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Abstract. Filtering deals with the optimal estimation of signals from their noisy obser-
vations. The standard setting consists of a pair of random processes (X,Y ) = (Xt, Yt)t≥0,
where the signal component X is to be estimated at a current time t > 0 on the basis of
the trajectory of Y , observed up to t. Under the minimal mean square error criterion,
the optimal estimate of Xt is the conditional expectation E(Xt|Y[0,t]). If both X and
(X,Y ) are Markov processes, then the conditional distribution πt(A) = P (Xt ∈ A|Y[0,t]),
A ⊆ R satisfies a recursive equation, called filter, which realizes the optimal fusion of the
a priori statistical knowledge about the signal and the a posteriori information borne by
the observation path.

The filtering equation is to be initialized by the probability distribution ν of the signal
at time t = 0. Suppose ν is unknown and another reasonable probability distribution ν̄
is used to start the filter. As the corresponding solution π̄t(·) differs from the optimal
πt(·), the natural question of stability arises: what are the conditions in terms of the
signal/observation parameters to guarantee limt→∞ ∥πt−π̄t∥ = 0 in an appropriate sense
? The article discusses the recent progress in solving this stability problem, which turns
to be quite interesting and, sometimes, counterintuitive.
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1. A fast-forward introduction

1.1. Hidden Markov Models. Consider a Markov chain X = (Xn)n≥0 with values in a
finite alphabet S = {a1, ..., ad}, the transition probabilities λij := P

(
Xn = aj |Xn−1 = ai

)
and initial distribution νi := P(X0 = ai), i, j = 1, ..., d. Let the observation sequence
Y = (Yn)n≥1 be generated by

Yn =

d∑
i=1

1{Xn=ai}ξn(i), n ≥ 1, (1.1)

where ξ = (ξn)n≥1 is a sequence of i.i.d. random vectors, independent of X. This setting
is usually viewed as a model of a noisy channel, which emits a realization of the random
variable ξn(i), each time the symbol ai is transmitted. The entries of the vector ξ1 are
assumed to be independent and to have known probability densities gi(y), i = 1, ..., d with
respect to some reference σ-finite measure ψ(dy) (e.g. the Lebesgue measure on R or
purely atomic measure).

Having observed the trajectory of Y up to time n ≥ 0, it is required to estimate the state
of the signal Xn on the basis of the observations in an optimal way. The main building
block in the solution of this estimation problem under various optimization criteria are
conditional probabilities πn(i) = P(Xn = ai|F Y

n ), i = 1, ..., d, where F Y
n = σ{Y1, ..., Yn}.

For example, the maximum a posteriori probability (MAP) estimate of Xn given F Y
n is

X̂map
n := argmaxai∈Sπn(i)

and it is optimal in the sense of minimizing the error probability of guessing the state of
Xn given the realization of the trajectory {Y1, ..., Yn}:

inf
ζn∈L∞(Ω,FY

n ,P)
P
(
Xn ̸= ζn

)
= P

(
Xn ̸= X̂map

n

)
= 1− Emax

ai∈S
πn(i) (1.2)

Another criterion is minimizing the mean square error (MSE), under which the optimal

estimate is the conditional expectation X̂mse
n = E

(
Xn|F Y

n ) =
∑d

i=1 aiπn(i):

inf
ζn∈L2(Ω,FY

n ,P)
E
(
Xn − ζn

)2
= E

(
Xn − X̂mse

n

)2
= E

( d∑
i=1

a2iπn(i)−
( d∑

i=1

aiπn(i)
)2)

(1.3)

The vector of conditional probabilities πn satisfies the following filtering equation (es-
sentially the recursive Bayes formula):

πn =
G(Yn)Λ

∗πn−1∣∣G(Yn)Λ∗πn−1

∣∣ , π0 = ν, (1.4)

where G(y) is a diagonal matrix with entries gi(y), i = 1, ..., d, Λ∗ is the transposed matrix
of the transition probabilities and | · | denotes the ℓ1-norm, i.e. |x| =

∑
i |xi|, x ∈ Rd.

The model described above is a particular instance of the so called Hidden Markov
Models. The finite state space is special, because many related statistical problems have
efficient closed form solutions. For example, the aforementioned state estimation problem
is completely solved in an efficient way by iterating the equation (1.4). Another familiar
special case is the linear Gaussian systems, for which the conditional distribution of Xn
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given F Y
n is Gaussian, with the mean and covariance satisfing the celebrated Kalman fil-

tering equations. In the general case, the filtering problem, i.e. calculating the conditional
distribution of Xn given F Y

n , is more complicated and less efficient. The solution is given
in the form of an infinite dimensional recursive equation for conditional distribution or its
density. Usually it is used as the basis for efficiently realizable approximate algorithms
(particle filters, etc.) The first part of this minicourse is intended as a self contained brief
presentation of the filtering theory both in discrete and continuous time settings.

The second part will focus on a more recent research in filtering, namely stability of
the nonlinear filtering equation with respect to its initial conditions, ergodicity of the
filtering process, robustness with respect to the model parameters, etc. To make things
more concrete and transparent, we will use the equation (1.4) as a toy model. In spite of
its seemingly simple structure, this equation nevertheless features much of the essential
complexity of the problem. On the other hand, it is one of the few genuine nonlinear
filtering equations of significant practical importance.

1.2. Ergodicity of the filtering process. Does the estimation error converge to a steady
state ? Do the limits as n→ ∞ of the performance indices in (1.2) and (1.3) exist and if
yes, are they independent of ν ?

Clearly the answers to both questions would be affirmative, if the distribution of πn
converges to a unique distribution over M. Using the properties of conditional expecta-
tions, one can verify that the random sequence π = (πn)n≥0 is a Markov process with
values in the simplex Sd−1. Then the question reduces to whether π = (πn)n≥0 is an
ergodic process, i.e. it has an invariant measure M and this measure is unique. While the
existence of such measures even in more general situations can be often established using
the Markov property of the filter, the uniqueness issue turns to be quite nontrivial and in
fact still lacks a complete answer!

The common intuition suggests that the filtering process π inherits ergodicity from the
signal X itself. Recall that, by definition, a finite state Markov chain X is ergodic if the
limits µi := limn→∞ P(Xn = ai) exist, are positive and do not depend on ν. A chain is
ergodic if and only if its transition matrix is q-primitive, i.e. there is an integer q ≥ 1,
such that the entries of Λq are positive.

Ergodicity of π for ergodic chains X was conjectured by D.Blackwell in [11] (1957),
who studied these models in a particularly simple (or as we now realize quite nontrivial!)
case, when the observation sequence is formed by a deterministic function h : S 7→ R of
the signal, i.e. Yn = h(Xn). The original motivation of D.Blackwell was the search for
a simple formula for the entropy rate of Y . He did find a formula, but it turned to be
far from being simple, as it involved averaging with respect to M (the invariant measure
of π) and this in turn had a remarkably complicated structure (e.g. it may be singular
with respect to the Lebesgue measure on Sd−1 yet having no atoms). D.Blackwell was not
concerned primarily with the uniqueness of this measure, as he dealt with the stationary
(X,Y ). However to find M one had to solve the corresponding integral equation and this
is where the uniqueness matter showed up.

This conjecture was proven to be false by T.Kaijser in [37] (1975), who pointed out
that an appropriate counterexample was already there in [11], Blackwell’s own paper!
This counterexample turns to be quite illuminating as it demonstrates several relevant
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surprising features - we will use its particular version, independently rediscovered in [31]
(see also [8]).

Example 1.1. Consider a chain with four states S = {1, 2, 3, 4}, the following transition
matrix

Λ =


1
2

1
2 0 0

0 1
2

1
2 0

0 0 1
2

1
2

1
2 0 0 1

2


and initial distribution ν. The entries of Λ3 are positive and hence the chain is ergodic.
Assume that the observation sequence is defined by Yn = 1{Xn∈{1,3}}. Notice that, having
observed the trajectory of Y till time n, one can recover exactly the transitions of X
between the groups of states {1, 3} ↔ {2, 4}. However it is impossible to tell which one of
the states within {1, 3} (or {2, 4}) the chain actually resides. The filtering recursion (1.4)
in this case reads1

πn(1) =
(
πn−1(4) + πn−1(1)

)
Yn

πn(2) =
(
πn−1(1) + πn−1(2)

)
(1− Yn)

πn(3) =
(
πn−1(2) + πn−1(3)

)
Yn

πn(4) =
(
πn−1(3) + πn−1(4)

)
(1− Yn)

(1.5)

subject to π0 = ν. It is not hard to see that πn may take values among the following eight
vectors

ϕ1 =


ν1 + ν4

0
ν2 + ν3

0

 , ϕ2 =


0

ν1 + ν4
0

ν2 + ν3

 , ϕ3 =


ν2 + ν3

0
ν1 + ν4

0

 , ϕ4 =


0

ν2 + ν3
0

ν1 + ν4

 ,

ϕ5 =


0

ν1 + ν2
0

ν3 + ν4

 , ϕ6 =


ν3 + ν4

0
ν1 + ν2

0

 , ϕ7 =


0

ν3 + ν4
0

ν1 + ν2

 , ϕ8 =


ν1 + ν2

0
ν3 + ν4

0


and that Yn form an i.i.d. symmetric binary sequence. Hence the invariant measure of π
is uniform over these eight points of Sd−1:

M(du) =
1

8
δ{ϕ1}(du) + ...+

1

8
δ{ϕ8}(du),

and clearly depends on ν. Sufficient conditions for ergodicity of π in Blackwell’s setting
were derived by T.Kaijser [37] and recently significantly improved by F.Kochman and
J.Reeds, [44]. It is still unclear whether the conditions of [44] are also necessary.

Virtually the same kind of question was independently addressed by H.Kunita in [45]
(1971) in the continuous time setting. The signal was assumed to be an ergodic Markov

1formally the reference measure ψ(dy) = δ{0}(dy) + δ{1}(dy) and the densities are g1(y) = g3(y) = y

and g2(y) = g4(y) = 1 − y
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process with values in a compact real subset S ⊆ R, the transition semigroup (Pt)t∈R+ and
the initial distribution ν. The observation process was assumed to satisfy

Yt =

∫ t

0
h(Xs)ds+Bt,

with the Brownian motion (Wiener process) B, independent of X and bounded function
h. The conditional measure process πt(A) := P(Xt ∈ A|F Y

t ) satisfies a stochastic partial
integro-differential equation (see (2.11) below), which is initialized by the distribution ν.
H.Kunita posed the question (πt(f) :=

∫
S f(x)πt(dx))

Does the limit lim
t→∞

E
(
f(Xt)− πt(f)

)2
exist and is it unique ? (1.6)

for any continuous and bounded function f . The main result of [45] is that this limit
exists and is unique, if the signal is a Feller-Markov process, whose tail σ-algebra FX

∞ =∩
t≥0 FX

[t,∞) is P-a.s. empty. Recently a serious gap in the proof of this claim has been dis-

covered in [8] (2004) (see Section 3.3 below) and currently its validity remains a challenging
open problem.

1.3. Stability of the filtering equation. A different but of course related question of
“steady state” behavior was posed by B.Delyon and O.Zeitouni in [31] (1989). Suppose
that the actual distribution of X0, needed to initialize the recursion (1.4), is unknown. It
is then reasonable to start the filter from some other probability distribution (e.g. uniform
on S) and ask whether the obtained solution, denoted hereafter by π̄n, will be close to
the optimal one πn for large enough n. It is not immediately clear that an arbitrary
probability distribution can be used to start (1.4), without causing an ambiguity and in
fact some care should be taken to avoid this kind of pathology. As we will see later, the
condition ν ≪ ν̄ (i.e. ν̄i = 0 =⇒ νi = 0) is sufficient for ν̄ to be a valid initialization for
(1.4). The question is what are the conditions in terms of the model parameters, i.e. Λ,
gi(u)’s and (ν, ν̄), for the filter to be stable in the sense∥∥πn − π̄n

∥∥ :=
d∑

i=1

|πn(i)− π̄n(i)|
P−a.s.−−−−→
n→∞

0, (1.7)

where ∥ · ∥ denotes the total variation norm, i.e. ∥x∥ =
∑d

i=1 |xi|.
The aforementioned counterexample shows that the filtering equation may not be stable,

even if the signal is ergodic, namely for (1.5)∥∥πn − π̄n
∥∥ ≥ C > 0, ∀n,

where C is a constant depending on (ν, ν̄).
The relation between the stability of (1.4) and ergodicity of the process π has been

established by D.Ocone and E.Pardoux in [59]: in a quite general setting, the affirmative
answer to (1.6) implies the stability of the filter in the sense (cf. (1.7))

lim
t→∞

E
(
πt(f)− π̄t(f)

)2
= 0, for continuous and bounded functions f, (1.8)

if ν ≪ ν̄ and the signal X is ergodic. Unfortunately in view of the gap in the proof
of (1.6) in [45] this does not provide any useful information about (1.8) in terms of the
model. Clearly such type of convergence is weaker than (1.7), however currently (1.8) is
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only known as an implication of this stronger convergence (with the only exceptions for
some special cases as in [27], [25]).

The most significant progress in establishing (1.7) has been accomplished during the
last decade by addressing the problem in even stronger form, namely studying the the
limit2:

γ := lim
n→∞

1

t
log
∥∥πn − π̄n

∥∥. (1.9)

Negativity of this limit, if exists, implies (1.7). Moreover the value of γ quantifies the
rate of convergence. The problem was first addressed in this form yet in [31], but the
real progress has been made by R.Atar and O.Zeitouni in [5], [6] (1997). These papers
introduced two different approaches to calculation of γ: the Hilbert projective distance
and Lyapunov exponents techniques. Deferring the detailed discussion of the method until
later, let us briefly review the consequences as applied to the finite state filtering problem
under consideration.

The limit γ in (1.9) exits under mild conditions (essentially ergodicity of X and certain
integrability of the noise densities). Moreover it is a random variable, which takes values
in a finite set of real numbers, including {−∞}, depending on3 the initial conditions (ν, ν̄).
Though exact calculation of γ seems to be impossible4, certain information about it can
be gained in the form of upper and lower bounds.

Without any restrictions on the noise densities gi(u), the following upper bound5 holds

γ ≤ −λ∗
λ∗
, (1.10)

where λ∗ := mini,j λij and λ∗ := maxi,j λij . The latter means that the filter is stable,
if all the transition probabilities are strictly positive, i.e. λ∗ > 0. The latter property,
sometimes referred in the literature as the mixing property6, is clearly much more stronger
than just ergodicity, and thus the filter does inherit stability from the signal regardless
of the observations structure, but of a rather strong type. In fact (1.10) holds even non-
asymptotically:

∥πn − π̄n∥ ≤ C exp
(
− λ∗
λ∗
n
)
, n ≥ 1,

with C > 0 depending on (ν, ν̄) (more bounds of the same spirit were reported in [51, 50],
[24]). On the other hand, Example 1.1 shows that just ergodicity of X is not enough.
Then how “much” ergodicity is really required to guarantee filter stability? The exact
answer is not known yet. It turns out that if one of the rows of Λ has all positive entries
and the chain is ergodic, then

γ ≤ −λ⋄
λ∗
, (1.11)

2all the statements involving random variables are understood to hold P-a.s. as usually
3in the “telegraphic signal” case d = 2, γ is independent of (ν, ν̄). In the general case d > 2, the actual

dependence on the initial condition remains unclear
4except for the case d = 2 in continuous time - see [22]
5in fact a slightly more tight bound holds, but we prefer to give its simple version at this point to

emphasize the pros and cons
6λ∗ > 0 does indeed imply that X is a mixing in the usual sense, but this condition is not necessary for

the chain to be mixing, even when the state space is continuum
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with λ⋄ :=
∑d

i=1 µiminj ̸=i λij (recall that µ is the stationary distribution of Xn). The
proof of (1.11) requires a completely different argument (certain conditional time reversal
in P.Baxendale et al [8], P.Ch. and R.Liptser [24]).

Another appealing fact is that the filter is stabilized by noise. Namely, let Y be gener-
ated by

Yn = h(Xn) + σξn,

where σ is a constant, h : S 7→ R is a deterministic function and ξ = (ξn)n≥1 is a Gaussian
i.i.d. sequence. Then the results of [6] imply that for any σ ̸= 0, γ < 0 and thus the filter
is stable. Moreover the following asymptotic bounds as σ → 0 hold (hereafter we write
γ(·) to emphasize its dependence on the relevant parameter)

lim
σ→0

σ2γ(σ) ≤ −1

2

d∑
i=1

µimin
j ̸=i

(
h(ai)− h(aj)

)2
(1.12)

lim
σ→0

σ2γ(σ) ≥ −1

2

d∑
i=1

µi

d∑
j=1

(
h(ai)− h(aj)

)2
. (1.13)

The upper bound (1.12) suggests that the filtering stability is improved as the noise in-
tensity decreases, if there is at least one unique point in the image of S under h. Indeed,
Blackwell’s counterexample hints that γ(σ) may converge to zero as σ → 0, which was
numerically tested yet in [31]. In the strong noise regime the filter turns to be as stable
as the signal itself:

lim
σ→∞

γ(σ) ≤ inf
m≥1

1

m
log τ(Λm) < 0 (1.14)

where τ(·) is the Birkhoff contraction coefficient (see Section 3.1 below), which is strictly
less than 1 for matrices with positive entries (recall that if X ergodic Λm has positive
entries for some integer m ≥ 1).

Another interesting feature of γ is revealed in the slow switching regime. Let Xε denote
the Markov chain whose transition probabilities are defined via the following scaling (with
ε ∈ (0, 1))

λεij := P
(
Xε

n = aj |Xε
n−1 = ai

)
=

{
ελij j ̸= i

1− ε
∑

ℓ̸=i λiℓ j = i

Clearly smaller values of ε correspond to the chain with less frequent transitions. This set-
ting is in a sense more flexible than the noise scaling, since it allows the greater generality7

of the observations model (1.1). A slight adjustment of the arguments from [6] shows that
γ(ε) remains negative for any ε > 0 under the assumption that gi(u) are bounded and
has the same support. More effort is required (essentially the Furstenberg-Khasminskii
formulae, see [23]) to show that

γ(ε) ≤ −
d∑

i=1

µimin
j ̸=i

D(gi ∥ gj) + o(1), ε→ 0,

7scaling noise by a multiplicative constant σ, does not always makes sense: e.g. when ξn is purely
atomic
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where D(gi ∥ gj) =
∫
R gi(u) log

gi
gj
(u)φ(du) are the Kullback-Leibler relative entropies.

This suggests that for small ε, the filter remains stable, if at least one entropy is positive.
This effect seems to be an attribution of the finite state space, since it is absent in the
Kalman filtering setting.

For d = 2 this asymptotic is precise, i.e.

γ(ε) = −µ1D(g1 ∥ g2)− µ2D(g2 ∥ g1) + o(1), ε→ 0.

and γ(ε) turns to be not necessarily monotonic in ε. Namely for a symmetric binary chain
with transition probability λ and Yn = (Xn − ξn)

2 with an i.i.d. binary noise sequence ξ,
P(ξ1 = 1) = p,

γ(ε) ≥ −Dp +
4λ
(
log(2)− h(p)

)
Dp

ε log ε−1
(
1 + o(1)

)
, ε→ 0.

where Dp := p log
p

1− p
+(1− p) log 1− p

p
and h(p) = −p log p− (1− p) log(1− p). As the

second order term is positive, the formula (3.22) suggests that the limit −Dp is approached
from above. On the other hand, it can be easily seen that γ(ε′) = −∞ for ε′ = 1/(2λ).
Hence the function γ(ε) has a global maximum at some positive ε⋆ (see Figure 1 on page
27), which means that the filtering stability may improve as the signal is slowed down
beyond certain value of ε!

1.4. What does this survey leave out ? Limited by the course time scale, this survey
does not elaborate some of the results available in the literature (though the author does
try his best to provide a complete bibliography). Here is a brief account of things, which
have been omitted.

The results and methods mentioned in the Introduction translate without much effort to
the settings with Markov ergodic signals on compact (not necessarily finite) domains (see
e.g. [29], [30], [28]). It is possible to push some of the methods to noncompact/nonergodic
settings: some clever arguments appeared in [3], [16], [15], [52], [53] (and more recent
variations on this theme in [32], [74], [60], [61], [43], [42]). However none of the results is
even close to the powerful controllability/observability stability criteria, available in the
Kalman-Bucy case. Thus the final word in this story is still missing and a completely fresh
idea may be required to fill this gap.

On the other hand some results, which directly rely or repeat the arguments from [45],
are to be revised: [59], [14], [13], [12], [9], [72], [73], [46], [49].

There are some “out of mainstream” interesting results, indicating that (1.8) (or even
weaker stability) may hold for certain function, even when stability in the total variation
norm as (1.7) fails or unknown (see [27], [58], [25]). Sometimes stronger results are possible
in specific situations as e.g. for Beneŝ filters in [57], the noise free signal dynamics [21],
etc. (see also [4], [7]). A variational approach of a functional analysis flavor was recently
suggested by W.Stannat in a series of papers [69, 71, 70].

The stability with respect to initial conditions is naturally related to the robustness of
the filtering equation with respect to the model parameters over the infinite horizon. The
related results appeared in [53, 52], [60], [19, 18, 17]. Recently the continuous time case
has been addressed in [26].
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The rest of this article is organized as follows. Section 2 gives a sketchy overview of the
nonlinear filtering theory, which is intended to give a self contained background for the
reader, unfamiliar with it. Section 3 gives a detailed presentation of three approaches to
filtering stability and ergodicity, mentioned in the Introduction.

2. Nonlinear filtering: a brief overview

2.1. Filtering in discrete time. The more general filtering problem is formulated as
follows. Let X = (Xn)n∈Z+ be a Markov sequence with values in Rd, transition probability
density λ(x, u):

P
(
Xn ∈ Γ |FX

n−1

)
=

∫
Γ
λ(Xn−1, u)ψ(du), ∀Γ ∈ B(Rd), P− a.s.

where ψ(du) is another σ-finite measure on Rd and initial probability density ν, i.e.

P(X0 ∈ Γ ) =

∫
Γ
ν(x)ψ(dx), ∀Γ ∈ B(Rd).

Sometimes, when no confusion is caused, we will write λ(x, du) for λ(x, u)ψ(du) and
λ(x, Γ ) for

∫
Γ λ(x, u)ψ(du) for brevity and similarly, denote by ν the measure ν(x)ψ(dx)

rather than the density itself.
The observation process Y = (Yn)n∈Z+ is assumed to form an i.i.d. random sequence8,

conditioned on X, i.e. for n ≥ 1

P
(
Yn ∈ Γ |FX

n ∨ F Y
n−1

)
=

∫
Γ
g(Xn, y)φ(dy), ∀Γ ∈ B(Rℓ), P− a.s.,

where g(x, y) is the observation probability density with respect to a σ-finite reference
measure φ(dy) on Rℓ. g(x, y) is sometimes referred as the likelihood function.

As a special case, this formulation includes the recursion

Xn = a(Xn−1) + b(Xn−1)ηn

Yn = c(Xn) + d(Xn)ξn,

where η and ξ are independent i.i.d. sequences and a(·), b(·),c(·) and d(·) are functions of
appropriate dimensions. For example, for the scalar linear Gaussian problem (i.e. when
a(x) := ax, c(x) := cx, b(x) := b and d(x) := d and when the noises ξ and η are Gaussian)

λ(x, u) =
1√
2πb

exp

{
(u− ax)2

2b2

}
and

g(x, y) =
1√
2πd

exp

{
(y − cx)2

2d2

}
with ψ and φ being the Lebesgue measures on R.

The filtering equation for the general problem propagates the conditional density (with
respect to ψ) of Xn given F Y

n , n ≥ 1

πn(x) =
g(x, Yn)

∫
Rd λ(u, x)πn−1(u)ψ(du)∫

Rd g(x, Yn)
∫
Rd λ(u, x)πn−1(u)ψ(du)ψ(dx)

, π0(x) = ν(x), (2.1)

8as before Y0 ≡ 0 is assumed, or in other words FY
0 = {∅,Ω}
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where

πn(Γ ) :=

∫
Γ
πn(x)ψ(dx) = P

(
Xn ∈ Γ |F Y

n

)
, Γ ∈ B(R).

2.1.1. Finite dimensional filters. The equation (2.1) is infinite dimensional in general,
meaning that its solution cannot be parameterized by a finite set of sufficient statistics.
For this reason, the general filtering equation is of limited practical value and is usually
used as the basis for various approximations.

However there are two important classes of systems for which the filter turns to be finite
dimensional: the aforementioned finite state Markov chains and the familiar Kalman’s
linear Gaussian setting. In the former case, the filtering distribution is just the vector
of conditional probabilities satisfying the d − 1 dimensional recursion (1.4). In the latter
case, i.e. when the signal/observation pair is generated by

Xn = AXn−1 +Bηn

Yn = CXn +Dξn
(2.2)

with independent i.i.d. Gaussian noises η = (ηn)n≥1 and ξ = (ξn)n≥1, deterministic
matrices A,B,C and D of appropriate dimensions and Gaussian initial condition X0, in-
dependent of η and ξ, the conditional density is Gaussian:

πn(x) =
1

(2π)n/2 det(Pn)
exp

{
−1

2
(x− X̂n)P

−1
n (x− X̂n)

∗)

}
with the conditional mean E(Xn|F Y

n ) = X̂n and covariance E(Xn − X̂n)(Xn − X̂n)
∗ = Pn

satisfying the Kalman recursions:

X̂n = AX̂n−1 + Pn|n−1C
∗(CPn|n−1C

∗ +DD∗)−1
(
Yn − CAX̂n−1

)
Pn|n−1 = APn−1A

∗ +BB∗

Pn = Pn|n−1 − Pn|n−1C
∗(CPn|n−1C

∗ +DD∗)−1
CPn|n−1.

These two settings are virtually the only practically important instances of (2.1) (in fact,
some other estimation problems for these models turn to be finite dimensional as well -
see e.g. [33]).

2.1.2. The reference measure point of view - the Zakai equation. The equation (2.1) is
nonlinear, however its solution is obtained by solving the linear Zakai type equation:

ρn(x) = g(x, Yn)

∫
Rd

λ(u, x)ρn−1(u)ψ(du), n ≥ 0, (2.3)

subject to ρ0(x) = ν(x), via normalization:

πn(x) =
ρn(x)∫

Rd ρn(u)ψ(du)
. (2.4)

This can be readily verified by induction, however the following “representation” formulae
turn to be useful on their own, in particular in the stability problems under consideration.
Let g(y) be a probability density with respect to φ, such that

both
g(y)

g(x, y)
and

g(x, y)

g(y)
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are well defined for each (x, y) ∈ Rd × Rℓ (possibly with the convention 0/0 ≡ 0). We
assume that such a density exists, (which will usually be the case - e.g. any non-vanishing
density would do for the Kalman model), though its specific choice is of no importance.
For a fixed n ≥ 1, introduce the random variable

Zn =

n∏
m=1

g(Ym)

g(Xm, Ym)

and define the measure P̃ by means of the Radon-Nikodym derivative
dP̃

dP
=: Zn(ω). Since

Zn > 0 P-a.s. and

P̃(Ω) = EZn = EE

(
n∏

m=1

g(Ym)

g(Xm, Ym)

∣∣∣FX
n

)
=

E

∫
Rℓ×...×Rℓ

n∏
m=1

g(ym)

g(Xm, ym)

n∏
m=1

g(Xm, ym)φ(dy1)...φ(dym) =

E

∫
Rℓ×...×Rℓ

n∏
m=1

g(ym)φ(dy1)...φ(dym) = 1,

P̃ is a probability measure. Moreover under P̃, X and Y are independent, X is distributed
as under P and Y is an i.i.d. sequence with Y1 having distribution g(y)ψ(dy). Indeed, for
any bounded functionals αn : (Rd)n 7→ R and βn : (Rℓ)n 7→ R

Ẽαn(X)βn(Y ) = Eαn(X)βn(Y )Zn = Eαn(X)E
(
βn(Y )

n∏
m=1

g(Ym)

g(Xm, Ym)

∣∣∣FX
n

)
=

Eαn(X)E
(∫

Rℓ

...

∫
Rℓ

βn(y)

n∏
m=1

g(ym)

g(Xm, ym)

n∏
m=1

g(Xm, ym)φ(dy1)...φ(dyn)
∣∣∣FX

n

)
=

Eαn(X)

∫
Rℓ

...

∫
Rℓ

βn(y)

n∏
m=1

g(ym)φ(dy1)...φ(dyn) = Ẽαn(X)Ẽβn(Y ).

The following lemma derives the transformation of the conditional expectations under
equivalent change of measure.

Lemma 2.1. Let P and P̃ be a pair of equivalent9 measures on (Ω,F ) and G be a sub-σ-

algebra of F , then for any random variable α with Ẽ|α| <∞

Ẽ
(
α
∣∣G ) = E

(
αdP̃

dP(ω)|G
)

E
(
dP̃
dP(ω)|G

) .
Proof. One has to check that for any G -measurable bounded random variable θ

Ẽ

(
α−

E
(
αdP̃

dP(ω)|G
)

E
(
dP̃
dP(ω)|G

) )θ = 0.

9i.e. P ≪ P̃ and P̃ ≪ P
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The latter indeed holds:

Ẽ
E
(
αdP̃

dP(ω)|G
)

E
(
dP̃
dP(ω)|G

) θ = E
dP̃

dP
(ω)

E
(
αdP̃

dP(ω)|G
)

E
(
dP̃
dP(ω)|G

) θ = EE
(dP̃
dP

(ω)
∣∣G)E(αdP̃

dP(ω)|G
)

E
(
dP̃
dP(ω)|G

) θ =
EE
(
α
dP̃

dP
(ω)|G

)
θ = Eαθ

dP̃

dP
(ω) = Eαθ.

�

Since
dP

dP̃
= Z−1

n , by this lemma for any Γ ∈ B(Rd)

πn(Γ ) = P
(
Xn ∈ Γ |F Y

n

)
=

Ẽ
(
1{Xn∈Γ}Z

−1
n |F Y

n

)
Ẽ
(
Z−1
n |F Y

n

) =

Ẽ
(
1{Xn∈Γ}

∏n
m=1

g(Xm, Ym)

g(Ym)

∣∣∣F Y
n

)
Ẽ
(∏n

m=1

g(Xm, Ym)

g(Ym)

∣∣∣F Y
n

) =
Ẽ
(
1{Xn∈Γ}

∏n
m=1 g(Xm, Ym)|F Y

n

)
Ẽ
(∏n

m=1 g(Xm, Ym)|F Y
n

) †
=

∫
1{xn∈Γ}

∏n
m=1 g(xm, Ym)µX(dx)∫ ∏n

m=1 g(xm, Ym)µX(dx)
,

where the independence of X and Y under P̃ was used and µX(dx) denotes the probability
distribution10 of X = (Xn)n∈Z+ . Using the Markov property of X, the numerator of the

latter expression is found to satisfy the equation (2.3) (recall that under P̃, X and Y are
independent). Namely, let∫

1{xn∈Γ}

n∏
m=1

g(xm, Ym)µX(dx) =: ρn(Γ ), n ≥ 1,

then

ρn(Γ) =

∫
1{xn∈Γ}

n∏
m=1

g(xm, Ym)µX(dx) = Ẽ
(
1{Xn∈Γ}

n∏
m=1

g(Xm, Ym)
∣∣∣F Y

n

)
=

Ẽ
[ n−1∏
m=1

g(Xm, Ym)Ẽ
(
1{Xn∈Γ}g(Xn, Yn)

∣∣∣F Y
n ∨ FX

n−1

)∣∣∣F Y
n

]
=

Ẽ
[ n−1∏
m=1

g(Xm, Ym)

∫
Γ
g(u, Yn)λ(Xn−1, u)ψ(du)

∣∣∣F Y
n

]
=∫

Γ
g(u, Yn)

(∫
R
λ(x, u)ρn−1(dx)

)
ψ(du).

ρn is a measure valued random sequence, called unnormalized conditional distribution.

10more formally the induced measure on (Rd)∞
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2.2. Filtering in continuous time. Both the problem formulation and its solution is
much more delicate in the continuous time, due to the lack of the “white noise” analogue
for the discrete time i.i.d. sequence. This goal of this section is to give a very superficial
guide to the subject. For the complete and consistent presentation the reader is referred
to [55, 54] (other texts are [38], [33])

Let X = (Xt)t∈R+ be a Markov process with trajectories in the space of functions
[0, T ] 7→ R continuous from the right and having limits from the left (abbreviated in French
as cadlag functions). This space is denoted by D[0,T ] and is to a complete separable metric
(i.e. Polish) space, when endowed with the Skorokhod metric. The transition semigroup
and the initial distribution of the process are assumed to be known. The observation
process Y = (Yt)t∈R+ is given by

Yt =

∫ t

0
h(Xs)ds+Bt, (2.5)

where h is a continuous R 7→ R function and B = (Bt)t∈R+ is a Brownian motion, inde-
pendent of X.

The general filtering equation for the conditional distribution of Xt, given F Y
t =

{Ys, s ≤ t} can be derived either via the martingale representation theorem or the refer-
ence measure approach. We omit the discussion of the former approach (see e.g. Chapter
8, [55]) and outline the main idea of the later. The key tool is the Girsanov change of
measure.

Theorem 2.2 (I.Girsanov). Consider a Brownian motion B, defined on a filtered proba-
bility space11 (Ω,F ,Ft,P) and define

Zt := exp

(∫ t

0
αsdBs −

1

2

∫ t

0
α2
sds

)
,

where αs is a random process, such that12 the Itô integral with respect to B is well defined.
Assume13 that EZT = 1 and define a probability measure P̃ on (Ω,F ) by means of the

Radon-Nikodym derivative
dP̃

dP
= ZT (ω). Then the process Vt = Bt−

∫ t
0 αsds is a Brownian

motion on (Ω,F ,Ft, P̃).

Proof. (sketch) Since the trajectories of V are continuous functions, the claim holds by
the Levý theorem if for any λ ∈ R

Ẽ
(
eiλ(Vt−Vs)

∣∣Fs

)
= e−

1
2
λ2(t−s)2 .

11all the processes are adapted to Ft: in particular one may take Ft := FB
t ∨ Fα

t

12essentially α should be adapted to FB
t and satisfy P

( ∫ T

0
α2
sds <∞

)
= 1

13by the Itô formula Zt satisfies the SDE Zt = 1 +
∫ t

0
ZsαsdBs. This however does not guarantee

that EZT = 1, i.e. the expectation of the stochastic integral may be nonzero. If the Novikov condition is

satisfied, i.e. E exp
(

1
2

∫ T

0
α2
sds

)
<∞, then semimartingale Zt is also a martingale, i.e. EZT = 1 and thus

it can be used to define a change of probability measure
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For simplicity let’s verify the latter for s = 0 (the proof for s > 0 is essentially the same).
By the Itô formula Ut := eiλVt satisfies

dUt = iλUtdVt −
λ2

2
Utdt.

Since EZT = 1,

ẼeiλVt = EZT e
iλVt = EeiλVtE(ZT |Ft) = EeiλVtZt = EUtZt

Once again using the Itô formula we get:

d
(
UtZt

)
=UtdZt + ZtdUt + iλUtZtαtdt =

UtZtαtdBt + iλUtZtdVt −
λ2

2
UtZtdt+ iλUtZtαtdt =

UtZtαtdBt + iλUtZtdBt − iλUtZtαtdt−
λ2

2
UtZtdt+ iλUtZtαtdt,

(2.6)

and taking the expectation from both sides one gets the ODE for Ψ(t) := ẼeiλVt = EUtZt

d

dt
Ψ(t) = −1

2
λ2Ψ(t), Ψ(0) = 1,

whose solution gives the required answer. �

Back to the filtering problem at hand, introduce

Zt = exp
(
−
∫ t

0
h(Xs)dBs −

1

2

∫ t

0
h2(Xs)ds

)
and define the reference measure by

dP̃

dP
:= ZT (ω).

If e.g. h(Xs) is bounded, then P̃ is a probability measure and by the Girsanov theorem

with αt := −h(Xt), the process Yt is a Brownian motion under the probability P̃. Moreover

independence of X and B under P translates to the independence of X and Y under P̃. In
fact, a stronger version of the Girsanov’s theorem holds in this case, namely the process
Yt is a Brownian motion under the conditional measure given FX

T . By Lemma 2.1

Ẽ
(
eiλVt |FX

T

)
=

E
(
UtZT |FX

T

)
E(ZT |FX

T )
.

Recall that if B is independent of a σ-algebra G ⊆ F , then14 E
( ∫ t

0 αsdBs

∣∣G) = 0. The

martingale Zt satisfies

Zt = 1−
∫ t

0
Zsh(Xs)dBs (2.7)

14this is easily verified for simple functions α and extended to the general case by a limiting procedure
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and since B is independent of FX
T , we have E

(
ZT |FX

T ) = 1. Similarly

E
(
UtZT |FX

T

)
= E

(
UtE(ZT |FX

T ∨ FB
t )
∣∣FX

T

)
=

E
(
UtE

(
Zt −

∫ T

t
h(Xs)ZsdBs|FX

T ∨ FB
t

)∣∣FX
T

)
= E

(
UtZt|FX

T

)
and in turn by (2.6)

Ẽ
(
eiλVt |FX

T

)
= E

(
UtZt|FX

T

)
= e−

1
2
λ2t2 .

Hence for any measurable bounded functionals F : D[0,T ] 7→ R and G : C[0,T ] 7→ R

ẼF (X)G(Y ) = ẼF (X)Ẽ
(
G(Y )|FX

T

)
= ẼF (X)EG(B),

i.e. X and Y are independent under P̃. Finally

ẼF (X) = EZTF (X) = EF (X)E
(
ZT |FX

T

)
= EF (X)

i.e. the distribution of X remains unaltered under the change of measure.
To summarize, under the reference measure P̃, X and Y are independent, Y is a Brow-

nian motion and X has the same distribution as under P. Note that since P ∼ P̃,

dP

dP̃
(ω) = Z−1

T = exp
(∫ t

0
h(Xs)dBs +

1

2

∫ t

0
h2(Xs)ds

)
=

exp
(∫ t

0
h(Xs)dYs −

1

2

∫ t

0
h2(Xs)ds

)
Then by Lemma 2.1,

P
(
Xt ∈ Γ|F Y

t

)
=

Ẽ
(
1{Xt∈Γ} exp

( ∫ t
0 h(Xs)dYs − 1

2

∫ t
0 h

2(Xs)ds
)∣∣∣F Y

t

)
Ẽ
(
exp

( ∫ t
0 h(Xs)dYs − 1

2

∫ t
0 h

2(Xs)ds
)∣∣∣F Y

t

)
.

Since under P̃, X and Y are independent this can be rewritten in a more compact form,
known as the Kallianpur-Striebel representation formula

P
(
Xt ∈ Γ|F Y

t

)
=

∫
D[0,T ]

1{xt∈Γ}Φt

(
x, Y (ω)

)
µX(dx)∫

D[0,T ]
Φt

(
x, Y (ω)

)
µX(dx)

(2.8)

where µX(dx) is the probability measure induced by X on D[0,T ] and
15

Φt

(
x, Y (ω)

)
:= exp

(∫ t

0
h(xs)dYs −

1

2

∫ t

0
h2(xs)ds

)
.

Now the Markov property of X can be used to deduce a recursive equation for the
unnormalized conditional distribution:

ρt(Γ) = Ẽ
(
1{Xt∈Γ}Φt(X,Y )|F Y

t

)
.

15i.e. Φt(X,Y ) = Z−1
t
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For definiteness, consider the simplest case, when Xt is a Markov chain with values in a
finite alphabet S = {a1, ..., ad}, with transition intensities λij :

P
(
Xt+δ = aj |Xt = ai

)
=

{
λijδ + o(δ), i ̸= j

1−
∑

ℓ ̸=i λiℓδ + o(δ), i = j

and initial distribution ν: νi = P(X0 = ai). Introduce indicators vector process Jt with the
entries Jt(i) = 1{Xt=ai} and let ρt be the vector of unnormalized conditional probabilities:

ρt := Ẽ
(
JtZ

−1
t |F Y

t

)
.

Clearly there is a one-to-one correspondence between X and J (assuming that all ai’s are
different). The process Jt is a semimartingale with the decomposition

Jt = J0 +

∫ t

0
Λ∗Jsds+Mt,

where Λ∗ is the transposed matrix of transition intensities and M is a (purely discontinu-
ous) martingale (with respect to FX

t ). Recall that Z−1
t satisfies the equation

dZ−1
t = Z−1

t h(Xt)dYt

and apply the Itô formula to the product JtZ
−1
t :

d(JtZ
−1
t ) = JtdZ

−1
t + Z−1

t dJt = Jth(Xt)Z
−1
t dYt + Λ∗JtZ

−1
t dt+ Z−1

t dMt =

H(JtZ
−1
t )dYt + Λ∗(JtZ

−1
t )dt+ Z−1

t dMt (2.9)

where the equality Jth(Xt) = HJt with
16 H = diag(h) was used. Since M is independent

of F Y under P̃,

Ẽ
(∫ t

0
Z−1
s dMs

∣∣F Y
T

)
= 0.

Conditioning both sides of (2.9) on F Y
t , one gets the Zakai equation for ρt:

dρt = Λ∗ρtdt+HρtdYt, ρ0 = ν.

This is a linear (more exactly bilinear) SDE with respect to ρt, driven by the observation
process Yt. It is the continuous time analogue of the recursion (2.3). The conditional
probabilities πt := E(Jt|F Y

t ) are recovered from ρt by normalization πt = ρt/∥ρt∥, with
∥ρt∥ =

∑d
i=1 ρt(i).

The vector πt satisfies the nonlinear (Wonham) SDE, obtained by applying the Itô
formula to ρt/∥ρt∥:

dπt = Λ∗πtdt+
(
diag(πt)− πtπ

∗
t

)
h
(
dYt − πt(h)dt

)
, π0 = ν, (2.10)

where h is a vector of the values of h on S, πt(h) = ⟨πt, h⟩ =
∑d

i=1 h(ai)πt(i) and diag(πt)
is a diagonal matrix with entries πt(i), i = 1, ..., d. This is the analogue of the HMM filter
(1.4) in continuous time setting.

The process B̄t := Yt −
∫ t
0 πt(h)ds is the innovation Brownian motion with respect to

F Y
t under the original measure P. This fact can be established in a much more greater

generality and is the key to the martingale derivation of the equation for πt (which we

16the function h on S is naturally identified with the vector of h(a1),...,h(ad)
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omit here). This approach allows to derive a general filtering Fujisaki-Kallianpur-Kunita
equation for the conditional distribution of Xt with respect to F Y

t , which is the general
continuous time analogue of the filtering recursion (2.1). The FKK equation is the funda-
mental result in filtering, defining the evolution of the conditional distribution πt. Being
a measure valued functional stochastic equation, it has a rather complicated form, which
we do not describe here. The finite dimensional Wonham filter (2.10) is the particularly
simple instance of this equation, which is of practical importance.

In the case when X is a diffusion process

Xt = a(Xt)dt+ b(Xt)dWt,

where W is a Brownian motion, independent of B and a and b are functions with ap-
propriate properties, the FKK equation reduces to the functional Kushner-Stratonovich
SPDE (cf. (2.10)) for the conditional density πt(x) with respect to the Lebesgue measure
(if it exists!):

dtπt(x) = L∗πtdt+
(
h(x)− πt(h)

)
πt(x)

(
dYt − πt(h)dt

)
, (2.11)

where L∗ is the infinitesimal operator corresponding to X and πt(h) :=
∫
R h(x)πt(x)dx.

The corresponding unnormalized conditional distribution in this case has the density17

ρt(x), which satisfies the linear Zakai SPDE

dtρt(x) = L∗ρt(x)dt+ h(x)ρt(x)dYt, ρ0(x) = ν(x). (2.12)

Conditions for existence and uniqueness of the solutions of the filtering equations as well
as their properties are far from being obvious and is a subject of extensive research both
in the past and now. In the particular case of linear system (A, B, C and D are constant
matrices; W and B are independent vector Brownian motions)

dXt = AXtdt+BdWt

dYt = CXtdt+DdBt

subject to a Gaussian X0, the conditional density πt(x) is Gaussian with the mean X̂ and
covariance Pt, satisfying the familiar Kalman-Bucy equations:

dX̂t = AX̂tdt+ PtC
∗(DD)−1(dYt − hX̂tdt)

Ṗt = APt + PtA
∗ +BB∗ − PtC

∗(DD)−1CPt,

subject to X̂0 = EX0 and P0 = E(X0 − X̂0)(X0 − X̂0)
∗. Finite dimensional realizations

are available for various functionals of (X,Y ) in the LQG and finite state settings (see
the book [33]). Other finite dimensional cases of the filtering equation are known (most
notably the Beneŝ diffusion case), but their practical value is limited.

17here a measure and its density are denoted by the same letter, as e.g. here ρt(dx) = ρt(x)dx or
ν(dx) = ν(x)dx.
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3. Filtering stability and ergodicity

This section deals with the stability problem of the nonlinear filtering equation and the
ergodic properties of its solution. We will restrict the following discussion to the simple
(and yet nontrivial!) case of finite state Markov chains in discrete time and will show
how most of the results, presented in the introduction are derived. Further extensions and
other results, reported in the literature, are gathered in the bibliography for the readers
reference. The main reason for the choice of such simplified treatment is its transparency
and concreteness. Since the “curse of dimensionality” is resolved in this case due to
the finite dimensionality of the signal (and not due to the very special properties of the
Gaussian processes as in the Klamaa-Bucy setting), many of the results extend to more
general settings without major difficulty - essentially to the models with ergodic signals
on a compact state space. The nonergodic/noncompact case is more difficult and virtually
all currently available results combine one of the methods with a “compactification” trick.
Regretfully none of them recaptures the well known powerful controllability/observability
conditions of the Kalman-Bucy linear Gaussian case.

3.1. The Hilbert projective metric approach.

3.1.1. Nonnegative operators acting on nonnegative measures. This section presents the
ideas from the theory of nonnegative operators, introduced into the filtering stability
problem by R.Atar and O.Zeitouni in [6], [5].

Let S ⊆ Rd be a measurable set18 and M+ be the space of nonnegative measures on(
S,B(S)

)
with the partial order relation p ≼ q if p(A) ≤ q(A) for any measurable A ⊆ S.

The measures p and q are comparable if c1p ≼ q ≼ c2p for some constants c1, c2 > 0. The
Hilbert projective distance is defined

h(p, q) = log
supA,q(A)>0 p(A)/q(A)

infA,q(A)>0 p(A)/q(A)
, p, q ∈ M+ are comparable

and h(p, q) = ∞ otherwise. Clearly two comparable measures p and q are equivalent and
vise versa and hence (∥ · ∥∞ is the supremum norm)

h(p, q) = log
(∥∥∥dp
dq

∥∥∥
∞

∥∥∥dq
dp

∥∥∥
∞

)
.

It is easy to see that h(p, q) is a nonnegative symmetric function, satisfying the triangle
inequality

h(p, q) ≤ h(p, r) + h(r, q), p, q, r ∈ M+.

Also h(p, q) = 0 iff p = cq for some c > 0. The latter property turns (M+, h) into a
pseudo-metric space. Notice also that on the space of probability (i.e. normalized to 1)
measures, h defines a metric on the part of the domain where it takes finite values. This
is not as innocent as it may seem - e.g. this metric is infinite for Gaussian measures with
different means!

The following two properties are important for our purposes:

18the host space is taken to be Rd here for definiteness - more general spaces are possible. Also S can be
Rd itself. The distinction is made to emphasize in the sequel to distinguish the compact and noncompact
state spaces
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(p-1) h(p, q) = h(c1p, c2q) for any p, q ∈ M+ and any scalars c1, c2 > 0
(p-2) ∥p− q∥ ≤ 2

log(3)h(p, q) for any p, q ∈ Sd−1

The first property is obvious from the definition. The proof of the second one is given e.g.
in Lemma 1 in [5].

Let K be a linear positive operator, mapping M+ to itself. The Birkhoff contraction
coefficient is defined as

τ(K) := sup
0<h(p,q)<∞

h(Kp,Kq)

h(p, q)
. (3.1)

τ(K) has the following expression in terms of h-diameter H(K) := supp,q∈M+
h
(
Kp,Kq

)
of K:

τ(K) = tanh
(H(K)

4

)
. (3.2)

Moreover, if the operator K is of the integral form

(Kp)(du) :=

∫
S
κ(x, u)p(dx)ψ(du),

where κ(x, u) is a nonnegative function (kernel) and ψ is a σ-finite measure, then

H(K) = log ess sup
x,u,x′,u′

κ(x, u)κ(x′, u′)

κ(x, u′)κ(x′, u)
, (3.3)

where 0/0 = 1 is assumed and the sup is strict over x and y and ψ-essential over u and
u′. Proofs of these facts can be found in Theorem 3 of Chapter XVI in [10] or Theorem 1
in [35].

Remark 3.1. In the filtering context, we will be particularly interested in the operators
with even more specific structure, namely

Kgp := g(u)

∫
S
κ(x, u)p(dx)ψ(du),

where g(u) is a nonnegative function (the likelihood). Note that if g(u) is strictly positive,
then H(Kg) = H(K). However, Kg is still a strict contraction, regardless of the properties
of g, if the kernel κ(x, u) satisfies the “mixing” condition, i.e. if some constants κ∗ and κ∗

0 < κ∗ ≤ κ(x, u) ≤ κ∗ <∞.

In this case, (3.3) implies

H(K) ≤ log
(κ∗
κ∗

)2
(3.4)

and consequently

τ(K) ≤ κ∗ − κ∗
κ∗ + κ∗

=: τ̂(K) < 1. (3.5)

As observed in [15] and [52], these inequalities remain valid for Kg as well, since it remains
to be mixing with respect to a different reference measure, namely ψg(du) := g(u)ψ(du):

τ(Kg) ≤ τ̂(K) < 1. (3.6)
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Example 3.2. For the finite state space S = {a1, ..., ad}, the above notions read as
follows. The space M+ is just the nonnegative cone of Rd or in other words M+ can
be identified with the vectors from Rd with nonnegative entries. The Hilbert distance
between p, q ∈ M+ is defined as19

h(p, q) :=

log
maxi pi/qi
minj pj/qj

, if p ∼ q

∞, otherwise
(3.7)

with the convention 0/0 = 1.
Any nonnegative operator on M+ can be represented by a d× d matrix A = (aij) with

nonnegative entries. If A is an allowable matrix, i.e. none of its columns or rows contains
only zeros, then

H(A) = log max
i,j,k,ℓ

aikajℓ
aiℓajk

.

Notice that if a contains at least one zero entry, then H(K) = ∞ and τ(A) = 1. Otherwise

τ(A) = tanh
(H(A)

4

)
=

1−
√
ψ(A)

1 +
√
ψ(A)

, ψ(A) := min
i,j,k,ℓ

{
aikajℓ
aiℓajk

∣∣∣ailajk ̸= 0

}
. (3.8)

Hence τ(A) is strictly less than unity if and only if all the entries of an allowable matrix
are nonzero. In particular, with a∗ := minij aij and a∗ := maxij aij ,

log τ(A) ≤ −a∗
a∗

and, as the formula (3.8) suggests, for any diagonal matrixD with strictly positive diagonal
entries

τ(A) = τ(AD) = τ(DA). (3.9)

If D has some zero diagonal entries, but all the elements of A are positive, then

τ(AD) ≤ a∗ − a∗
a∗ + a∗

.

3.1.2. Application to the filtering problem. The following construction will be convenient
to use in the sequel. Without loss of generality, we assume that (X,Y ) are coordinate
processes on the canonical probability space (Ω,F ) =

(
R∞×R∞,B(R∞)×B(R∞)

)
. We

denote by P and P̄ the probability measures, under which (X,Y ) is a Markov process
with the given transition semigroup (i.e. X is a finite state Markov chain with transitions
probabilities matrix Λ and Y is an i.i.d. sequence conditioned on FX) and X0 is has
distribution ν and ν̄ respectively. Let PY and P̄Y be the distributions of Y = (Yn)n≥1

under P and P̄ and PY
n and P̄Y

n be their restrictions on F Y
n = σ{Y1, ..., Yn} (i.e. these are

just the probability distributions of the vector {Y1, ..., Yn} under P and P̄). Finally let Ps

the probability measure under which (X,Y ) is a stationary process, i.e. when X0 ∼ µ.
The n first iterations of (1.4) define a functional Ψn(y) : Rn 7→ Sd−1, which is well

defined on a set of full P-probability. By the Markov property of (X,Y ), the assumption
ν ≪ ν̄ implies P ≪ P̄ and hence Ψn(y) is a well defined P̄-a.s. as well. Note also that for

19p ∼ q stands for equivalence (in the sense of mutual absolute continuity) relation between the measures
p and q. In the finite case, this means that p and q should not vanish at the same indices
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ergodic X, the invariant measure µ is positive and hence ν ≪ µ for any ν ∈ Sd−1. This
e.g. implies P ≪ Ps.

Consider the filtering equation (1.4) and let π = (πn)n≥0 and π̄ = (π̄n)n≥0 be the exact
and “wrong” filtering processes. The following result is essentially Theorem 2.3 from [6]
(see also [51, 50], [65])

Theorem 3.3. Assume ν ∼ ν̄ and

(a-1) X is an ergodic chain
(a-2) there exists an integer r ≥ 1 so that all the entries of the product matrix

Λ∗G(Yr−1)...G(Y1)Λ
∗

are strictly positive with nonzero Ps-probability
(a-3) the noise densities gi(u) are bounded

Then (X,π) = (Xn, πn)n≥0 is an ergodic Markov process and

lim
n→∞

1

n
log ∥πn − π̄n∥ < 0, P− a.s. (3.10)

In particular, if all the entries of Λ are positive (i.e. (a-2) holds with r = 1)

∥πn − π̄n∥ ≤ 2

log(3)
h(ν, ν̄)

(λ∗ − λ∗
λ∗ + λ∗

)n
, (3.11)

with λ∗ = minij λij and λ∗ = maxij λij.

Proof. Recall that πn = ρn/∥ρn∥ and π̄n = ρ̄n/∥ρ̄n∥ where ρn and ρ̄n are solutions of the
Zakai equation (cf. (2.4) and (2.3))

ρn = G(Yn)Λ
∗ρn−1, (3.12)

subject to ρ0 = ν and ρ̄0 = ν̄ respectively. Hence

ρn = G(Yn)Λ
∗...G(Y1)Λ

∗ν, ρ̄n = G(Yn)Λ
∗...G(Y1)Λ

∗ν̄.

First consider the case, when λ∗ > 0. The matrix G(Yn)Λ
∗ is mixing in the sense of

Remark 3.1, i.e. the measures
∑d

j=1 λijδaj (du) have positive density with respect to the

reference measure
∑

j gj(Yn)δaj (du). Hence

∥πn − π̄n∥ ≤ 2

log 3
h(πn, π̄n) =

2

log 3
h
( ρn
∥ρn∥

,
ρ̄n
∥ρ̄n∥

) †
=

2

log 3
h(ρn, ρ̄n) ≤

2

log 3
h(ν, ν̄)τ̂n(Λ) =

2

log 3
h(ν, ν̄)

(λ∗ − λ∗
λ∗ + λ∗

)n
(3.13)

where the equality † holds by the scaling invariance of the Hilbert distance (p-1) and the
latter inequality follows by iterations of (3.1) (recall the definition of τ̂(·) in (3.5)). This
proves (3.11).

Notice that by (3.1) and (3.2),

h(ρn, ρ̄n) ≤ τ
(
G(Yn)Λ

∗)h(ρn−1, ρ̄n−1) ≤ h(ρn−1, ρ̄n−1),

i.e. the sequence h(ρn, ρ̄n) is non-increasing and its lim in (3.10) can be realized along any
subsequence. Let r be the integer defined in (a-2), define

Tℓ(Y ) := Λ∗G(Y(ℓ+1)r−1)...G(Yℓr+1)Λ
∗, ℓ = 0, 1, ...
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Then as in (3.13)

∥πn − π̄n∥ ≤ 2

log 3
h(ν, ν̄)

[n/r]∏
i=0

τ̂(Ti(Y ))

Let Ps denote the probability measure on (Ω,F ), under which (X,Y ) is stationary, i.e.
X0 ∼ µ (the invariant measure of the chain). Then under Ps

lim
n→∞

log
1

n
log ∥πn − π̄n∥ = lim

ℓ→∞
log

1

ℓr
log ∥πℓr − π̄ℓr∥ ≤ 1

r
lim
ℓ→∞

1

ℓ

ℓ∑
i=0

log τ̂(Ti(Y )) ≤

1

r
lim
ℓ→∞

1

ℓ

ℓ∑
i=0

(
log τ̂(Ti(Y )) ∨ −1

)
=

1

r
Es
(
log τ̂(T0(Y )) ∨ −1

)
,

where the latter convergence holds Ps-a.s. by the Birkhoff-Khinchine LLN for the station-
ary process (X,Y ) (the clipping by −1 is needed along with boundedness of gi(y)’s for the
appropriate integrability). Since ν ≪ µ, P ≪ Ps and hence this bound holds under P as
well. Since the entries of T0(Y ) are positive with positive probability, Es

(
log τ̂(T0(Y )) ∨

−1
)
< 0 and the assertion (3.10) follows.

The process (X,π) is Markov and is also Feller and thus it has at least one invariant
measure (by the classic Krylov-Bogolyubov argument - see e.q. [45]). Its uniqueness is
deduced in Theorem 7.1 in [18] from the stability property (3.10). �

Remark 3.4. Notice that the assumption (a-2) is violated for the Blackwell’s chain from
Example 1.1.

Corollary 3.5. Assume that X is ergodic and gi(u) are bounded and has the same support
(e.g. do not vanish on Rd). Then (3.10) holds.

Proof. In this case PY
n ∼ P̄Y

n and the condition ν ≪ ν̄ is void. Since X is ergodic, its
transition matrix Λ is m-primitive, i.e. Λm has strictly positive entries for some integer
m ≥ 1. Since gi(u) are supported on the same set the diagonal of G(Yn) is P-a.s. positive
and thus (a-2) is satisfied with r := m. �

3.1.3. The “mixing” condition in the general setting. The Hilbert metric approach is ap-
plicable to the general filtering equation (2.1) along the same lines.

Theorem 3.6 (typical claim in the spirit of [5]). Suppose the signal evolves on a subset
S ⊆ Rd, i.e. P(Xn ̸∈ S) = 0 for all n ≥ 0 (S = Rd is also allowed). Assume that h(ν, ν̄) <
∞ and there exists a reference measure ψ on S, with respect to which the transition law of
the signal has a uniformly positive and bounded density, i.e.

0 < λ∗ ≤ λ(x, u) ≤ λ∗ <∞. (3.14)

Then

∥πn − π̄n∥ ≤ 2

log 3
h(ν, ν̄)

(λ∗ − λ∗
λ∗ + λ∗

)n
, n ≥ 1. (3.15)
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Proof. Let ρn and ρ̄n be the solutions of the Zakai equation (2.3), then taking into account
(2.4) and the properties of the Hilbert metric:

∥πn − π̄n∥ ≤ 2

log 3
h(πn, π̄n) =

2

log 3
h(ρn, ρ̄n) ≤

2

log 3
h(ν, ν̄)

n∏
k=1

τ
(
Λn(Y )

)
,

where the operators Λn(Y ) are given by

Λn(Y )p := g(u, Yn)
(∫

S
λ(x, u)p(dx)

)
ψ(du).

The assertion (3.15) is true, since (see (3.6)) H(Λn) ≤
(
λ∗/λ∗

)2
and consequently

τ(Λn(Y )) ≤ λ∗ − λ∗
λ∗ + λ∗

.

�

The “mixing” condition (3.14) is quite natural for compact sets S: in this case the
Lebesgue measure can be typically chosen as ψ to provide (3.14). It is not hard to see that
in this case X is also mixing in the usual sense and a fortiori ergodic. If S is noncompact it
is usually not clear how to choose the reference measure ψ to satisfy the mixing condition.
For example, consider the signal generated by

Xn = h(Xn−1) + ηn, n ≥ 1

where h is a bounded function, say |h(x)| ≤ 1 and η = (ηn)n≥1 is an i.i.d. sequence with

d

dx
P(η1 ≤ x) =

1

2
e−|x|, x ∈ R.

Clearly S ≡ R in this case and if one chooses ψ(du) = du, then λ(x, u) = 1
2e

−|u−h(x)|,
so that no λ∗ required by (3.14) exists. In this case H(Λn(Y )) = ∞ and τ(Λn(Y )) = 1.

However if one chooses ψ(du) := e−|u|du, then

λ(x, u) = e−|u−h(x)|+|u| ≥ e−|h(x)| ≥ e−1 := λ∗

and

λ(x, u) ≤ e−
∣∣|u|−|h(x)|

∣∣+|u| ≤ e|h(x)| ≤ e1 := λ∗

and hence (3.14) holds. This trick does not always work and most notably fails for the
Gaussian case.

Thus applicability per se of the “mixing” condition (3.14) for noncompact state spaces
is limited. Some further extensions of this technique are possible via “compactification”.
For example, suppose that the transition density λ(x, u) is positive on any compact and
that the likelihood g(x, Yn) is supported on a compact Cn ⊆ R P-a.s. for any n ≥ 1. Then
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(Example 3.10 in [52], essentially the same trick was used already in [15])

g(x, Yn)

∫
R
λ(x, u)πn−1(du) = g(x, Yn)

∫
R
λ(x, u)

(
g(u, Yn−1)

∫
R
λ(u, u′)πn−2(du

′)ψ(du)
)

= g(x, Yn)

∫
R
1{Cn}(x)λ(x, u)1{Cn−1}(u)

(
g(u, Yn−1)

∫
R
λ(u, u′)πn−2(du

′)ψ(du)
)

= g(x, Yn)

∫
R
λ̃(x, u)

(
g(u, Yn−1)

∫
R
λ(u, u′)πn−2(du

′)ψ(du)
)

= g(x, Yn)

∫
R
λ̃(x, u)πn−1(du)

where

λ̃(u, x) =

{
λ(u, x) (u, x) ∈ Cn−1 × Cn

1 otherwise.

Since λ(u, x) is positive on any compact in R × R, λ̃(u, x) is mixing (with respect to the
same reference measure and with the mixing constants depending on Cn and Cn−1) and
consequently the filter is stable. For further developments of this idea see [52, 53], [60],
[74], [32], [43, 42].

Remark 3.7. Essentially the same results can be obtained using other characterization of
contraction, notably Dobrushin’s ergodic coefficient as in [29].

Remark 3.8. Though technically more involved, the same treatment can be done in con-
tinuous time case - see [5], [30].

3.2. The Lyapunov exponents approach. The key idea of this approach, pioneered
in [6], is the following simple inequality (the scalar case is treated for clarity)

∥πn − π̄n∥ =

∫
R
|πn(x)− π̄n(x)|ψ(dx) =

∫
R

∣∣∣ρn(x)∥ρn∥
− ρ̄n(x)

∥ρ̄n∥

∣∣∣ψ(dx) =∫
R

∣∣∣ ρn(x)∫
R ρn(y)ψ(dy)

− ρ̄n(x)∫
R ρ̄n(z)ψ(dz)

∣∣∣ψ(dx) =∫
R
∣∣ρ(x) ∫R ρ̄n(z)ψ(dz)− ρ̄n(x)

∫
R ρn(y)ψ(dy)

∣∣ψ(dx)
∥ρn∥∥ρ̄n∥

≤∫
R×R

∣∣ρ(x)ρn(y)− ρ̄n(x)ρn(y)
∣∣ψ(dx)ψ(dy)

∥ρn∥∥ρ̄n∥
:=

∥ρn ∧ ρ̄n∥
∥ρn∥∥ρ̄n∥

.

(3.16)

Hence

lim
n→∞

1

n
log ∥πn − π̄n∥ ≤ lim

n→∞

1

n
log ∥ρn ∧ ρ̄n∥ − lim

n→∞

1

n
log ∥ρn∥ − lim

n→∞

1

n
log ∥ρ̄n∥ (3.17)

This suggests that stability of (2.1) is controlled by the growth rates of the solutions of
corresponding Zakai equation (2.3). The limits in the right hand side are not trivial for
calculations and usually only some qualitative information can be extracted: e.g. the
asymptotic behavior as functions of various system parameters, etc. The treatment of the
finite state space is in fact closely related to the theory of Lyapunov exponents for linear
random dynamical systems (see e.g. monograph [2]).
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Let’s start with the classical Oseldec’s Multiplicative Ergodic Theorem (MET) (cited
here from [1])

Theorem 3.9. Let A1, A2, ... be a stationary ergodic sequence of d× d matrices such that
(log+(x) = max(0, log(x)))

E log+ ∥A1∥ <∞. (3.18)

Then there exist constants, the Lyapunov exponents, −∞ ≤ λd ≤ λd−1 ≤ ... ≤ λ1 < ∞
with the following properties

(a) With probability one the random sets

V (q, ω) := {v ∈ Rd : lim
n→∞

1

n
log ∥An...A1v∥ ≤ λq}

are subspaces. The map ω 7→ V (q, ω) is measurable from the probability space into
the Grassmann manifold, and if θ is the shift on the probability space form which
Ai(θω) = Ai+1(ω), then

V (q, θω) = A1(ω)V (q, ω).

(b) dimV (q) = #{i : λi ≤ λq}
(c) Set V (d + 1) = {0} and let i1 = 1 < i2 < ... < ip+1 = d + 1 be the unique indices

at which λ1 jumps, i.e. λ1 = λ2 = ... = λi2−1 > λi2 = λi2+1 = ... = λi3−1 > λi3 ...
Then for v ∈ V (is−1) \ Vis one has

lim
n→∞

1

n
log ∥An...A1v∥ = λis−1 , 2 ≤ s ≤ p+ 1.

(d) The sequence of matrices (
A∗

1...A
∗
nAn...A1

)1/(2n)
converges almost surely to a limit matrix B with eigenvalues µ1 = eλ1 , ..., µd = eλd.
The orthogonal complement of V (is) in V (is−1) is the eigenspace of B correspond-
ing to µis−1

(e) If limn→∞
1
n log ∥An...A1∥ > 0 and det(A1) = 1 with probability one, then λd <

0 < λ1 so that V (d), the subspace corresponding to λd, is a proper non-empty
subspace of Rd.

One of the main messages of this theorem is that the solutions of random linear re-
cursions grow with one of d possible exponential rates, which are deterministic (!). For
any fixed deterministic initial condition, the Lyapunov exponent is determined at random
(since V (q, ω) are random).

As was mentioned before, one may study the stability problem under the stationary
probability Ps, in the sense that any Ps-a.s. statement will automatically hold P-a.s. as
P ≪ Ps (since ν ≪ µ). Under Ps the solution of the Zakai equation (3.12) is exactly in
the scope of the MET, namely we deal with the stationary sequence of random matrices
An := G(Yn)Λ

∗. The condition (3.18) is satisfied if all the densities gi(y) are e.g. bounded
or sufficiently integrable. Hence the limits

lim
n→∞

1

n
log |ρn|, and lim

n→∞

1

n
log |ρ̄n|
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exist. In our case, the matrix A∗
nAn has nonnegative entries and hence, by Perron-

Frobenius theorem, its largest eigenvalue is real and the corresponding eigenvector has
nonnegative entries. The same holds for (A∗

nAn)
1/(2n) as well as for limn→∞(A∗

nAn)
1/(2n)

(which exists by (d)). Hence by (d) the orthogonal compliment of V (i2) in V (1) contains a
vector with nonnegative entries, which means that it contains all the vectors with strictly
positive entries (since they have nonzero projection on a vector with nonzero vector with
nonnegative entries). If we also assume e.g. (a-2) from Theorem 3.3, then eventually
both G(Yn)Λ

∗...G(Y1)Λ
∗ will enter the interior of Sd−1 and thus in fact for any p ∈ Sd−1

(including the boundary) limn→∞
1
n log |

∏n
k=1G(Yk)Λ

∗p| = λ1. In particular, the two lat-
ter limits in the right hand side of (3.17) coincide and equal the top Lyapunov exponent
corresponding to (3.12):

λ1 =
1

n
log |ρn| =

1

n
log |ρ̄n|.

The exterior product ρn ∧ ρ̄n (i.e. the matrix with entries ρn(i)ρ̄n(j) − ρn(j)ρ̄n(i)) can
be associated in this case with the antisymmetric matrix ρnρ̄

∗
n − ρ̄nρ

∗
n, which satisfies the

equation
(ρn ∧ ρ̄n) = G(Yn)Λ

∗(ρn−1 ∧ ρ̄n−1)ΛG(Yn), ρ0 ∧ ρ̄0 = ν ∧ ν̄.
This is a linear random recursion and hence is also in the scope of MET. In fact, in this
case one has 20

lim
n→∞

1

n
log ∥ρn ∧ ρ̄n∥ ≤ λ1 + λ2, (3.19)

where λ2 is the second Lyapunov exponent of (3.12). In this case, the generated random
flow is not positive anymore and hence only inequality can be claimed. Then (3.17)
suggests that the stability of the filter is controlled by the Lyapunov spectral gap of
(3.12):

γ := lim
n→∞

1

n
log ∥πn − π̄n∥ ≤ λ1 + λ2 − λ1 − λ1 = λ2 − λ1 ≤ 0.

The main difficulty is now to calculate (usually impossible) or estimate this gap. Theorem
3.10 below was inspired by Theorem 1.7 in [6], which proves the asymptotics (1.12) and
(1.13), in the case when gi(u) are Gaussian with means h(ai) and variance σ2. The authors
used Feynman-Kac type formulae to derive these bounds. The presentation here follows
[23], which takes a more classic route due to H.Furstenberg and R.Khasminskii.

With ε ∈ (0, 1), define the slow Markov chain Xε = (Xε
n)n≥0 with the transition prob-

abilities

λεij = P(Xε
n = aj |Xε

n−1 = ai) =

{
ελij , i ̸= j

1− ε
∑

ℓ̸=i λiℓ, i = j.

and initial distribution ν. The observation sequence Y ε and the filtering processes πε and
π̄ε are defined by (1.1) and (1.4) with X replaced by Xε and Λ by Λε. The chain Xε is
ergodic if X is and its invariant measure equals µ, independently of ε. Clearly ε controls
the transitions rate of Xε - the smaller ε the less frequent are its transitions. To emphasize
the dependence on ε, γ(ε) is written for γ, etc.

20the exterior product ∥a∧ b∥ is twice the area formed by the vectors a, b ∈ Rd. The area between Ana
and Anb, where A is a fixed deterministic matrix is known to grow not faster than the sum of the largest
absolute values of its eigenvalues. The formula (3.19) can be seen as its (very nontrivial!) analog. In fact,
similar formulae are available for the k-th exterior products.
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Figure 1. γ(ε) for the BSC example

Theorem 3.10. Assume that X is ergodic and the noise densities gi(u)

(a1) are bounded
(a2) have the same support
(a3) and

∫
R gi(u) log gj(u)φ(du) > −∞, for all i, j.

Then for any pair (ν, ν̄) of probability distributions on S

γ(ε) ≤ −
d∑

i=1

µimin
j ̸=i

D(gi ∥ gj) + o(1), ε→ 0, (3.20)

where D(gi ∥ gj) =
∫
R gi(u) log

gi
gj
(u)φ(du) are the Kullback-Leibler relative entropies. For

d = 2 the asymptotic (3.20) is precise, i.e.

γ(ε) = −µ1D(g1 ∥ g2)− µ2D(g2 ∥ g1) + o(1), ε→ 0. (3.21)

This theorem reveals the following interesting properties of γ(ε) (see Figure 1).
1. γ(ε) may be discontinuous at ε = 0

γ(0+) = lim
ε→0

γ(ε) < γ(0) = 0,

if at least one of the entropies D(gi ∥ gj) is strictly positive. This means that for small
ε > 0 the filter remains stable virtually with the same rate as long as the chain is not
“frozen” completely, while the filter, corresponding to the limit chain X0

n ≡ X0, n ≥ 1,
may be unstable (e.g. when some but not all gi(u)’s coincide φ-a.s.). Such a behavior is
not observed in the analogous “slowly varying” setting for the Kalman-Bucy filter, where
the state space of the signal is continuous.

Surprising as it may seem at first glance, this phenomenon is quite natural for sig-
nals with discrete state space and can be explained as follows. The distance ∥πεn − π̄εn∥
never increases and tends to decrease exponentially fast whenever Xε

n resides in a state
with distinct noise probability distribution. Since the average occupation time of this
“synchronizing” state does not depend on ε, the decay remains exponential with nonzero
average rate. The “dual” manifestation of this phenomenon is that the filter stability
improves, when the signal-to-noise ratio is increased in the setting of (1.12) (see [31, 6]).
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2. As demonstrated in the following example, γ(ε) may have a maximum at some
ε⋆ > 0 or, in other words, stability may improve when the chain is slowed down! This
provides yet another evidence against the false intuition, directly relating stability of the
filter to ergodic properties of the signal (as was explained in the introduction ). The reason
for such behavior stems from the delicate interplay between two stabilizing mechanisms:
ergodicity of the signal and synchronizing effect of the observations. The first dominates
the second for the faster chain, and vise versa when the chain is slow.

Example 3.11. Consider the so called Binary Symmetric Channel (BSC) model, for
which Xn ∈ {0, 1} is a symmetric chain with the jump probability λ and Yn = (Xn− ξn)2,
where ξ is an i.i.d. {0, 1} binary sequence with P(ξ1 = 1) = p ∈ (0, 1/2). Let Xε and
Y ε denote the “slow” instances as defined above. In this case more can be said about the
convergence in (3.21) (see the proof below), namely

γ(ε) ≥ −Dp +
4λ
(
log(2)− h(p)

)
Dp

ε log ε−1
(
1 + o(1)

)
, ε→ 0. (3.22)

where Dp := p log
p

1− p
+ (1 − p) log

1− p

p
and h(p) = −p log p − (1 − p) log(1 − p). On

the other hand, γ(ε) ≤ log(1− 2ελ) → −∞ as ε→ 1/(2λ) (at ε = 1/(2λ) the chain is just
an i.i.d. sequence). Since the second term in the expansion of γ(ε) in (3.22) is positive
and by (3.21) γ(ε) → −Dp as ε→ 0, one gets the qualitative behavior depicted in Figure
1. �

The statement of Theorem 3.10 follows from (3.17) and asymptotic expressions derived
in Lemmas 3.12 and 3.13 below.

3.2.1. Asymptotic expression for λ1(ε).

Lemma 3.12. For any ε > 0 the Markov process (Xε, πε) has a unique stationary invari-
ant measure Mε. The top Lyapunov exponent is given by

λ1(ε) =

∫
Sd−1

d∑
i=1

(
Λε∗u

)
i

∫
R
gi(y) log

∣∣G(y)Λε∗u
∣∣φ(dy)Mε

π(du), (3.23)

where Mε
π is the π-marginal of Mε. For each Jj = {aℓ : D(gj ∥ gℓ) = 0}

lim
ε→0

∫ (
1{x∈Jj} −

∑
ℓ:aℓ∈Jj

uℓ
)2Mε(dx, du) = 0 (3.24)

and in particular

lim
ε→0

λ1(ε) =

d∑
i=1

µi

∫
R
gi(y) log gi(y)φ(dy). (3.25)

Proof. Ergodicity of (Xε, πε) essentially follows from the stability (3.10) and was already
mentioned in Theorem 3.3 above (Corollary 3.5, see also [22]). Concentration properties
of Mε

π have been studied in [41], when all the noises are distinct, i.e. D(gi ∥ gj) > 0 for
all i ̸= j, which is not necessarily the case here.
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Let X̃ε be the stationary chain (i.e. X̃0 ∼ µ) and π̃ε the corresponding optimal filtering

process, generated by (2.1) subject to π̃ε0 = µ. For an f : S → R and n,m ≥ 0 (Ỹ ε denotes

the observations corresponding to X̃ε)

E
(
f(X̃ε

n+m)− π̃εn+m(f)
)2

= E
(
f(X̃ε

n+m)− E
(
f(X̃ε

n+m)
∣∣F Ỹ ε

n+m

))2
≤

E
(
f(X̃ε

n+m)− E
(
f(X̃ε

n+m)
∣∣F Ỹ ε

[m+1,n+m]

))2 †
= E

(
f(X̃ε

n)− E
(
f(X̃ε

n)
∣∣F Ỹ ε

n

))2
=

E
(
f(X̃ε

n)− π̃εn(f)
)2
,

where stationarity of (X̃ε, Ỹ ε) have been used in †. This means that the filtering error
for the stationary signal does not increase with time. Then by uniqueness of Mε for any
fixed m ≥ 0∫ (

f(x)− u(f)
)2Mε(dx, du) =

lim
n→∞

E
(
f(X̃ε

n)− π̃εn(f)
)2 ≤ E

(
f(X̃ε

m)− π̃εm(f)
)2
. (3.26)

Define

π̂εn(i) =
µi
∏n

k=1 gi(Ỹ
ε
k )∑d

j=1 µj
∏n

k=1 gj(Ỹ
ε
k )
, i = 1, ..., d

and let Aε
m = {X̃ε

k = X̃0, ∀k ≤ m}, the event that X̃ε
k does not jump on [0,m]. Notice

that on the set Aε
m, the observation process is independent of ε, namely

Ỹ ε
k ≡ Ỹ 0

k =

d∑
i=1

1{X̃0=ai}ξk(i), k = 1, ...,m.

Then by optimality of π̃ε

E
(
f(X̃ε

m)− π̃εm(f)
)2 ≤ E

(
f(X̃ε

m)− π̂εm(f)
)2

=

E1{Aε
m}
(
f(X̃0)− π̂0m(f)

)2
+ E1{Ω\Aε

m}
(
f(X̃ε

m)− π̂εm(f)
)2 ≤

E
(
f(X̃0)− π̂0m(f)

)2
+ 4d2max

ai∈S
|f(ai)|2

(
1− P(Aε

m)
)
−−−→
ε→0

E
(
f(X̃0)− π̂0m(f)

)2
For f(x) := 1{x∈Jj} the latter and (3.26) implies

lim
ε→0

∫ (
1{x∈Jj} −

∑
ℓ:aℓ∈Jj

uℓ
)2Mε(dx, du) ≤ E

(
f(X̃0)− π̂m(f)

)2 −−−−→
m→∞

0,

where the convergence holds since {X̃0 ∈ Jj} ∈ F Ỹ 0

∞ =
∨

n≥1 F Ỹ 0

n by definition of Jj and

since π̂0m(i), i = 1, ..., d are the optimal estimates of 1{X̃0=ai} given F Ỹ 0

m .

Once the existence of ergodic stationary pair (Xε, πε) is established21 one may use it
to realize the limit λ1 by means of the approach due to H.Furstenberg and R.Khasminskii

21such pair can be generated by taking both X0 and π0 randomly distributed according to Mε and its
definition can be extended to the negative times by the usual arguments. Note that this is different from

(X̃ε, π̃ε) used in the proof of Mε concentration
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(see e.g. [40]). The idea is to study the growth rate of ρεn by projecting it on the unit
sphere (Sd−1 in this case):

|ρεn| =
∣∣G(Y ε

n )Λ
ε∗ρεn−1

∣∣ = |ρεn−1|
∣∣∣G(Y ε

n )Λ
ε∗ ρ

ε
n−1

|ρεn−1|

∣∣∣ = |ρεn−1|
∣∣G(Y ε

n )Λ
ε∗πεn−1

∣∣.
Then by the law of large numbers (LLN) for ergodic processes (the required integrability
conditions are provided by (a1) and (a3))

λ1(ε) = lim
n→∞

1

n
log |ρεn| = lim

n→∞

1

n

n∑
m=1

log
∣∣G(Y ε

n )Λ
ε∗πεn−1

∣∣ = E log
∣∣G(Y ε

1 )Λ
ε∗πε0

∣∣ =
E

d∑
i=1

1{Xε
1=ai} log

∣∣G(ξ1(i))Λε∗πε0
∣∣ = E

d∑
i=1

P
(
Xε

1 = ai|F Y ε

(−∞,0]

)
log
∣∣G(ξ1(i))Λε∗πε0

∣∣ =
E

d∑
i=1

(
Λε∗πε0

)
i
log
∣∣G(ξ1(i))Λε∗πε0

∣∣. (3.27)

The latter expression is nothing but (3.23). The asymptotic (3.25) follows from Λε = I +
O(ε) and the concentration (3.24) ofMε as ε→ 0, since gi(u)’s coincide φ-almost surely for

all ai ∈ Jj for any j and the X-marginal of Mε is given by Mε
X(dx) =

∑d
i=1 µiδai(dx). �

3.2.2. Asymptotic bound for λ1(ε) + λ2(ε).

Lemma 3.13. For any ν, ν̄ ∈ Sd−1

lim
n→∞

1

n
log |ρεn ∧ ρ̄εn| ≤

d∑
i=1

µimax
k ̸=m

∫
R
gi(u) log

(
gm(u)gk(u)

)
φ(du) + o(1), ε→ 0. (3.28)

In the case d = 2

lim
n→∞

1

n
log |ρεn ∧ ρ̄εn| = log(1− ελ12 − ελ21)+

µ1

∫
R
g1(u) log

(
g1(u)g2(u)

)
φ(du) + µ2

∫
R
g2(u) log

(
g1(u)g2(u)

)
φ(du). (3.29)

Proof. The process Rε
n := ρεn ∧ ρ̄εn evolves in the space of antisymmetric matrices (with

zero diagonal) and satisfies the linear equation

Rε
n = G(Y ε

n )Λ
ε∗Rε

n−1Λ
εG(Y ε

n ), Rε
0 = ν ∧ ν̄,

or in the componentwise notation

Rε
n(i, j) =

∑
1≤k ̸=ℓ≤d

gk(Y
ε
n )λ

ε
kiR

ε
n−1(k, ℓ)λ

ε
ℓjgℓ(Y

ε
n ), i ̸= j.

Unlike in the case of (3.12), it is not clear whether the limit limn→∞
1
n log |Rε

n| depends
on ν, ν̄ or Πε

n = Rε
n/|Rε

n| has any useful concentration properties as ε → 0. However the
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technique used in the previous section still gives the upper bound. With a fixed integer
r ≥ 1

|Rε
n| =|Rε

n−r|
∣∣∣{G(Y ε

n )Λ
ε∗...

{
G(Y ε

n−r+1)Λ
ε∗Πε

n−rΛ
εG(Y ε

n−r+1)
}
...ΛεG(Y ε

n )
}∣∣∣ ≤

|Rε
n−r|

(∑
i̸=j

∣∣Πε
n−r(i, j)

∣∣ n∏
m=n−r+1

gi(Y
ε
m)gj(Y

ε
m) + c1(r)ε

)
≤

|Rε
n−r|

(
max
i̸=j

n∏
m=n−r+1

gi(Y
ε
m)gj(Y

ε
m) + c1(r)ε

)
, n ≥ r

with a constant c1(r) > 0, depending only on r (due to assumption (a1)). By the MET

the limit limn→∞
1
n log |Rε

n| exists P-a.s and hence (recall the definitions of Ỹ ε and Aε
r on

page 29)

lim
n→∞

1

n
log |Rε

n| = lim
ℓ→∞

1

ℓr
log |Rε

ℓr| ≤

≤ lim
ℓ→∞

1

ℓ

ℓ∑
k=1

1

r
log
(
max
i̸=j

kr∏
m=kr−r+1

gi(Y
ε
m)gj(Y

ε
m) + c1(r)ε

) †
=

1

r
E log

(
max
i ̸=j

r∏
m=1

gi(Ỹ
ε
m)gj(Ỹ

ε
m) + c1(r)ε

)
≤

1

r
E1{Aε

r} log
(
max
i ̸=j

r∏
m=1

gi(Ỹ
ε
m)gj(Ỹ

ε
m) + c1(r)ε

)
+ c2(r)

(
1− Pµ(A

ε
r)
)
≤

1

r

d∑
ℓ=1

µℓE log
(
max
i̸=j

r∏
m=1

gi
(
ξm(ℓ)

)
gj
(
ξm(ℓ)

)
+ c1(r)ε

)
+ c3(r)

(
1− Pµ(A

ε
r)
) ε→0−−−→

d∑
ℓ=1

µℓEmax
i̸=j

1

r
log

r∏
m=1

gi
(
ξm(ℓ)

)
gj
(
ξm(ℓ)

)
,

where the LLN was used in † and ci(r) stand for r-dependent constants. Applying the
LLN once again one gets for each ℓ

1

r
log

r∏
m=1

gi
(
ξm(ℓ)

)
gj
(
ξm(ℓ)

)
=

1

r

r∑
m=1

log gi
(
ξm(ℓ)

)
gj
(
ξm(ℓ)

) r→∞−−−→∫
R
gℓ(u) log

(
gi(u)gj(u)

)
φ(du), P− a.s.

Since “max” is a continuous function

max
i ̸=j

1

r
log

r∏
m=1

gi
(
ξm(ℓ)

)
gj
(
ξm(ℓ)

) r→∞−−−→ max
i̸=j

∫
R
gℓ(u) log

(
gi(u)gj(u)

)
φ(du)
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and by the uniform integrability, provided by assumption (a3),

Emax
i̸=j

1

r
log

r∏
m=1

gi
(
ξm(ℓ)

)
gj
(
ξm(ℓ)

) r→∞−−−→ max
i ̸=j

∫
R
gℓ(u) log

(
gi(u)gj(u)

)
φ(du).

Putting all parts together one gets the bound (3.28). In the case d = 2, the process
Rε

n is one dimensional and all the calculations can be carried out exactly, leading to the
expression (3.29). �

3.2.3. Proof of (3.22). When the observation process Y ε
n takes values in a discrete alphabet

S′ = {b1, ..., bd′}, the conditional densities (with respect to the point measure φ(dy) =∑d′

i=1 δbi(dy)) are of the form

gi(y) =
d′∑
j=1

pij1{y=bj},
d′∑
j=1

pij = 1, pij ≥ 0,

and hence by (3.27) (πε1|0 := Λε∗πε0 for brevity)

λ1(ε) = E log
∣∣G(Y ε

1 )Λ
ε∗πε0

∣∣ = E
d′∑
j=1

1{Y ε
1 =bj} log

( d∑
i=1

pijπ
ε
1|0(i)

)
=

E
d′∑
j=1

P
(
Y ε
1 = bj |F Y ε

(−∞,0]

)
logP

(
Y ε
1 = bj |F Y ε

(−∞,0]

)
=: −H (Y ε), (3.30)

where H (Y ε) is known as the entropy rate of the stationary process Y ε = (Y ε
n )n∈Z.

Consider now the special case, when Xε and Y ε take values in S = {0, 1} and p =
P(Y ε

n = i|Xε
n = j) for i ̸= j. The vector πεn is one dimensional and hence P

(
Y ε
1 =

1|F Y ε

(−∞,0]

)
= (1− p)πε1|0 + p(1− πε1|0), where

πε1|0 := P
(
Xε

1 = 1|F Y ε

(−∞,0]

)
= (1− ελ10)π

ε
0 + ελ01(1− πε0) (3.31)

and πε0 := P(Xε
0 = 1|F Y ε

(−∞,0]) are redefined for brevity.

Let h(x) := −x log x− (1− x) log(1− x), x ∈ [0, 1] and ℓp(q) = (1− p)q+ p(1− q), and
define

H(p, q) := h
(
ℓp(q)

)
p, q ∈ [0, 1],

where 0 log 0 ≡ 0 is understood. Since h(x) ≤ log(2) with equality at x = 1/2 and
ℓp(1/2) = 1/2, H(p, q) ≤ log(2) for all p, q ∈ [0, 1] with equality at q = 1/2. Since h(x) is
a concave function, symmetric around x = 1/2

H(p, q) = h
(
(1− p)q + p(1− q)

)
≥ qh(1− p) + (1− q)h(p) = h(p), p ∈ [0, 1],

with equality at q = 0 and q = 1. Finally for any fixed p ∈ [0, 1], q 7→ H(p, q) inherits
concavity and symmetry from h(x). These properties imply the following lower bound

H(p, q) ≥ h(p) +
log(2)− h(p)

1/2
min(q, 1− q), p, q ∈ [0, 1]. (3.32)
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By Theorem 1 in [41] for the symmetric chain Xε with jump probability λ and p ̸= 1/2

Emin(πε0, 1− πε0) = P
(
Xε

0 ̸= argmaxiπ
ε
0(i)
)
=

λ

Dp
ε log ε−1

(
1 + o(1)

)
, ε→ 0, (3.33)

where Dp := p log
p

1− p
+ (1− p) log

1− p

p
. The expression for H (Y ε) in the case d = 2

reads

H (Y ε) = EH(p, πε1|0) = EH(p, πε0) +O(ε), ε→ 0

where the latter asymptotic follows from (3.31), since H(p, q) is differentiable in q.
Now (3.32) and (3.33) imply

H (Y ε) ≥ h(p) + 2
(
log(2)− h(p)

) λ
Dp

ε log ε−1
(
1 + o(1)

)
, ε→ 0,

and (3.22) follows from (3.17), (3.29) and (3.30). �

Remark 3.14. This Lyapunov exponents approach does not actually require neither er-
godicity of the signal nor compactness of the state space. With some sophistication and
under certain structural constraints both cases can be treated - [3], [16], [36].

3.3. Conditional time reversal. As was already mentioned above, the assumption ν ≪
ν̄ implies P ≪ P̄ with (recall that we work with coordinate process on the canonical space)

dP

dP̄
(x, y) =

dν

dν̄
(x0), P− a.s.

Consequently PY ≪ P̄Y and PY
n ≪ P̄Y

n and

dPY
n

dP̄Y
n

(Y ) = Ē
(dν
dν̄

(X0)|F Y
n

)
, and

dPY

dP̄Y
(Y ) = lim

n→∞

dPY
n

dP̄Y
n

(Y ) = Ē
(dν
dν̄

(X0)
∣∣F Y

[1,∞)

)
,

where F Y
[1,∞) :=

∨
n≥1 F Y

n . If in addition, ν ∼ ν̄, then the above measures are absolutely

continuous as well and the Radon-Nikodym derivatives are positive P-a.s. and P̄-a.s. We
accept the latter assumption below for simplicity, though the weaker ν ≪ ν̄ is essentially
needed (the reader is referred to [24] for details). When ν ∼ ν̄, both filtering processes π
and π̄ are well defined both on (Ω,F ,P) and (Ω,F , P̄) as the solutions of (2.1) subject to
ν and ν̄ respectively. Obviously π̄ is the conditional distribution of Xn given F Y

n under
P̄ and the “wrong” filtering under P (obtained by starting (2.1) from ν̄, while (X,Y )
corresponds to ν). Analogously π is the conditional distribution of Xn given F Y

n under P
and is the “wrong” filtering under P̄. The formula for transformation of the conditional
expectations under a.c. change of measure from Lemma 2.1 implies

πn(f) = E
(
f(Xn)|F Y

n

)
=

Ē
(
f(Xn)

dν
dν̄ (X0)

∣∣F Y
n

)
Ē
(
dν
dν̄ (X0)

∣∣F Y
n

) (3.34)
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for any measurable bounded f . Then

E
∣∣πn(f)− π̄n(f)

∣∣ = ĒĒ
(dν
dν̄

(X0)
∣∣F Y

n

)∣∣πn(f)− π̄n(f)
∣∣ =

Ē

∣∣∣∣Ē(dνdν̄ (X0)
∣∣F Y

n

)
πn(f)− Ē

(dν
dν̄

(X0)
∣∣F Y

n

)
Ē
(
f(Xn)|F Y

n

)∣∣∣∣ =
Ē

∣∣∣∣Ē(f(Xn)
dν

dν̄
(X0)

∣∣F Y
n

)
− Ē

(dν
dν̄

(X0)
∣∣F Y

n

)
Ē
(
f(Xn)|F Y

n

)∣∣∣∣,
where the latter equality is due to (3.34). Let |f | ≤ C for definiteness, then the latter
implies 22

E
∣∣πn(f)− π̄n(f)

∣∣ =
Ē

∣∣∣∣Ē(f(Xn)Ē
(dν
dν̄

(X0)
∣∣F Y

n ∨Xn

)∣∣∣F Y
n

)
− Ē

(
f(Xn)Ē

(dν
dν̄

(X0)
∣∣F Y

n

)∣∣∣F Y
n

)∣∣∣∣ ≤
Ē

∣∣∣∣f(Xn)Ē
(dν
dν̄

(X0)
∣∣F Y

n ∨Xn

)
− f(Xn)Ē

(dν
dν̄

(X0)
∣∣F Y

n

)∣∣∣∣ ≤
CĒ

∣∣∣∣Ē(dνdν̄ (X0)
∣∣F Y

n ∨Xn

)
− Ē

(dν
dν̄

(X0)
∣∣F Y

n

)∣∣∣∣.
(3.35)

By the Markov property of (X,Y ),

Ē
(dν
dν̄

(X0)
∣∣F Y

n ∨Xn

)
= Ē

(dν
dν̄

(X0)
∣∣F Y

[1,n] ∨ FX
[n,∞)

)
= Ē

(dν
dν̄

(X0)
∣∣F Y

[1,∞) ∨ FX
[n,∞)

)
where FX

[n,∞) := σ{Xn, Xn+1, ...}. By the martingale convergence theorem23 P̄-a.s.

lim
n→∞

Ē
(dν
dν̄

(X0)
∣∣F Y

[1,∞) ∨ FX
[n,∞)

)
= Ē

(dν
dν̄

(X0)
∣∣ ∩
n≥0

F Y
[1,∞) ∨ FX

[n,∞)

)
,

lim
n→∞

Ē
(dν
dν̄

(X0)
∣∣F Y

n

)
= Ē

(dν
dν̄

(X0)
∣∣F Y

[1,∞)

)
.

(3.36)

Thus (3.35) implies stability of (2.1) (in the sense limn→∞ E|πn(f) − π̄n(f)| = 0 for any
measurable and bounded function f) if∩

n≥0

F Y
[1,∞) ∨ FX

[n,∞) = F Y
[1,∞), P̄− a.s. (3.37)

If the tail σ-algebra of X is P̄-a.s. empty:
∩

n≥0 FX
[n,∞) = {∅,Ω} P̄-a.s. then the latter is

a particular case of the following question. Let Gn be a decreasing sequence of σ-algebras
and F be a fixed σ-algebra. Is the following true (per se or P-a.s.)∩

n≥0

F ∨ Gn
?
= F ∨

∩
n≥0

Gn. (3.38)

Little is known about the conditions, under which this relation holds, and in fact, according
to D.Williams [76], it “...trapped up even Kolmogorov and Wiener” (see Sinai [66, p. 837]

22FY
n ∨Xn is short for the more proper notation FY

n ∨ σ{Xn}
23note that the filtration FY

[1,∞) ∨ FX
[n,∞) is decreasing with n, while FY

n is increasing, so actually the

direct and reverse martingale convergence theorems are used here
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for some details). The reader can find a discussion concerning (3.38) in von Weizsäcker
[75] (note, however, that the counterexample there is incorrect). Other works related to
this issue are [77],[39], [34]. Different counterexamples to (3.38) appeared in Exercise 4.12
in Williams [76] and in [62]. In fact Example 1.1 is nothing but another situation when
(3.38) fails. F Y

[1,∞) determines all the transitions {1, 3} ↔ {2, 4} of X but does not tell

where Xn resides for each n ≥ 0. Specifying the value of Xn at any n ≥ 0, “pins” this
uncertainty and thus reveals all the information about X. In other words,

F Y
[1,∞) ∨ FX

[n,∞) = F Y
[1,∞) ∨ FX

[1,∞) + F Y
[1,∞)

with strict inclusion. The signal X in this example is an ergodic finite state Markov chain
and hence it is geometrically ergodic and its tail σ-algebra is empty, i.e.

∩
n≥0 FX

[n,∞) =

{∅,Ω}. Thus stability of the filter is not implied merely by ergodicity of the signal!
The validity of the relation similar to (3.37) was implicitly claimed by H.Kunita in [45]
(under certain additional technical conditions) and this gap in the proof currently lacks
justification (see [8], [14]).

However (3.35) hints that instead of studying the stability of the conditional distribution
of Xn given F Y

n , one may study the time reversed conditional distribution of X0, given
F Y

n ∨Xn. It turns out that the latter has interesting dynamics, somewhat more amenable
to stability analysis. The following theorem is taken from [24].

Theorem 3.15. Assume that X is an ergodic chain and ν ∼ ν̄, then

lim
n→∞

1

n
log ∥πn − π̄n∥ ≤ −λ⋄

λ∗
, (3.39)

where λ⋄ :=
∑d

i=1 µiminj λij.

Remark 3.16. This theorem states that the filter is stable, if Λ is m-primitive and at least
one of its rows has all nonzero entries. The assertion is independent of the observation
densities structure, just like (3.11). Though (3.39) is weaker than (3.11), both are stronger
than just ergodicity of the chain X. This raises the following question: what is the
necessary and sufficient condition for the filtering stability only in terms of the ergodic
properties of the chain, or in other words, what is the weakest ergodic property to be
inherited by the filter ?

Proof. Define qn(i, j) := P(X0 = ai|F Y
n , Xn = aj). These backward probabilities satisfy

the following recursions (derived via Bayes formulae - see Lemma 3.1, [24]): for each
i = 1, ..., d

qn(i, j) =

∑d
ℓ=1 λℓjπn−1(ℓ)qn−1(i, ℓ)∑d

ℓ=1 λℓjπn−1(ℓ)
, n ≥ 1, (3.40)

subject to q0(i, j) := 1{i=j}. These recursions are linear in q with the time inhomogeneous
coefficients depending on πn. Namely let qn(i) denote the vector with entries qn(i, j),
j = 1, ..., d, then

qn(i) = Qn−1qn−1(i), n ≥ 1

where Qn is the matrix with entries

Qn(j, k) =
λkjπn(k)∑d
ℓ=1 λℓjπn(ℓ)

.
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Each row of Qn sums up to 1 and hence Qn is a (random) transition probability matrix.
For a fixed i, introduce the upper and lower envelopes of qn(i, j):

qmax
n (i) := max

j
qn(i, j), and qmin

n (i) := min
j
qn(i, j).

Then we have

qn(i, j)− qn(i, j
′) =

d∑
ℓ=1

Qn−1(j, ℓ)qn−1(i, ℓ)−
d∑

ℓ=1

Qn−1(j
′, ℓ)qn−1(i, ℓ) =

qmax
n (i)− qmin

n (i)−
d∑

ℓ=1

Qn−1(j, ℓ)
(
qmax
n−1(i)− qn−1(i, ℓ)

)
−

d∑
ℓ=1

Qn−1(j
′, ℓ)
(
qn−1(i, ℓ)− qmin

n−1(i)
)

Define ∆n(i) := qmax
n (i)− qmin

n (i) > 0 and αn(i, ℓ) :=
qn(i, ℓ)− qmin

n (i)

∆n(i)
, so that

qn(i, j)−qn(i, j′) = ∆n−1(i)

(
1−

d∑
ℓ=1

(
Qn−1(j, ℓ)

(
1−αn−1(i, ℓ)

)
+Qn−1(j

′, ℓ)αn−1(i, ℓ)
))

≤ ∆n−1(i)
(
1−

d∑
ℓ=1

Qn−1(j, ℓ) ∧Qn−1(j
′, ℓ)
)
,

where the latter inequality holds via minimization of the convex sum (recall that αn ∈
[0, 1]). Since the latter holds for any j and j′, in particular we have

∆n(i) ≤ ∆n−1(i)
(
1−

d∑
ℓ=1

Qn−1(j, ℓ) ∧Qn−1(j
′, ℓ)
)
. (3.41)

Taking a closer look at the expressions in the sum, we obtain

Qn−1(j, ℓ) ∧Qn−1(j
′, ℓ) =

λℓjπn(ℓ)∑d
ℓ=1 λℓjπn(ℓ)

∧ λℓj′πn(ℓ)∑d
ℓ=1 λℓj′πn(ℓ)

≥(
λℓj ∧ λℓj′

)
λ∗

πn(ℓ) ≥
minj λℓj
λ∗

πn(ℓ)

Iterating the latter inequality one gets

max
i,j,k

∣∣qn(i, j)− qn(i, k)
∣∣ ≤ max

i
∆n(i) ≤

n∏
k=1

(
1−

d∑
ℓ=1

minj λℓj
λ∗

πk−1(ℓ)
)
. (3.42)
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Finally, using the formula (3.34), one gets (q̄n(i, j) := P̄(X0 = ai|F Y
n , Xn = aj) and

0/0 = 0 is agreed here)

∥πn − π̄n∥ =
d∑

j=1

|πn(j)− π̄n(j)| =

1

Ē
(
dν
dν̄ (X0)

∣∣F Y
n

) d∑
j=1

∣∣∣∣Ē(1{Xn=aj}
dν

dν̄
(X0)|F Y

n

)
− π̄n(j)Ē

(dν
dν̄

(X0)
∣∣F Y

n

)∣∣∣∣ =
1

Ē
(
dν
dν̄ (X0)

∣∣F Y
n

) d∑
j=1

∣∣∣∣π̄n(j) d∑
i=1

dν

dν̄
(ai)q̄n(i, j)− π̄n(j)

d∑
i=1

d∑
k=1

dν

dν̄
(ai)q̄n(i, k)π̄n(k)

∣∣∣∣ ≤
1

Ē
(
dν
dν̄ (X0)

∣∣F Y
n

) d∑
j=1

π̄n(j)
d∑

k=1

π̄n(k)
d∑

i=1

dν

dν̄
(ai)

∣∣q̄n(i, j)− q̄n(i, k)
∣∣ ≤

dmax
i

(ν̄i/νi)max
i

(νi/ν̄i)

n∏
k=1

(
1−

d∑
ℓ=1

minj λℓj
λ∗

π̄k−1(ℓ)
)
.

This implies (3.39):

lim
n→∞

1

n
log ∥πn − π̄n∥ = lim

n→∞

1

n

n∑
k=1

log
(
1−

d∑
ℓ=1

minj λℓj
λ∗

π̄k−1(ℓ)
)
≤

−
d∑

ℓ=1

minj λℓj
λ∗

lim
n→∞

1

n

n∑
k=1

π̄k−1(ℓ)

where the latter inequality holds P̄-a.s. (and thus also P-a.s.) by the law of large numbers
for the filtering process π̄n, which is the exact conditional distribution under P̄. Indeed

π̄n = Λ∗π̄n−1 +Mn,

where Mn := π̄n − Λ∗π̄n−1 are bounded martingale differences under P̄. Hence

1

n

n∑
m=1

Mm = 0

(Theorem 4. Ch. VII, Section 5 in [64]). Since 1
n

∑n
k=1 πk ∈ Sd−1 and by ergodicity of X,

the equation x = Λ∗x has a unique root in Sd−1, i.e. x := µ, the limit 1
n

∑n
k=1 πk exists

and equals µ. �
Similar result holds in the general setting, as in Theorem 3.6

Theorem 3.17 (Theorem 1.1 in [24]). Let µ(x) be the unique invariant density of X and
assume that λ⋄ :=

∫
S ess infu∈S λ(x, u)µ(x)ψ(dx) > 0 and λ(x, u) ≤ λ∗ < ∞. Then for

any initial densities ν(x) and ν̄(x) ≥ ν∗ > 0

lim
n→∞

1

n
log ∥πn − π̄n∥ ≤ −λ⋄/λ∗, P− a.s.
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