌𝑛(𝐴, 𝐵) are,
respectively

𝜌min(𝑛) = − 2
3𝑛 − 5 ,

𝜌max(𝑛) =
2𝑢(𝑛)𝑘(𝑛) − 4𝑛2(𝑛 − 1)

2𝑛(𝑛 − 1)
√[

⌊ 𝑛2 ⌋
(
⌊ 𝑛2 ⌋ + 1

)
𝑘(𝑛) − 2𝑛

] [
⌈ 𝑛2 ⌉

(
⌈ 𝑛2 ⌉ + 1

)
𝑘(𝑛) − 2𝑛

] ,
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Further observations on the clade correlation under PDA

Let 𝑐(𝑛) be the proportion of entries in the clade correlation
matrix that are positive.

Theorem (Sparsity of exchangeable priors)
The following facts imply that the exchangeable PDA prior induces a
“flat” correlation matrix as the number of taxa 𝑛 grows:

i) lim𝑛→∞ 𝜌min(𝑛) = 0;
ii) lim𝑛→∞ 𝑐(𝑛) = 0.

Additionally, lim𝑛→∞ 𝜌max(𝑛) = 1/4.
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How can we put these things to good use?

For correcntess, we can check

a) Clade frequencies;
b) Clade correlations;
c) Minimum and maximum correlation;

As we shall see, we can use this approach to assess correctness
and efficiency simultaneously!
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Measuring efficiency

Thus, we can employ the idea from Vats, Flegal & Jones (2019):
Magee et al, 2021 point out that trees are fundamentally
multivariate objects.

mESS = 𝑀

(
det(𝚲)
det(𝚺)

)1/𝑝
. (5)

Figure: Eigenvalues can be numerically unstable.
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https://doi.org/10.1093/biomet/asz002
https://arxiv.org/abs/2109.07629


Simple Metropolis-Hastings on the SPR graph

For 𝑇 ∈ 𝕋𝕟 let 𝑁(𝑇) be the set of all trees 𝑢 ∈ 𝕋𝑛 which are on
subtree prune-and-regraft operation away from 𝑇.

Define 𝑎(𝑥) := 1 −∑
𝑧∈𝑁(𝑥)

1
|𝑁(𝑥)| min

{
1, |𝑁(𝑥)|

|𝑁(𝑧)|

}
.

𝑝MH(𝑥, 𝑦) =


1

|𝑁(𝑥)| min
{
1, |𝑁(𝑥)|

|𝑁(𝑦)|

}
, 𝑦 ∈ 𝑁(𝑥),

𝑎(𝑥), 𝑦 = 𝑥

0, 𝑦 ∉ 𝑁(𝑥).
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Lazy Metropolis-Hastings

We can (artificially) change the performance of the original MH
by adding a probability 𝜌 ∈ (0, 1) of staying in the same place.
Then

𝑝LMH(𝑥, 𝑦) =



𝑝MH(𝑥, 𝑦), 𝑦 ∈ 𝑁(𝑥) & 𝑎(𝑥) = 0,
0, 𝑦 = 𝑥 & 𝑎(𝑥) = 0,

1−𝜌
1−𝑎(𝑥)𝑝MH(𝑥, 𝑦), 𝑦 ∈ 𝑁(𝑥) & 𝑎(𝑥) > 0,

𝜌, 𝑦 = 𝑥 & 𝑎(𝑥) > 0,
0, 𝑦 ∉ 𝑁(𝑥).
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A small illustration

For 𝑛 = 5 and 𝜌 ∈ {0.1, 0.2, . . . , 0.9}, run 𝐾 = 50 replicates of
𝑀 = 10, 000 iterations each. Then project onto clade space and
compute

A) empirical: the multivariate ESS with both 𝚲 and 𝚺
estimated from the data;

B) theoretical: the multivariate ESS with 𝚺 set to its
theoretical value.
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Results A
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Results B
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SBC for trees

0. Generate a reference tree from the prior 𝜏̄0 ∼ 𝜋𝑇(𝜏|𝜸);
for each iteration in 1:N, do:

1. Generate 𝜏̄ ∼ 𝜋𝑇(𝜏|𝜸);
2. Compute the distance 𝛿̄ = 𝑑𝜎(𝜏̄, 𝜏̄0) according to the metric

of choice;
3. Generate some (alignment) data 𝑦̃ ∼ 𝑝(𝑦 |𝜏̄, 𝜶);
4. Draw (approximately) 𝝉𝑠 = {𝜏(1)𝑠 , 𝜏(2)𝑠 , . . . , 𝜏(𝐿)𝑠 } from the

posterior 𝜋(𝜏| 𝑦̃);
5. Compute distances 𝜹𝑠 = {𝛿1 , 𝛿2 , . . . , 𝛿𝐿} with

𝛿𝑖 = 𝑑𝜎(𝜏(𝑖)𝑠 , 𝜏̄0);

6. Compute the rank 𝑟(𝜹𝑠 , 𝛿̄) =
𝐿∑
𝑖=1

𝕀(𝛿𝑖 < 𝛿̄).

39 / 45



Some results: tree distances

40 / 45



Some results: continuous parameters
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Statistics in the space of phylogenetic trees

⊚ Central Limit Theorem(s) in BHV space: Barden, Le &
Owen (2013);

⊚ “Statistics in the Billera-Holmes-Vogtmann
space”: Weyenberg (2015);

⊚ Consistency of the MLE: RoyChoudhury, Willis & Bunge
(2015);

⊚ How to turn tree space into an Euclidean space: Barden &
Le (2017);

⊚ Quantifying uncertainty about phylogenies: Willis & Bell
(2018);

⊚ Confidence sets for phylogenies: Willis (2018);
⊚ Probabilistic path Hamiltonian Monte Carlo for

phylogenies: Dinh et al. (2017).
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https://projecteuclid.org/euclid.ejp/1465064250
https://projecteuclid.org/euclid.ejp/1465064250
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https://arxiv.org/abs/1703.07081
https://www.tandfonline.com/doi/abs/10.1080/10618600.2017.1391697
https://www.tandfonline.com/doi/abs/10.1080/10618600.2017.1391697
https://www.tandfonline.com/doi/abs/10.1080/01621459.2017.1395342
http://proceedings.mlr.press/v70/dinh17a/dinh17a.pdf


Open problems in MCMC for phylogenies

Open problems:

– How can we construct more efficient proposals? How to
exploit structure?

◦ Geometry!
– How to quantify exploration of the target?

◦ Exploit subtrees;
◦ Exploit quasi-lumpability (?);
◦ Multi-dimensional scaling (?).

– Optimal scaling: what’s the optimal acceptance
probability?
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Take home3

Searching trees is hard
Complicated and HUGE parameter space

Height-preserving tree rearrangements are good
Use the extra information provided by the tip dates

Validation is hard but feasible
Using the coalescent and SBC (with clever metrics) gives us a
bit of hope.

Much more work is needed
We should prepare for an era of plenty

3this talk is available online
44 / 45
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THE
END


