On the Model Building for Transmission Line Cables: a Bayesian Approach

Willian P. Hernández¹, **Daniel A. Castello**¹ and Carlos F.T. Matt 2

¹School of Mechanical Engineering, Universidad Industrial de Santander, Colombia
²Department of Mechanical Engineering, Universidade Federal o Rio de Janeiro, Brasil
³Dept. of Lines and Substations, CEPEL, Rio de Janeiro, RJ, Brazil

COLMEIA, NOVEMBRO - 2019

OUTLINE

Introduction

- Transmission Line Cables
- Bayesian Inverse Analysis
- Model Selection

Results

Concluding Remarks

INTRODUCTION

Stranded Cables

- Used in cable-stayed bridges.
- Used in high-voltage transmission lines.
- Stranded cables of electric transmission lines are subjected to wind-induced vibrations caused by the vortex-shedding phenomenon.

INTRODUCTION

Electric transmission lines

INTRODUCTION

Motivation

 Determining accurate equivalent homogeneous models to describe the mechanical behavior of stranded cables may lead to safer transmission line systems.

Goal

 To provide an approach to calibrate transmission line models using a Bayesian Framework.

Governing equation ?

Governing equation: equivalent homogeneous model

$$\mu \frac{\partial^2 w(x,t)}{\partial t^2} + \alpha \frac{\partial w(x,t)}{\partial t} + \frac{\partial^2 M(x,t)}{\partial x^2} - \frac{\partial}{\partial x} \left(T \frac{\partial w(x,t)}{\partial x} \right) = F(x,t)$$
(1)
$$M(x,t) = \int_A -y \ \sigma(x,y,t) \ dA$$
(2)
$$\varepsilon(x,y,t) = \frac{T}{EA} - y \frac{\partial^2 w(x,t)}{\partial x^2}$$
(3)

Constitutive equation: Kelvin-Voigt

$$\sigma^{KVM}(x, y, t) = E\varepsilon(x, y, t) + \xi \frac{d\varepsilon(x, y, t)}{dt}$$
(4)

$$\boldsymbol{\theta}_{KVM} = \{E, \xi\}' \tag{5}$$

Governing equation with Kelvin-Voigt

$$\mu \frac{\partial^2 w}{\partial t^2} + \alpha \frac{\partial w}{\partial t} + EI \frac{\partial^4 w}{\partial x^4} + \xi I \frac{\partial}{\partial t} \left(\frac{\partial^4 w}{\partial x^4} \right) - T \frac{\partial^2 w}{\partial x^2} = F(x, t).$$
(6)
where $w = w(x, t)$

Constitutive equation: fractional Kelvin-Voigt

$$\sigma^{FDM}(x, y, t) = E\varepsilon(x, y, t) + \xi \frac{d^{\beta}\varepsilon(x, y, t)}{dt^{\beta}}$$
(7)

$$\boldsymbol{\theta}_{FDM} = \{\boldsymbol{E}, \boldsymbol{\xi}, \boldsymbol{\beta}\}^{T}$$
(8)
where $\boldsymbol{\beta} \in [0, 1]$
(9)

Rieman-Liouville Fractional derivative of order $\nu > 0$

$$\frac{d^{\beta}}{dt^{\beta}}[f(t)] \triangleq \begin{cases} \frac{1}{\Gamma(m-\beta)} \frac{d^m}{dt^m} \int_0^t \frac{f(\tau)}{(t-\tau)^{\beta+1-m}} d\tau, & \text{if} \quad (m-1) < \beta < m \\ \frac{d^m}{dt^m} f(t), & \text{if} \quad \beta = m \\ (10) \end{cases}$$

• $m \in \mathbb{N}$

- Γ is the Gamma function;
- ν is the order of the fractional derivative operator

Caputo Fractional derivative of order $\nu > 0$

$$\frac{d^{\beta}}{dt^{\beta}}[f(t)] \triangleq \begin{cases} \frac{1}{\Gamma(m-\beta)} \int_{0}^{t} \frac{f^{(m)}(\tau)}{(t-\tau)^{\beta+1-m}} d\tau, & \text{if} \quad (m-1) < \beta < m \\ \frac{d^{m}}{dt^{m}} f(t), & \text{if} \qquad \beta = m \\ (11) \end{cases}$$

• $m \in \mathbb{N}$

- Γ is the Gamma function;
- ν is the order of the fractional derivative operator

Governing equation: fractional Kelvin-Voigt (Caputo)

$$\mu \frac{\partial^2 w}{\partial t^2} + \alpha \frac{\partial w}{\partial t} + EI \frac{\partial^4 w}{\partial x^4} - T \frac{\partial^2 w}{\partial x^2} + \frac{\xi I}{\Gamma(1-\beta)} \left\{ \int_0^t \frac{1}{(t-\tau)^\beta} \frac{\partial}{\partial \tau} \left(\frac{\partial^4 w(x,\tau)}{\partial x^4} \right) d\tau \right\} = F(x,t) \quad (12)$$

where $\beta \in [0,1]$

BAYESIAN INFERENCE: Framework

Bayesian paradigm for inverse problems

- All the variables are modeled as random variables.
- Their uncertainties are encoded in their pdfs.
- The solution is the exploration of the posterior probability density.

BAYESIAN INFERENCE: Framework

Bayes Rule

- Model parameters θ
- Observation Model

$$\mathbf{y} = \mathbf{A}(oldsymbol{ heta}) + \mathbf{e}$$

Bayes rule

$$\pi(oldsymbol{ heta}|\mathbf{y}) = rac{\pi(\mathbf{y}|oldsymbol{ heta}) \,\, \pi_{pr}(oldsymbol{ heta})}{\pi(\mathbf{y})}$$

 Assuming that θ and e are independent random vectors, the likelihood function casts as

$$\pi(\mathbf{y}|\boldsymbol{\theta}) = \pi_e(\mathbf{y} - \mathbf{A}(\boldsymbol{\theta}))$$

BAYESIAN INFERENCE: Framework

Bayes Rule

- Likelihood function $\pi(\mathbf{y}|\boldsymbol{\theta})$
- Prior $\pi_{pr}(\theta)$: **Subjective** information.
- Prior $\pi_{pr}(\theta)$: What are the **criticisms** ?
- π(y): One would hardly be able to obtain this. Fortunately, it acts as a scaling factor when using sampling based strategies.

Thinkings

- What constitutes a good model class ?
- Quality of the data fitting.
- Nevertheless, one may also assess the complexity of the model class.

Model simplicity ... : How many boxes are behind the tree ?¹

¹MacKay DJC. Information theory, inference, and learning algorithms. Cambridge (UK): Cambridge University Press; 2003.

Is there 1 or are thre 2 ? 2

Thinkings: Occam's razor and Parsimony

- The notion of model simplicity as a criterion for model selection dates back to the principle of parsimony suggested by Box and Jenkins, for whom the model class that adequately represents the observed data and with the smallest number of parameters should be selected.
- Occam's razor is the principle that states a preference for simple theories. 'Accept the simplest explanation that fits the data'.

Thinkings

 Bayesian Model Class Selection (BMCS) provides a rigorous framework to compare the performance of a set of candidate model classes in describing experiment data.

Theory

- Consider the set M = {M₁(θ₁), M₂(θ₂), · · · , M_{N_M}(θ_{N_M})} of N_M (N_M > 1) plausible/suitable model classes proposed to predict a response quantity of interest for the system under investigation.
- $\boldsymbol{\theta}_k$ is the random vector that characterizes model class M_k

Theory: Bayes

$$\pi(\mathbf{M}_{i}|\mathbf{Y},\mathbf{M}) = \frac{\pi(\mathbf{Y}|\mathbf{M}_{i})\pi(\mathbf{M}_{i}|\mathbf{M})}{\sum_{k=1}^{N_{M}}\pi(\mathbf{Y}|\mathbf{M}_{k})\pi(\mathbf{M}_{k}|\mathbf{M})}$$
(13)

- π(M_k|M) = π_{pr}(M_k|M) indicates the modeler's belief about initial relative plausibility of the model class M_i within the set M.
- What about $\pi(\mathbf{Y}|\mathbf{M}_i)$?

Evidence $\pi(\mathbf{Y}|M_i)$: the probability of data \mathbf{Y} according to the model class M_i

$$\pi(\mathbf{Y}|\mathbf{M}_i) = \int_{\Theta} \pi(\mathbf{Y}|\boldsymbol{\theta},\mathbf{M}_i) \,\pi(\boldsymbol{\theta}|\mathbf{M}_i) d\boldsymbol{\theta}$$
(14)

- No analytical expressions.
- Its computation requires computational methods such as MCMC.

Log-evidence

$$\ln \pi(\mathbf{Y}|\mathbf{M}_i) = \ln \pi(\mathbf{Y}|\boldsymbol{\theta}, \mathbf{M}_i) - \ln \frac{\pi(\boldsymbol{\theta}|\mathbf{Y}, \mathbf{M}_i)}{\pi(\boldsymbol{\theta}|\mathbf{M}_i)}$$
(15)

<ロト < 回 ト < 巨 ト < 巨 ト ミ の Q (C 25 / 53

Expected value in $\pi(\theta | \mathbf{Y}, \mathbf{M}_i)$

$$\int \ln \pi(\mathbf{Y}|\mathbf{M}_i) \times \pi(\boldsymbol{\theta}|\mathbf{Y},\mathbf{M}_i) d\boldsymbol{\theta} = \dots$$
(16)

$$\ln \pi(\mathbf{Y}|\mathbf{M}_i) = \mathbb{E}[\ln \pi(\mathbf{Y}|\boldsymbol{\theta},\mathbf{M}_i)] - \mathbb{E}\left[\ln \frac{\pi(\boldsymbol{\theta}|\mathbf{Y},\mathbf{M}_i)}{\pi(\boldsymbol{\theta}|\mathbf{M}_i)}\right]$$
(17)

Thinking

 E[ln π(Y|θ, M_i)] is the posterior mean of the log-likelihood distribution and quantifies the degree to which a model class M_i fits the observed data

Thinking ...

- $\mathbb{E}\left[\ln \frac{\pi(\theta|\mathbf{Y}, M_i)}{\pi(\theta|M_i)}\right]$ is the Kullback-Leibler divergence from posterior to the prior distributions.
- It reflects the amount of information extracted from observed data Y and is always non-negative.

Thinking ...

Hence, the (log-)evidence trades off between data-fit and complexity of a model class !!

BAYESIAN INFERENCE: Sampling

Exploration of the posterior $\pi(\theta|\mathbf{y})$

- Markov Chain Monte Carlo Methods.
- Expected values and variances of model parameters.
- Information for UQ analyses.
- Model validation analyses can take both measured and model uncertainties into account.

BAYESIAN INFERENCE: MCMC

MCMC

- A MCMC method for the simulation of a distribution $\bar{\pi}(\theta)$ method is any method that produces samples $\{\theta^{(1)}, \ldots, \theta^{(N)}\}$ whose stationary distribution is $\bar{\pi}(\theta)$.
- When using the Metropolis-Hastings (MH) algorithm one should tune the proposal. Too wide proposals lead to hardly accepted samples. On the other hand, too narrow proposals lead to high levels of acceptance and the exploration over the density gets too slow ...
- In addition, one could modify the accept/reject procedure for improving the MH efficiency...

Delayed Rejection Adaptive Metropolis (DRAM)

MH based algorihm which combines the Adaptive Metropolis (AM) and the Delayed Rejection (DR).

Adaptive Metropolis (AM)

 The proposed distribution is tuned considering the Markov chain empirical covariance.

$$C_n = s_d Cov(\theta^1, \theta^2, ..., \theta^{n-1}) + s_d \lambda I_d$$
(18)

where $s_d = \frac{2.39^2}{d}$, being d the problem dimension, λ is a constant with small magnitude, I_d is a identity matrix and $Cov(\theta^1, \theta^2, ..., \theta^{n-1})$ is the empirical covariance.

Delayed Rejection (DR)

- By the MH, consecutive rejections may lead to poor estimates
- By the DR it may be bypassed by proposing other candidates.
- The acceptance/rejection rule takes into account all the candidates that have already been rejected for that specific candidate in order to maintain the ergodicity.
- For symmetric proposals

$$\alpha_i(\boldsymbol{\theta}_i|\boldsymbol{\theta}, \boldsymbol{\theta}_1, ..., \boldsymbol{\theta}_{i-1}) = \max\left[1, \frac{\min\left(0, \pi_{post}(\boldsymbol{\theta}_i|\mathbf{y}) - \pi_{post}(\boldsymbol{\theta}^*|\mathbf{y})\right)}{\pi_{post}(\boldsymbol{\theta}|\mathbf{y}) - \pi_{post}(\boldsymbol{\theta}^*|\mathbf{y})}\right]$$

where $\pi(\theta^*|\mathbf{y})$ is the lowest probability density proposed and θ^* is the respective state.

Local proposal adaptation

A local adaptation of the proposal may be performed.

 On each *i* stage of the DR, a local proposal covariance modification may be conducted using

$$C_n^i = \gamma_i C_n \quad i = 2, 3... \tag{19}$$

where γ_i is a scaling factor for a *i* DR stage.

Sketch

Experimental Set-Up

 $\mu=1.3027$ kg/m, D=25.15 mm and L=51.95 m. The tests were performed for two different tensile loads, namely $T_1=16481$ N and $T_2=21778$ N .

୬ ୯.୯ 36 / 53

We considered pairs of sensors.

Tabela: Definition of subsets S_{ijk} used for model updating and model validation, $i, j, k \in \{1, 2, 3\}$ and $i \neq j \neq k$.

Subset	Model Updating	Model Validation
<i>S</i> ₁₂₃	$\mathbf{Y} = \{\mathbf{H}_{AC1}\mathbf{H}_{AC2}\}^{T}$	$\mathbf{Y} = \mathbf{H}_{AC3}$
S_{132}	$\mathbf{Y} = \{\mathbf{H}_{AC1}\mathbf{H}_{AC3}\}^T$	$\mathbf{Y} = \mathbf{H}_{AC2}$
S ₂₃₁	$\mathbf{Y} = \{\mathbf{H}_{AC2}\mathbf{H}_{AC3}\}^T$	$\mathbf{Y} = \mathbf{H}_{AC1}$

Kelvin-Voigt

Figura: Posterior samples generated with the DRAM algorithm for the KVM at $\mathcal{T}=16481\,\mathrm{N}.$

୬ ୯.୦ 38 / 53

Fractional Kelvin-Voigt

Figura: Posterior samples generated with the DRAM algorithm for the FDM at T = 21778 N.

୬ ୯ ୯ 39 / 53

Kelvin-Voigt

Figura: PDFs and CDFs for the KV model parameters.

Kelvin-Voigt

Figura: PDFs and CDFs for the KV model parameters.

୬ ୯.୦ 41 / 53

Fractional Kelvin-Voigt

Figura: PDFs and CDFs for the FD model parameters.

୬ ୯.୦ 42 / 53

Fractional Kelvin-Voigt

Figura: PDFs and CDFs for the FD model parameters.

୬ ୯.୦ 43 / 53

Integrals

$$\ln \pi(\mathbf{Y}|\mathbf{M}_{i}) =$$

$$= \int_{\Theta} \pi(\boldsymbol{\theta}|\mathbf{Y}, \mathbf{M}_{i}) \left\{ \ln \left[\pi(\mathbf{Y}|\boldsymbol{\theta}, \mathbf{M}_{i}) \pi(\boldsymbol{\theta}|\mathbf{M}_{i}) \right] - \ln \pi(\boldsymbol{\theta}|\mathbf{Y}, \mathbf{M}_{i}) \right\} d\boldsymbol{\theta} =$$

$$= \int_{\Theta} \pi(\boldsymbol{\theta}|\mathbf{Y}, \mathbf{M}_{i}) \ln \left[\pi(\mathbf{Y}|\boldsymbol{\theta}, \mathbf{M}_{i}) \pi(\boldsymbol{\theta}|\mathbf{M}_{i}) \right] d\boldsymbol{\theta} + S[\pi(\boldsymbol{\theta}|\mathbf{Y}, \mathbf{M}_{i})](20)$$

Integrals

$$S[\pi(\theta|\mathbf{Y}, M_i)] \equiv -\int_{\mathbf{\Theta}} \pi(\theta|\mathbf{Y}, M_i) \ln \pi(\theta|\mathbf{Y}, M_i) \ d\theta$$
 (21)

The (log-)evidence is thus approximately computed from posterior samples $\theta^{(k)}$, $k = 1, 2, \ldots, N_{se}$

$$\ln \pi(\mathbf{Y}|\mathbf{M}_i) \approx \frac{1}{N_{se}} \left\{ \sum_{k=1}^{N_{se}} \ln \left[\pi(\mathbf{Y}|\boldsymbol{\theta}^{(k)},\mathbf{M}_i) \pi(\boldsymbol{\theta}^{(k)}|\mathbf{M}_i) \right] - \ln \pi(\boldsymbol{\theta}^{(k)}|\mathbf{Y},\mathbf{M}_i) \right\}$$

Results

Tabela: Posterior probabilities for the two model classes (KVM and FDM).

	Tensile load 16481 [N]		Tensile lo	Tensile load 21778 [N]	
Maaguramant subset	Model class		Mo	Model class	
weasurement subset	KVM	FDM	KVM	FDM	
S123	0.387	0.613	0.361	0.639	
S231	0.374	0.626	0.376	0.624	
S132	0.410	0.590	0.327	0.673	

Bayes Factor $\frac{P(FDM|\mathbf{Y})}{P(KVM|\mathbf{Y})}$ for T = 21778N

- S123: 1.8
- S231: 1.6

S312: 2.0

Jeffrey's scale³ for Bayes factor
$$B = \frac{P(M|\mathbf{Y})}{P(M_0|\mathbf{Y})}$$
 when $P_{PR}(M_0) = P_{PR}(M)$

- B < 1 indicates negative evidence for M
- B ∈ [1,3] indicates an evidence that is not worth more than a bare mention.
- $B \in [3, 20]$ indicates a positive evidence for M.
- $B \in [20, 150]$ indicates a strong evidence for M.
- B > 150 indicates a very strong evidence for M.

¹Bradley Efron and Alan Gous. Scales of evidence for model selection: Fisher versus Jeffreys. IMS Lecture notes - Monograph Series vol 38, 2001. =

Model Validation

Forward Uncertainty Propagation and Model Validation

Figura: Uncertainty propagation when considering $\theta \sim \pi(\theta | \mathbf{Y})$. Tensile load $T_1 = 16481$ N. Green: 99% credibility interval for the KVM. Blue 99% credibility interval for the FDM

୬ ୯ ୯ 50 / 53

Model Validation

APCC

Figura: APCC Validation metric for the tensile $T_1 = 16481$ N. On the left: KVM. On the right: FDM.

୬ ୯ ୯ 51 / 53

Results

Results

Check for updates

On the model building for transmission line cables: a Bayesian approach

W. P. Hernández^a, D. A. Castello^b and C. F. T. Matt^c

⁸School of Mechanical Engineering, Universidad Industrial de Santander, Bucaramanga, Colombia; ⁹Mechanical Engineering Department, Universidade Federal do Río de Janeiro, Rio de Janeiro, Rizali; ⁶Department of Transmission Lines and Electric Equipments, CEPEL, Río de Janeiro, Brazil

ABSTRACT

This work is aimed at building models to predict the bending vibrations of stranded cables used in high-voltage transmission lines. The present approach encompasses model calibration, validation and selection based on a statistical framework. Model calibration is tackled using a Bayesian framework and the Delayed Rejection Adaptive Metroolis (DRAM) sampling alcorithm is emoloyed to

ARTICLE HISTORY

Received 12 April 2017 Accepted 21 January 2018

KEYWORDS

Stranded cables; bending vibrations; fractional derivative; Bayesian model