Community detection in weighted networks

Andressa Cerqueira

Department of Statistics Universidade Federal de São Carlos, UFSCar

May 17, 2023

Motivation: Graphs/Networks

Motivation: Graphs/Networks

Statistics/ Probability

- statistical model
- infer the parameters
- hypothesis testing
- clustering nodes
- probabilistic model
- study asymptotic properties of the model
- study dynamics on networks

• Zachary's karate club: social relationship between 34 members of a karate club

• Zachary's karate club: social relationship between 34 members of a karate club

Stochastic Block Models

Holland, P. W., Laskey, K. B., & Leinhardt, S. (1983). Stochastic blockmodels: First steps. Social networks, 5(2), 109-137.

Latent variables: C_1, C_2, \ldots, C_n i.i.d. with $\mathbb{P}(C_i = a) = \pi_a$, $a = 1, \ldots, K$ and $\pi = (\pi_1, \ldots, \pi_K)$. *K* is known.

Stochastic Block Models

Holland, P. W., Laskey, K. B., & Leinhardt, S. (1983). Stochastic blockmodels: First steps. Social networks, 5(2), 109-137.

Latent variables: C_1, C_2, \ldots, C_n i.i.d. with $\mathbb{P}(C_i = a) = \pi_a$, $a = 1, \ldots, K$ and $\pi = (\pi_1, \ldots, \pi_K)$. *K* is known. **Observed variables: A** adjacent matrix of the graph with *n* vertices.

 $A_{ij} \in \{0, 1\}$ and

$$A_{ij}|(C_i = a, C_j = b) \sim Bernoulli(P_{a,b})$$

P is a symmetric matrix $K \times K$.

Problems:

1. Estimation of nodes' labels $\mathbf{c} = (c_1, \cdots, c_n)$ (Community detection);

Problems:

- 1. Estimation of nodes' labels $\mathbf{c} = (c_1, \cdots, c_n)$ (Community detection);
- 2. Estimation of the parameter $\theta = (\pi, P)$;

Problems:

- 1. Estimation of nodes' labels $\mathbf{c} = (c_1, \cdots, c_n)$ (Community detection);
- 2. Estimation of the parameter $\theta = (\pi, P)$;
- 3. Estimation of the number of blocks K (Model selection problem).

Motivation: weighted networks

Motivation: weighted networks

- Number of flights between two airports in an air transportation network
- Brain connectivity networks with edge weights measured as Fisher-transformed Pearson correlations between brain regions

Weighted Stochastic Block Models

Network with *n* vertices **Latent variables:** C_1, C_2, \ldots, C_n i.i.d. with $\mathbb{P}(C_i = a) = \pi_a$, $a = 1, \ldots, K$ and $\pi = (\pi_1, \ldots, \pi_K)$. *K* is known.

Weighted Stochastic Block Models

Network with *n* vertices **Latent variables:** C_1, C_2, \ldots, C_n i.i.d. with $\mathbb{P}(C_i = a) = \pi_a$, $a = 1, \ldots, K$ and $\pi = (\pi_1, \ldots, \pi_K)$. *K* is known.

Observed variables: Edge-weighted network \boldsymbol{W} such that

$$\begin{aligned} W_{ij} \mid \mathbf{C} &= \mathbf{c} \ \sim \ \mathcal{N}(B_{c_i c_j}, \Sigma_{c_i c_j}), \qquad 1 \leq i < j \leq n \\ W_{ii} &= 0, \qquad i = 1, \dots, n. \end{aligned}$$

where $B \in \mathbb{R}^{K \times K}$ and $\Sigma \in \mathbb{R}^{K \times K}_+$. **W** is a symmetric $n \times n$ matrix.

Weighted Stochastic Block Models

Network with *n* vertices **Latent variables:** C_1, C_2, \ldots, C_n i.i.d. with $\mathbb{P}(C_i = a) = \pi_a$, $a = 1, \ldots, K$ and $\pi = (\pi_1, \ldots, \pi_K)$. *K* is known.

Observed variables: Edge-weighted network \boldsymbol{W} such that

$$\begin{aligned} W_{ij} \mid \mathbf{C} &= \mathbf{c} \ \sim \ \mathcal{N}(B_{c_i c_j}, \Sigma_{c_i c_j}), \qquad 1 \leq i < j \leq n \\ W_{ii} &= 0, \qquad i = 1, \dots, n. \end{aligned}$$

where $B \in \mathbb{R}^{K \times K}$ and $\Sigma \in \mathbb{R}^{K \times K}_+$. **W** is a symmetric $n \times n$ matrix.

Goal: Recover the labels of the nodes using the observed weighted network ${\bf W}$.

	-	
Andress	ord	LIGIT
Allulessa v	Jeru	uene

Weighted Stochastic Block Models: Likelihood

The likelihood is given by

$$L(\pi, B, \Sigma; \mathbf{w}) = \sum_{\mathbf{c} \in \{1, \cdots, K\}^n} p(\mathbf{c}|\pi) p(\mathbf{w}|\mathbf{c}, B, \Sigma)$$

and it is not tractable.

Aicher, C., Jacobs, A. Z., & Clauset, A. (2014). Learning latent block structure in weighted networks. *Journal of Complex Networks*, 3(2), 221-248.

- Instead of using the variables W_{ij}, 1 ≤ i < j ≤ n we use the variables s_{ik}, 1 ≤ i ≤ n and 1 ≤ k ≤ K.
- For any label's vector $e = (e_1, \ldots, e_n)$, define

i=2	$N(B_{21}, \Sigma_{21})$	$N(B_{22}, \Sigma_{22})$	$N(B_{22}, \Sigma_{22})$	$N(B_{21}, \Sigma_{21})$	$N(B_{21}, \Sigma_{21})$

- Instead of using the variables W_{ij}, 1 ≤ i < j ≤ n we use the variables s_{ik}, 1 ≤ i ≤ n and 1 ≤ k ≤ K.
- For any label's vector $e = (e_1, \ldots, e_n)$, define

i=2	$N(B_{21}, \Sigma_{21})$	$N(B_{22}, \Sigma_{22})$	$N(B_{22}, \Sigma_{22})$	$N(B_{21},\Sigma_{21})$	$N(B_{21}, \Sigma_{21})$

- Instead of using the variables W_{ij}, 1 ≤ i < j ≤ n we use the variables s_{ik}, 1 ≤ i ≤ n and 1 ≤ k ≤ K.
- For any label's vector $e = (e_1, \ldots, e_n)$, define

$$s_{ik}(e) = \sum_{j=1}^{n} W_{ij} \mathbb{1}\{e_j = k\}.$$

- Let $\mathbf{s}_i(e) = (s_{i1}(e), \dots, s_{iK}(e)).$
- Given **c**, { $s_{i1}(e), \ldots, s_{iK}(e)$ } are mutually independent random variables.
- **s**_i and **s**_j are not independent

• Let R be the $K \times K$ confusion matrix with (k, l)-th entry given by

$$R_{kl} = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1} \{ e_i = k, c_i = l \}.$$

• Let R be the $K \times K$ confusion matrix with (k, l)-th entry given by

$$R_{kl} = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1} \{ e_i = k, c_i = l \}.$$

• For each node *i*, conditioned on the labels $\mathbf{c} = (c_1, \dots, c_n)$ with $c_i = l$, we have that

$$s_{ik}(e) \sim N(P_{lk}, \Lambda_{lk})$$

where $P_{lk} = nR_k.B._l$ and $\Lambda_{lk} = nR_k.\Sigma._l$.

• Let R be the $K \times K$ confusion matrix with (k, l)-th entry given by

$$R_{kl} = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1} \{ e_i = k, c_i = l \}.$$

• For each node *i*, conditioned on the labels $\mathbf{c} = (c_1, \dots, c_n)$ with $c_i = l$, we have that

$$s_{ik}(e) \sim N(P_{lk}, \Lambda_{lk})$$

where $P_{lk} = nR_k.B._l$ and $\Lambda_{lk} = nR_k.\Sigma._l$.

$$p(\mathbf{s}_{\mathbf{i}}|\pi, P, \Lambda) = \sum_{l=1}^{K} \pi_{l} p(\mathbf{s}_{\mathbf{i}}|P, \Lambda, c_{i} = l)$$
$$= \sum_{l=1}^{K} \pi_{l} \prod_{k=1}^{K} p(s_{ik}|P_{lk}, \Lambda_{lk}, c_{i} = l)$$

We can write the log pseudo-likelihood (up to a constant) as

$$\ell_{PL}(\pi, P, \Lambda; \{\mathbf{s}_{\mathbf{i}}\}) = \sum_{i=1}^{n} \log \left(\sum_{l=1}^{K} \pi_{l} \prod_{k=1}^{K} \frac{1}{\sqrt{\Lambda_{lk}}} \exp \left\{ \frac{-(s_{ik}(e) - P_{lk})^{2}}{2\Lambda_{lk}} \right\} \right)$$

We use EM algorithm (Expectation-Maximization)

Pseudo-likelihood - EM algorithm

Input: Initial labeling *e*. **Output:** Estimate \hat{c} Repeat T times:

- 1. Compute $\widehat{\pi}_{l} = \frac{n_{l}(e)}{n}$, $\widehat{R} = diag(\widehat{\pi}_{1}, \dots, \widehat{\pi}_{K})$, $\widehat{P}_{lk} = n\widehat{R}_{k}.\widehat{B}_{\cdot l}$ and $\widehat{\Lambda}_{lk} = n\widehat{R}_{k}.\widehat{\Sigma}_{\cdot l}$
- 2. Compute the block sums $\mathbf{s}_1, \cdots, \mathbf{s}_n$.
 - 3. Estimate the probabilities for node labels by $\widehat{\pi}_{il} = \mathbb{P}_{Pl}(c_i = l | \mathbf{s}_i)$.
 - 4. Update the parameters values $\hat{\pi}_{l}$, \hat{P}_{lk} and $\hat{\Lambda}_{lk}$.
 - 5. Return to step (3) until convergence.
- 6. Update the labels by $e_i = \arg \max_{i=1}^{n} \widehat{\pi}_{ii}$ and return to (1).
- 7. Return $\hat{c} = e$.

Pseudo-likelihood algorithm - EM algorithm

Input: Initial labeling e.

Output: Estimate \hat{c} Repeat *T* times:

1 Compute
$$\widehat{\pi}_{l} = \frac{n_{l}(e)}{n}$$
, $\widehat{R} = diag(\widehat{\pi}_{1}, \dots, \widehat{\pi}_{K})$, $\widehat{P}_{lk} = n\widehat{R}_{k}.\widehat{B}_{.l}$ and $\widehat{\Lambda}_{lk} = n\widehat{R}_{k}.\widehat{\Sigma}_{.l}$

2 Compute the block sums $\mathbf{s}_1, \cdots, \mathbf{s}_n$.

3 Estimate the probabilities for node labels by $\hat{\pi}_{il} = \mathbb{P}_{Pl}(c_i = l | \mathbf{s}_i)$.

4 Update the parameters values $\widehat{\pi}_{I}$, \widehat{P}_{Ik} and $\widehat{\Lambda}_{Ik}$.

5 Return to step (3) until convergence.

6 Update the labels by $e_i = \arg \max_{i=1}^{\infty} \widehat{\pi}_{ii}$ and return to (1).

7 Return $\hat{c} = e$.

How does the choice of the initial labeling *e* affect $\hat{c}(e)$ in one step of the algorithm?

How does the choice of the initial labeling *e* affect $\hat{c}(e)$ in one step of the algorithm?

 The initial labeling e matches c on a fixed (but unknown) fraction of nodes γ;

How does the choice of the initial labeling *e* affect $\hat{c}(e)$ in one step of the algorithm?

- The initial labeling e matches c on a fixed (but unknown) fraction of nodes γ;
- Overall error:

$$L(\widehat{c},c) = \min_{\phi \in \Phi_{K}} \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\{\widehat{c}_{i} \neq \phi(c_{i})\},\$$

How does the choice of the initial labeling *e* affect $\hat{c}(e)$ in one step of the algorithm?

- The initial labeling e matches c on a fixed (but unknown) fraction of nodes γ;
- Overall error:

$$L(\widehat{c},c) = \min_{\phi \in \Phi_{\kappa}} \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\{\widehat{c}_i \neq \phi(c_i)\},\$$

• Consider the mean matrix B and the variance matrix Σ as

$$B_{kl} = \begin{cases} \mu_1, \text{ if } k = l \\ \mu_2, \text{ if } k \neq l \end{cases} \quad \text{and} \quad \Sigma_{kl} = \sigma^2$$

 Cerqueira, A., & Levina, E. (2023). A pseudo-likelihood approach to community detection in weighted networks. arXiv preprint arXiv:2303.05909.

Theorem

Assume that $\pi_1 = \cdots = \pi_K = \frac{1}{K}$. Consider the initial labeling $e \in \mathcal{E}_{\gamma}$. For $\mu_1, \mu_2 \in \mathbb{R}, \ \sigma^2 > 0$ and $\gamma \in (0, 1), \ \gamma \neq \frac{1}{K}$, we have that for any $\epsilon > 0$

$$\mathbb{E}\left[\sup_{\widehat{\mu_1},\widehat{\mu_2},\widehat{\sigma^2}\in\widehat{\mathcal{P}}_{\mu_1,\mu_2,\sigma^2}}L(\widehat{c}(e),c)\right] \leq (K-1)\exp\left\{-\frac{1}{4}\frac{(\gamma K-1)^2}{K(K-1)^2}\frac{n(\mu_1-\mu_2)^2}{\sigma^2}\right\}.$$

- Xu, M., Jog, V., & Loh, P. L. (2020). Optimal rates for community estimation in the weighted stochastic block model. The Annals of Statistics, 48(1), 183-204.
- Optimal rate of misclustering error

$$\mathbb{E}L(\widehat{c},c) \geq \exp\left(-(1+o(1))rac{n}{\mathcal{K}}rac{(\mu_1-\mu_2)^2}{4\sigma^2}
ight)\,.$$

- Xu, M., Jog, V., & Loh, P. L. (2020). Optimal rates for community estimation in the weighted stochastic block model. The Annals of Statistics, 48(1), 183-204.
- Optimal rate of misclustering error

$$\mathbb{E}L(\widehat{c},c) \ge \exp\left(-(1+o(1))\frac{n}{K}\frac{(\mu_1-\mu_2)^2}{4\sigma^2}\right)$$
$$n\frac{(\mu_{1n}-\mu_{2n})^2}{\sigma_n^2} \to \infty \quad \text{when} \quad n \to \infty.$$

- Xu, M., Jog, V., & Loh, P. L. (2020). Optimal rates for community estimation in the weighted stochastic block model. The Annals of Statistics, 48(1), 183-204.
- Optimal rate of misclustering error

$$\mathbb{E}L(\widehat{c},c) \geq \exp\left(-(1+o(1))rac{n}{K}rac{(\mu_1-\mu_2)^2}{4\sigma^2}
ight)$$

$$n \frac{(\mu_{1n} - \mu_{2n})^2}{\sigma_n^2} \to \infty$$
 when $n \to \infty$.

Remark: Unbalanced case

If
$$\frac{n}{\sigma_n^2} \to \infty$$
 in such a way that $\frac{n(\mu_{1n} - \mu_{2n})^2}{\sigma_n^2} \to \infty$

Simulations:

Setting:

$$B = \begin{bmatrix} \mu_1 & \mu_2 & \mu_2 \\ \mu_2 & \mu_1 & \mu_2 \\ \mu_2 & \mu_2 & \mu_1 \end{bmatrix} \quad \text{and} \quad \Sigma = \begin{bmatrix} 0.5 & 0.5 & 0.5 \\ 0.5 & 0.5 & 0.5 \\ 0.5 & 0.5 & 0.5 \end{bmatrix}.$$

(a) n = 500 and $\pi = (1/3, 1/3, 1/3)$

(b) n = 1000 and $\pi = (1/3, 1/3, 1/3)$

Simulations:

Setting:

$$B = \begin{bmatrix} \mu_1 & \mu_2 & \mu_2 \\ \mu_2 & \mu_1 & \mu_2 \\ \mu_2 & \mu_2 & \mu_1 \end{bmatrix} \quad \text{and} \quad \Sigma = \begin{bmatrix} 0.5 & 0.5 & 0.5 \\ 0.5 & 0.5 & 0.5 \\ 0.5 & 0.5 & 0.5 \end{bmatrix}.$$

(a) n = 500 and $\pi = (0.2, 0.5, 0.3)$

(b) n = 1000 and $\pi = (0.2, 0.5, 0.3)$

Application:

- Data consisting of resting state fMRI brain images of 54 schizophrenic patients and 69 healthy patients
- Total of 264 nodes
- The edge weights represent functional connectivity between the brain regions, measured by Fisher-transformed correlations between the time series of blood oxygenation levels at the corresponding regions
- We average the 69 weighted networks corresponding to healthy patients using the weighted network average method of Levin et al. (2022)

Application:

Power parcellation

Region	Function	Nodes	Region	Function	Nodes
P1	Sensory/somatomotor	30	P8	Fronto-pariental Task	25
	Hand			Control	
P2	Sensory/somatomotor	5	P9	Salience	18
	Mouth				
P3	Cingulo-opercular	14	P10	Subcortical	13
	Task Control				
P4	Auditory	13	P11	Ventral attention	9
P5	Default mode	58	P12	Dorsal attention	11
P6	Memory retrieval	5	P13	Cerebellar	4
P7	Visual	31	P14	Uncertain	28

• We estimated 14 communities for both populations by the PL algorithm using SC as the initial value

Application:

- We considered homogenous models, where all within-communities edge distributions are the same, and between-communities edge distributions are also the same;
- We could incorporate edge distributions with a point mass at zero;

Thank you

