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On the Model Building for Transmission Line Cables: a Bayesian Approach

INTRODUCTION

Stranded Cables

Used in cable-stayed bridges.

Used in high-voltage transmission lines.

Stranded cables of electric transmission lines are subjected to
wind-induced vibrations caused by the vortex-shedding
phenomenon.
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INTRODUCTION

Electric transmission lines
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INTRODUCTION

Motivation

Determining accurate equivalent homogeneous models to
describe the mechanical behavior of stranded cables may lead
to safer transmission line systems.

Goal

To provide an approach to calibrate transmission line models
using a Bayesian Framework.
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Mathematical Modelling

Governing equation ?
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Mathematical Modelling

Governing equation: equivalent homogeneous model

µ
∂2w(x , t)

∂t2
+α

∂w(x , t)

∂t
+
∂2M(x , t)

∂x2
− ∂

∂x

(
T
∂w(x , t)

∂x

)
= F (x , t)

(1)

M(x , t) =

∫
A
−y σ(x , y , t) dA (2)

ε(x , y , t) =
T

EA
− y

∂2w(x , t)

∂x2
(3)
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Mathematical Modelling

Constitutive equation: Kelvin-Voigt

σKVM(x , y , t) = Eε(x , y , t) + ξ
dε(x , y , t)

dt
(4)

θKVM = {E , ξ}T (5)
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Mathematical Modelling

Governing equation with Kelvin-Voigt

µ
∂2w

∂t2
+ α

∂w

∂t
+ EI

∂4w

∂x4
+ ξI

∂

∂t

(
∂4w

∂x4

)
− T

∂2w

∂x2
= F (x , t). (6)

wherew = w(x , t)
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Mathematical Modelling

Constitutive equation: fractional Kelvin-Voigt

σFDM(x , y , t) = Eε(x , y , t) + ξ
dβε(x , y , t)

dtβ
(7)

θFDM = {E , ξ, β}T (8)

whereβ ∈ [0, 1] (9)
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Mathematical Modelling

Rieman-Liouville Fractional derivative of order ν > 0

dβ

dtβ
[f (t)] ,

{
1

Γ(m−β)
dm

dtm

∫ t
0

f (τ)
(t−τ)β+1−m dτ, if (m − 1) < β < m

dm

dtm f (t), if β = m

(10)

m ∈ N
Γ is the Gamma function;

ν is the order of the fractional derivative operator
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Mathematical Modelling

Caputo Fractional derivative of order ν > 0

dβ

dtβ
[f (t)] ,

{
1

Γ(m−β)

∫ t
0

f (m)(τ)
(t−τ)β+1−m dτ, if (m − 1) < β < m

dm

dtm f (t), if β = m
(11)

m ∈ N
Γ is the Gamma function;

ν is the order of the fractional derivative operator
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Mathematical Modelling

Governing equation: fractional Kelvin-Voigt (Caputo)

µ
∂2w

∂t2
+ α

∂w

∂t
+ EI

∂4w

∂x4
− T

∂2w

∂x2
+

+
ξI

Γ(1− β)

{∫ t

0

1

(t − τ)β
∂

∂τ

(
∂4w(x , τ)

∂x4

)
dτ

}
= F (x , t) (12)

whereβ ∈ [0, 1]
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BAYESIAN INFERENCE: Framework

Bayesian paradigm for inverse problems

All the variables are modeled as random variables.

Their uncertainties are encoded in their pdfs.

The solution is the exploration of the posterior probability
density.
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BAYESIAN INFERENCE: Framework

Bayes Rule

Model parameters θ

Observation Model
y = A(θ) + e

Bayes rule

π(θ|y) =
π(y|θ) πpr (θ)

π(y)

Assuming that θ and e are independent random vectors, the
likelihood function casts as

π(y|θ) = πe(y − A(θ))
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BAYESIAN INFERENCE: Framework

Bayes Rule

Likelihood function π(y|θ)

Prior πpr (θ): Subjective information.

Prior πpr (θ): What are the criticisms ?

π(y): One would hardly be able to obtain this. Fortunately, it
acts as a scaling factor when using sampling based
strategies.
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Model class selection

Thinkings

What constitutes a good model class ?

Quality of the data fitting.

Nevertheless, one may also assess the complexity of the model
class.
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Model class selection

Model simplicity ... : How many boxes are behind the tree ?1

1MacKay DJC. Information theory, inference, and learning algorithms.
Cambridge (UK): Cambridge University Press; 2003.
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Model class selection

Is there 1 or are thre 2 ? 2

2MacKay DJC. Information theory, inference, and learning algorithms.
Cambridge (UK): Cambridge University Press; 2003.
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Model class selection

Thinkings: Occam’s razor and Parsimony

The notion of model simplicity as a criterion for model
selection dates back to the principle of parsimony suggested
by Box and Jenkins, for whom the model class that
adequately represents the observed data and with the smallest
number of parameters should be selected.

Occam’s razor is the principle that states a preference for
simple theories. ‘Accept the simplest explanation that fits the
data’.
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Model class selection

Thinkings

Bayesian Model Class Selection (BMCS) provides a rigorous
framework to compare the performance of a set of candidate
model classes in describing experiment data.
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Model class selection

Theory

Consider the set M = {M1(θ1),M2(θ2), · · · ,MNM
(θNM

)} of
NM (NM > 1) plausible/suitable model classes proposed to
predict a response quantity of interest for the system under
investigation.

θk is the random vector that characterizes model class Mk
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Model class selection

Theory: Bayes

π(Mi |Y,M) =
π(Y|Mi )π(Mi |M)∑NM

k=1 π(Y|Mk)π(Mk |M)
(13)

π(Mk |M) = πpr (Mk |M) indicates the modeler’s belief about
initial relative plausibility of the model class Mi within the set
M.

What about π(Y|Mi ) ?
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Model class selection

Evidence π(Y|Mi ): the probability of data Y according to the
model class Mi

π(Y|Mi ) =

∫
Θ
π(Y|θ,Mi )π(θ|Mi )dθ (14)

No analytical expressions.

Its computation requires computational methods such as
MCMC.

24 / 53



On the Model Building for Transmission Line Cables: a Bayesian Approach

Model class selection

Log-evidence

lnπ(Y|Mi ) = lnπ(Y|θ,Mi )− ln
π(θ|Y,Mi )

π(θ|Mi )
(15)
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Model class selection

Expected value in π(θ|Y,Mi )∫
lnπ(Y|Mi )× π(θ|Y,Mi )dθ = . . . (16)

lnπ(Y|Mi ) = E[ lnπ(Y|θ,Mi )]− E
[

ln
π(θ|Y,Mi )

π(θ|Mi )

]
(17)
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Model class selection

Thinking ...

E[lnπ(Y|θ,Mi )] is the posterior mean of the log-likelihood
distribution and quantifies the degree to which a model class
Mi fits the observed data
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Model class selection

Thinking ...

E
[
ln π(θ|Y,Mi )

π(θ|Mi )

]
is the Kullback-Leibler divergence from

posterior to the prior distributions.

It reflects the amount of information extracted from observed
data Y and is always non-negative.
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Model class selection

Thinking ...

Hence, the (log-)evidence trades off between data-fit and
complexity of a model class !!
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BAYESIAN INFERENCE: Sampling

Exploration of the posterior π(θ|y)

Markov Chain Monte Carlo Methods.

Expected values and variances of model parameters.

Information for UQ analyses.

Model validation analyses can take both measured and model
uncertainties into account.
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BAYESIAN INFERENCE: MCMC

MCMC

A MCMC method for the simulation of a distribution π̄(θ)
method is any method that produces samples {θ(1), . . . ,θ(N)}
whose stationary distribution is π̄(θ) .

When using the Metropolis-Hastings (MH) algorithm one
should tune the proposal. Too wide proposals lead to hardly
accepted samples. On the other hand, too narrow proposals
lead to high levels of acceptance and the exploration over the
density gets too slow ...

In addition, one could modify the accept/reject procedure for
improving the MH efficiency...
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DRAM Algorithm

Delayed Rejection Adaptive Metropolis (DRAM)

MH based algorihm which combines the Adaptive Metropolis
(AM) and the Delayed Rejection (DR).

Adaptive Metropolis (AM)

The proposed distribution is tuned considering the Markov
chain empirical covariance.

Cn = sdCov(θ1,θ2, ...,θn−1) + sdλId (18)

where sd = 2.392

d , being d the problem dimension, λ is a
constant with small magnitude, Id is a identity matrix and
Cov(θ1,θ2, ...,θn−1) is the empirical covariance.
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DRAM Algorithm

Delayed Rejection (DR)

By the MH, consecutive rejections may lead to poor estimates

By the DR it may be bypassed by proposing other candidates.

The acceptance/rejection rule takes into account all the
candidates that have already been rejected for that specific
candidate in order to maintain the ergodicity.

For symmetric proposals

αi (θi |θ,θ1, ...,θi−1) = max

[
1,

min (0, πpost(θi |y)− πpost(θ∗|y))

πpost(θ|y)− πpost(θ∗|y)

]

where π(θ∗|y) is the lowest probability density proposed and θ∗ is
the respective state.
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DRAM Algorithm

Local proposal adaptation

A local adaptation of the proposal may be performed.

On each i stage of the DR, a local proposal covariance
modification may be conducted using

C i
n = γiCn i = 2, 3... (19)

where γi is a scaling factor for a i DR stage.
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DRAM Algorithm

Sketch
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Experimental Set-Up

µ = 1.3027 kg/m, D = 25.15 mm and L = 51.95 m. The tests
were performed for two different tensile loads, namely T1 = 16481
N and T2 = 21778 N .
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Model Calibration

We considered pairs of sensors.

Tabela: Definition of subsets Sijk used for model updating and model
validation, i , j , k ∈ {1, 2, 3} and i 6= j 6= k .

Subset Model Updating Model Validation

S123 Y = {HAC1HAC2}T Y = HAC3

S132 Y = {HAC1HAC3}T Y = HAC2

S231 Y = {HAC2HAC3}T Y = HAC1
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Model Calibration

Kelvin-Voigt
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Figura: Posterior samples generated with the DRAM algorithm for the
KVM at T = 16481N.

38 / 53



On the Model Building for Transmission Line Cables: a Bayesian Approach

Model Calibration

Fractional Kelvin-Voigt
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Figura: Posterior samples generated with the DRAM algorithm for the
FDM at T = 21778N.
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Model Calibration

Kelvin-Voigt
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Figura: PDFs and CDFs for the KV model parameters.
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Model Calibration

Kelvin-Voigt
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Figura: PDFs and CDFs for the KV model parameters.
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Model Calibration

Fractional Kelvin-Voigt
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Figura: PDFs and CDFs for the FD model parameters.
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Model Calibration

Fractional Kelvin-Voigt
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Figura: PDFs and CDFs for the FD model parameters.
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Bayesian model class selection

Integrals

lnπ(Y|Mi ) =

=

∫
Θ
π(θ|Y,Mi ) {ln [π(Y|θ,Mi )π(θ|Mi )]− lnπ(θ|Y,Mi )} dθ =

=

∫
Θ
π(θ|Y,Mi ) ln [π(Y|θ,Mi )π(θ|Mi )] dθ + S [π(θ|Y,Mi )](20)
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Bayesian model class selection

Integrals

S [π(θ|Y,Mi )] ≡ −
∫

Θ
π(θ|Y,Mi ) lnπ(θ|Y,Mi ) dθ (21)
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Bayesian model class selection

The (log-)evidence is thus approximately computed from posterior
samples θ(k), k = 1, 2, . . . ,Nse

lnπ(Y|Mi ) ≈
1

Nse

{
Nse∑
k=1

ln [π(Y|θ(k),Mi )π(θ(k)|Mi )]− lnπ(θ(k)|Y,Mi )

}
(22)
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Bayesian model class selection

Results

Tabela: Posterior probabilities for the two model classes (KVM and
FDM).

Tensile load 16481 [N] Tensile load 21778 [N]

Measurement subset
Model class Model class

KVM FDM KVM FDM
S123 0.387 0.613 0.361 0.639
S231 0.374 0.626 0.376 0.624
S132 0.410 0.590 0.327 0.673
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Bayesian model class selection

Bayes Factor P(FDM|Y)
P(KVM|Y) for T = 16481N

S123: 1.6

S231: 1.7

S312: 1.5

Bayes Factor P(FDM|Y)
P(KVM|Y) for T = 21778N

S123: 1.8

S231: 1.6

S312: 2.0
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Bayesian model class selection

Jeffrey’s scale3 for Bayes factor B = P(M|Y)
P(M0|Y) when

PPR(M0) = PPR(M)

B < 1 indicates negative evidence for M

B ∈ [1, 3] indicates an evidence that is not worth more than a
bare mention.

B ∈ [3, 20] indicates a positive evidence for M.

B ∈ [20, 150] indicates a strong evidence for M.

B > 150 indicates a very strong evidence for M.

1Bradley Efron and Alan Gous. Scales of evidence for model selection:
Fisher versus Jeffreys. IMS Lecture notes - Monograph Series. vol 38, 2001.
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Model Validation

Forward Uncertainty Propagation and Model Validation
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Figura: Uncertainty propagation when considering θ ∼ π(θ|Y). Tensile
load T1 = 16481 N. Green: 99% credibility interval for the KVM. Blue
99% credibility interval for the FDM

1Bradley Efron and Alan Gous. Scales of evidence for model selection:
Fisher versus Jeffreys. IMS Lecture notes - Monograph Series. vol 38, 2001.
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Model Validation

APCC
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Figura: APCC Validation metric for the tensile T1 = 16481 N. On the
left: KVM. On the right: FDM.
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Results

Results

Figura: Detailed information.
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