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   Equilibrium         Nonequilibrium



  

But there is a steady current (of particles,     
 energy,...)                                               

Focus on far-from-equilibrium systems          

NESS is closest analog to equilibrium, in       
far-from-equilibrium context                          

                        

Nonequilibrium steady state (NESS):

Macroscopic properties are time-independent 



  

NESS



  

Key questions:                                       
      

Is there a thermodynamics of               
       nonequilibrium steady states?

What is a nonequilibrium phase?        

Is there a nonequilibrium entropy?      
  

         



  

                                         OUTLINE

I. Steady-state thermodynamics (SST)

 Definition of intensive variables (chemical potential and temperature)
 via coexistence with a reservoir

 Works in spatially uniform systems if we use Sasa-Tasaki transition   
rates (otherwise, zeroth-law violations)

 Fails in nonuniform systems

II. Phase coexistence of NESS 
       
 Phase coexistence ill-defined, SST doesn't predict coexisting phases

III. Nonequilibrium entropy is not the Shannon entropy



  

SST originally proposed in

Y. Oono and M. Paniconi, Prog. Th. Phys. Supp. 130, 29 (1998)

A detailed proposal with applications to lattice gases:

S. Sasa and H. Tasaki, J. Stat. Phys. 125, 125 (2006)

Numerical test of zeroth law in KLS driven lattice gas:

P. Pradhan, R. Ramsperger, and U. Seifert, Phys. Rev. E84,         
  041104 (2011)



  

Easiest case: spatially uniform, athermal (only excluded-
volume interactions)

In athermal systems the only intensive parameter is the 
dimensionless chemical potential, m* = m /kBT 

Criteria for a valid chemical potential:

1) (Zeroth law) If systems A and B coexist, and A and C coexist, then
  B and C must also coexist

2) Suppose systems A and B, initially isolated, with m*A ≠ m* B. 

If they are allowed to exchange particles, the ensuing flux  should act 
to equalize their chemical potentials.  

Knowing  m*A(r) and  m* B(r) should allow us to predict  the final 

densities when the systems are allowed to exchange particles.



  

Coexistence of NESS

Consider systems A and B in steady states (equilibrium or not)
 
If A and B can exchange particles, and the net particle flux between 
them is zero, we say they coexist wrt particle exchange; we declare 
them to have the same value of m* 

Analogous definition of temperature for coexistence wrt energy 
exchange

If B is a particle reservoir of known chemical potential the zero-flux
condition defines the chemical potential of A



  

What is a reservoir?

- A system large enough that its intensive properties don't vary under
exchange of particles and/or energy

- Internal structure irrelevant

- The reservoir doesn't “know” what kind of system it's in contact with,
in particular, whether this system is in equilibrium or not.

A particle reservoir R in contact with an athermal lattice gas  A 
attempts to insert particles into, and remove particles from A, with 
rates pI and pR, respectively.  In insertion attempt is successful if the
selected site is free to be occupied; a removal attempt is successful if 
the selected site is occupied.

From equilibrium statistical mechanics we know pI /pR = e m* 

m*  is a property of the reservoir



  

Each particle excludes nearest-neighbor sites – hard-core 
repulsive potential

Equilibrium dynamics: symmetric nearest-neighbor hopping 
attempts

Nonequilibrium (driven) dynamics: preferred hopping direction

Can include hopping to second-neighbor sites to maintain
ergodicity at higher densities

Application to driven lattice gas with 
nearest-neighbor exclusion (NNE)



  

NNE Lattice Gas



  

NNE Lattice Gas on square lattice: hopping probabilities for 
nearest-neighbor dynamics

1/4

1/4

1−D
4

1+D
4

Direction of drive: periodic boundaries along
this direction

For D=0 the dynamics obeys detailed balance and the stationary
distribution is that of equilibrium
 
D ≠ 0 represents nonequilibrium: the is a current along drive
D=1: maximum drive



  

NNE lattice gas  and other athermal systems:  chemical potential 
given by

                    m*  = ln (r /r op)

where  r op is the density of open sites (sites at which particles 
may be inserted)

This follows from the condition of coexistence with the particle 
reservoir: 

                                 r pR = rop pI  

and the relation pI /pR = e m*      



  

driven

undriven

Global exchange between driven and undriven systems
Weak exchange limit pr → 0
Obs: Global exchange not strictly necessary; 
weak exchange is 

pr



  

Zeroth law:

If systems A and B both coexist with the same reservoir, they
must coexist with one another

The zeroth law is satisfied under weak, global exchange: 
the net particle flux between two systems A and B is proportional to

                         rA  rop,B  - rB rop,A ,  

which is zero if  m*A  = m*B

Note that we treat the systems as independent, which implies an 
exchange rate tending to zero (“weak” exchange)



  

Chemical potential of NNE lattice gas

D=0

D=1



  

NNE lattice gas: weak-exchange limit



  

Driven NNE lattice gas

In the weak-exchange limit, the chemical potential at coexistence 
corresponds to that of the isolated systems at the densities that 
equalize their m* values, subject to the fixed total density.

Since m* is an increasing function of density, if NNE models with 
different values of m* are permitted to exchange particles, the
ensuing flux will tend to equalize the chemical potential.  

Thus m* satisfies the minimal conditions for a chemical potential,
both in equilibrium and in a NESS.



  

Driven lattice gas or Katz-Lebowitz-Spohn (KLS) model 
with attractive nearest-neighbor interactions. 

The system evolves via a particle-conserving dynamics with
a drive D = Di favoring particle displacements along the +x 
direction and inhibiting those in the opposite sense.  
***PBCs along drive!

Acceptance probability for a particle displacement Δx is

Energy of configuration C:    E(C) = - S<i,j> sisj

The sj  are site occupation variables
TR is the temperature of the reservoir, but (for D ≠ 0)
not the temperature of the system

pa = min{1, exp[−(ΔE − D · Δx)/TR ]}



  

Work by drive Heat
Reservoir at     
temperature Tn

KLS system

       Energy flow though KLS system



  

We define the temperature and chemical potential of a KLS 
system (driven or not) via coexistence with a reservoir R of heat and

particles 

R is a test system used to measure the temperature and

chemical potential of the system, not the reservoir to which the
KLS system rejects heat.

The reservoir T and m are defined by the usual relations of statistical
mechanics.  When the KLS system coexists with R it shares its values 

of T and m.

[In paractice T and m are determined by measuring certain nearest-
neighbor probabilities in simulations of the system; explicit contact with 
a reservoir is unnecessary to determine the coexistence parameters.]



  

Let R be a reservoir with temperature and chemical potential 
equal to that of a driven KLS system S, and let S0 be an undriven 
(equilibrium) nearest-neighbor lattice gas with the same 
temperature and chemical potential as R and S. 

If the Zeroth Law holds, S and S0 must coexist.  Do they?

No!  Although S and S0 both coexist with R, in general, they do 
not coexist with each other, violating the zeroth law

The Zeroth Law does hold for Sasa-Tasaki exchange rates 
between the systems

Numerical studies (simulation and exact solution of master eq) 
yield the fluxes between S and S0



  

Zeroth law violations under Metropolis exchange rates

Equivalent to a temperature mismatch of ~0.4%

flu
xe

s



  

Sasa-Tasaki (ST) rates    J Stat Phys 125, 125 (2006)
 

The rate for transferring a particle from A to B depends only on 
the energy change and parameters of A, and vice-versa.  

Detailed balance implies the rate of particle transfer from A to B:

                   WST = e exp [-(m A + D EA)/TR,A ]

and similarly for B to A.  (e is an arbitrary fixed rate.)

Physical picture: rate is determined by energy barrier to 
activated state, not energy difference between initial and final 
states, as in, e.g., Metropolis rates



  

KLS model: Effective temperature and chemical potential under 
ST exchange (reservoir temperature TR=1, D=10)



  

Summary of results on uniform KLS lattice gas

The intensive parameters T and m are defined via coexistence with
a reservoir R. 

For drive D>0, T (=TR) > TR

Only ST rates permit a consistent definition of intensive 
parameters for NESS

We appear to have a general scheme for defining the
temperature and chemical potential of spatially uniform
systems in a NESS 



  

Nonuniform athermal systems

Given the success of steady-state thermodynamics using ST rates,
applied to spatially uniform systems, we turn to NESS with
nonuniformities provoked by:

- a nonuniform drive

- a wall

- nonuniform time scale

Steady-state thermodynamics fails in these cases



  

Test of SST in half-driven NNE lattice gases (ST rates):
Can SST predict coexisting densities in a nonuniform system?

Drive

No drive



  

Half-driven NNE model

For the same density, m* is smaller in the driven system 
than without drive.  

Equating chemical potentials, the density in the driven 
region should be larger.  

Nevertheless, the particles migrate in the opposite opposite sense!



  

Stationary density and chemical potential profiles in half-driven NNE

driven

predicted

observed

undriven

predicted

observed



  

Conclusions (I)

 • We appear to have a general scheme for defining the
   temperature and chemical potential of spatially uniform
   systems in a NESS 

 • A pair of systems (driven/undriven) that coexist under weak
   exchange don't coexist  when in contact along an edge

 • This result doesn't depend on whether we define a
   chemical potential m
 
 • In half-driven system particles migrate contrary to Fick's law:
   the final state has a larger m  difference than the initial uniform
   state

 
 



  

II. Can SST predict the densities of coexisting phases?

KLS model 

 - under drive, phase separation into strips oriented along drive;
    
 - use Sasa-Tasaki rates for particle movement perpendiclar to        
drive: necessary for consistency of SST under coexistence           
between rows parallel to drive



  

KLS: Typical phase-separated configuration, TR = 0.6

Drive



  

Equilibrium

Coexisting densities
are the same in 
either case

    NESS

We expect the 
coexisting densities
to be the same, but
are they?

Phase coexistence: between two phases in a single system 
or between two single-phase systems

Equilibrium: a phase 
is a phase is a phase

rL

rV



  

Phase coexistence in KLS model

Study phase separation in a single system under maximum drive, to 

identify coexisting densities at a given temperature TR, well below Tc

For the same temperature, determine the coexisting densities for
a pair of uniform systems under weak exchange 

If notions of phase and phase coexistence are applicable to the NESS,
the coexisting densities must be the same in the two cases 

Results for TR=0.5:

In phase-separated single system, coexisting densities are
 0.0224(4)   and   0.9965(1)

In uniform systems under weak exchange, coexisting densities are
 0.03595(3)   and   0.9826(1)  - clearly incompatible w/prev result

- similar findings at other temperatures



  

Coexisting densities in single system and in coexisiting uniform 
systems: KLS model, maximum drive

             single system

two systems



  

Is the lack of well defined coexisting phases due to the drive/current 
in the KLS model?

To answer this I study another model, a two-temperature lattice gas:

Sites on different sublattices (A/B) are in contact with different 
heat reservoirs (TA/TB)

There is no drive, no particle current, no anisotropy

The coexisting densities again depend on how the phases make
contact

For TA=0.4 and TB = 0.55, the coexisting densities are:

 0.9644(3) and 0.03001(3) (single system)

 0.9542(6) and 0.0383(6)   (two systems, weak global exchange)



  



  

Conclusions (II)

Coexistence between systems in nonequilibrium steady states 
is not well defined: it depends on the manner in which the 
systems make contact. 

The properties of coexisting phases depend on how they 
exchange particles between one another.

Since this inconsistency is found in two of the simplest possible
cases, independent of drive or anisotropy, there is good
reason to believe it occurs in general

It appears unlikely that any formulation of steady-state 
thermodynamics can predict the properties of nonuniform 
systems or phase coexistence

The notion of “phase” as a system with well defined intensive
properties seems not to apply in NESS



  

III. In the spatially uniform case, the chemical potential is well 
defined and predictive: Can we define an entropy function?

The thermodynamic entropy has the property

understood as a finite difference for small systems.  Thus we can 
evaluate S via integration.

Recalling the relation

we have

                     S(N,L) – S(N-1,L) =

On a lattice of Ld sites.  This defines the thermodynamic entropy.



  

Is the thermodynamic entropy for a NESS the Shannon 
entropy? 

                               SS = -kB Si pi ln pi

To evaluate SS  we need the stationary probability distribution, pi

In collaboration with my student Leonardo Ferreira Calazans, we 
determine  pi  for the driven NNE lattice gas on square lattices of
LxL sites.

The results show that Sthermo ≠ SS



  

equilibrium

max drive



  

Difference between thermodynamic and Shannon entropies at low drives 



  

Violation of equality between Shannon and thermodynamic entropies:



  

Violation of equality between Shannon and thermodynamic entropies:



  

NNE model: difference between thermodynamic and Shannon entropies

L=4 L=7

No difference for D=0; difference grows with L and N; proportional to D2 for small D



  

Given the stationary probability distribution Pest(C), we evaluate the 
mean energy transfer between the KLS system and reservoir R, as a 
function of the reservoir temperture TR:

The value of T  such that  JE = 0  defines the thermodynamic
temperature of the KLS system.  The thermodynamic entropy is found via:

with Sth = SS  in limit T → ∞  (at infinite temperature, drive is irrelevant)



  

Sth and SS in KLS model  

Sth

SS



  



  

Who cares if  Sthermo ≠ SS ? 

1. The two are always equal in equilibrium

2. The Shannon entropy is widely used as the entropy out of
    equilibrium (e.g., in stochastic thermodynamics)

3. The Shannon entropy is needed to connect thermodynamics 
    with information

4. The Shannon entropy is the only extensive functional of the
    probability distribution
    
    Since the thermodynamic entropy of a NESS is extensive
    (we verify that the chemical potential is intensive),
    this implies that Sthermo cannot be written as a functional

    of  pi   

   



  

Thank you!
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