Computation of critical points for planar statistical physics models

Hugo Duminil-Copin, Université de Genève

Rio 2013

joint work with V. Beffara / S. Smirnov

Hugo Duminil-Copin, Université de Genève Computation of critical points for planar statistical physics mode

伺 ト く ヨ ト く ヨ ト

-

• How do interactions between particles at a microscopic level lead to different behaviors of the model macroscopically?

- How do interactions between particles at a microscopic level lead to different behaviors of the model macroscopically?
- We are particularly interested in their phase transition and the behavior at the *critical point*.

Hugo Duminil-Copin, Université de Genève Computation of critical points for planar statistical physics mode

同 ト イ ヨ ト イ ヨ ト

II. Computation of the critical point via self-duality (the example of the FK percolation)

II. Computation of the critical point via self-duality (the example of the FK percolation)

III. Computation of the critical point via discrete holomorphicity (the example of the SAW)

II. Computation of the critical point via self-duality (the example of the FK percolation)

III. Computation of the critical point via discrete holomorphicity (the example of the SAW)

Each edge of Z² is open with probability *p*, and closed with probability 1 − *p*. The subgraph obtained by keeping all the vertices and the open edges is called a configuration ω_p.

Each edge of Z² is open with probability *p*, and closed with probability 1 − *p*. The subgraph obtained by keeping all the vertices and the open edges is called a configuration ω_p.

This model undergoes a phase transition at some $p_c \in (0,1)$:

• when
$$p < p_c$$
, $\phi_p(0 \leftrightarrow \infty) = 0$,

• when
$$p > p_c$$
, $\phi_p(0 \leftrightarrow \infty) > 0$.

Each edge of Z² is open with probability *p*, and closed with probability 1 − *p*. The subgraph obtained by keeping all the vertices and the open edges is called a configuration ω_p.

This model undergoes a phase transition at some $p_c \in (0, 1)$: • when $p < p_c$, $\phi_p(0 \leftrightarrow \infty) = 0$, • when $p > p_c$, $\phi_p(0 \leftrightarrow \infty) > 0$.

Hugo Duminil-Copin, Université de Genève

Computation of critical points for planar statistical physics mode

Proof of the existence of a critical point. Main difficulty: compare $\phi_p(0 \leftrightarrow \infty)$ with $\phi_{p'}(0 \leftrightarrow \infty)$ for $p \leq p'$.

• • = • • = •

Proof of the existence of a critical point. Main difficulty: compare $\phi_p(0 \leftrightarrow \infty)$ with $\phi_{p'}(0 \leftrightarrow \infty)$ for $p \leq p'$.

Construct ω_p and $\omega_{p'}$ on the same probability space.

Proof of the existence of a critical point. Main difficulty: compare $\phi_p(0 \leftrightarrow \infty)$ with $\phi_{p'}(0 \leftrightarrow \infty)$ for $p \leq p'$.

Construct ω_p and $\omega_{p'}$ on the same probability space.

1. Assign to each edge e a uniform random variable U_e on [0,1]

Proof of the existence of a critical point. Main difficulty: compare $\phi_p(0 \leftrightarrow \infty)$ with $\phi_{p'}(0 \leftrightarrow \infty)$ for $p \leq p'$.

Construct ω_p and $\omega_{p'}$ on the same probability space.

- 1. Assign to each edge e a uniform random variable U_e on [0,1]
- 2. *e* is open in ω_p iff $U_e \leq p$.

Proof of the existence of a critical point. Main difficulty: compare $\phi_p(0 \leftrightarrow \infty)$ with $\phi_{p'}(0 \leftrightarrow \infty)$ for $p \leq p'$.

Construct ω_p and $\omega_{p'}$ on the same probability space.

- 1. Assign to each edge e a uniform random variable U_e on [0,1]
- 2. *e* is open in ω_p iff $U_e \leq p$.
- 3. *e* is open in $\omega_{p'}$ iff $U_e \leq p'$ (same U_e as before).

Proof of the existence of a critical point. Main difficulty: compare $\phi_p(0 \leftrightarrow \infty)$ with $\phi_{p'}(0 \leftrightarrow \infty)$ for $p \leq p'$.

Construct ω_p and $\omega_{p'}$ on the same probability space.

- 1. Assign to each edge e a uniform random variable U_e on [0,1]
- 2. *e* is open in ω_p iff $U_e \leq p$.
- 3. *e* is open in $\omega_{p'}$ iff $U_e \leq p'$ (same U_e as before).

$$p_{c} = \inf\{p \in [0,1] : \phi_{p}(0 \leftrightarrow \infty) > 0\} = \sup\{p \in [0,1] : \phi_{p}(0 \leftrightarrow \infty) = 0\}$$

伺 ト イヨト イヨト

Proof of the existence of a critical point. Main difficulty: compare $\phi_p(0 \leftrightarrow \infty)$ with $\phi_{p'}(0 \leftrightarrow \infty)$ for $p \leq p'$.

Construct ω_p and $\omega_{p'}$ on the same probability space.

- 1. Assign to each edge e a uniform random variable U_e on [0,1]
- 2. *e* is open in ω_p iff $U_e \leq p$.
- 3. *e* is open in $\omega_{p'}$ iff $U_e \leq p'$ (same U_e as before).

$$p_c = \inf\{p \in [0,1] : \phi_p(0 \leftrightarrow \infty) > 0\} = \sup\{p \in [0,1] : \phi_p(0 \leftrightarrow \infty) = 0\}$$

Remains to prove that $p_c > 0$ and $p_c < 1$ (Peirls argument which is **combinatorial in nature**).

Harder case: Ising model

Assign to each site outside $[-n, n]^2$ the spin +1 and each site of $[-n, n]^2$ a spin +1 or -1 according to the following probability measure:

$$\mathsf{E}(\sigma) := \sum_{x \sim y} -\sigma_x \sigma_y.$$

伺 と く ヨ と く ヨ と

3

Harder case: Ising model

Assign to each site outside $[-n, n]^2$ the spin +1 and each site of $[-n, n]^2$ a spin +1 or -1 according to the following probability measure:

$$\Xi(\sigma) := \sum_{x \sim y} -\sigma_x \sigma_y.$$

Then $\mathbb{P}^+_{T,2,n}[\sigma] \propto \exp(-E(\sigma)/T)$.

• • = • • = •

Harder case: Ising model

Assign to each site outside $[-n, n]^2$ the spin +1 and each site of $[-n, n]^2$ a spin +1 or -1 according to the following probability measure:

$$\mathsf{E}(\sigma) := \sum_{x \sim y} -\sigma_x \sigma_y.$$

Then $\mathbb{P}^+_{T,2,n}[\sigma] \propto \exp(-E(\sigma)/T)$. This model undergoes a phase transition at some critical temperature T_c :

• For
$$T > T_c$$
, $\mathbb{P}^+_{T,2,n}[\sigma_0 = +]$ tends to $\frac{1}{2}$ as $n \to \infty$

• For
$$T < T_c$$
, $\mathbb{P}^+_{T,2,n}[\sigma_0 = +]$ tends to $\frac{1+M(T)}{2} > \frac{1}{2}$ as $n \to \infty$

高 と く ヨ と く ヨ と

Harder case: Potts model

Assign to each site outside $[-n, n]^2$ the color red and each site of $[-n, n]^2$ a color amongst *q* colors according to the following probability measure:

 $E(\sigma) :=$ number disagreeing neighbors.

Then $\mathbb{P}^+_{T,q,n}[\sigma] \propto \exp(-E(\sigma)/T)$. This model undergoes a phase transition at some critical temperature $T_c(q)$:

- For $T > T_c(q)$, $\mathbb{P}^+_{T,q,n}[\sigma_0 = red]$ tends to $\frac{1}{q}$ as $n \to \infty$
- For $T < T_c(q)$, $\mathbb{P}^+_{T,q,n}[\sigma_0 = red]$ tends to $\frac{1+M(T)}{q} > \frac{1}{q}$ as $n \to \infty$

伺下 イヨト イヨト ニヨ

Harder case: Potts model

Assign to each site outside $[-n, n]^2$ the color red and each site of $[-n, n]^2$ a color amongst *q* colors according to the following probability measure:

 $E(\sigma) :=$ number disagreeing neighbors.

Then $\mathbb{P}^+_{T,q,n}[\sigma] \propto \exp(-E(\sigma)/T)$. This model undergoes a phase transition at some critical temperature $T_c(q)$:

- For $T > T_c(q)$, $\mathbb{P}^+_{T,q,n}[\sigma_0 = red]$ tends to $\frac{1}{q}$ as $n \to \infty$
- For $T < T_c(q)$, $\mathbb{P}^+_{T,q,n}[\sigma_0 = red]$ tends to $\frac{1+M(T)}{q} > \frac{1}{q}$ as $n \to \infty$

Harder case: Potts model

Assign to each site outside $[-n, n]^2$ the color red and each site of $[-n, n]^2$ a color amongst *q* colors according to the following probability measure:

 $E(\sigma) :=$ number disagreeing neighbors.

Then $\mathbb{P}^+_{T,q,n}[\sigma] \propto \exp(-E(\sigma)/T)$. This model undergoes a phase transition at some critical temperature $T_c(q)$:

• For $T > T_c(q)$, $\mathbb{P}^+_{T,q,n}[\sigma_0 = red]$ tends to $\frac{1}{q}$ as $n \to \infty$

• For $T < T_c(q)$, $\mathbb{P}^+_{T,q,n}[\sigma_0 = red]$ tends to $\frac{1+M(T)}{q} > \frac{1}{q}$ as $n \to \infty$

Hugo Duminil-Copin, Université de Genève Computation of critical points for planar statistical physics mode

We rather study a geometric representation of the Potts model, called the FK percolation model. This **percolation model** has the following distribution:

$$\phi_{p}(\omega) := p^{\# \text{open edges}} (1-p)^{\# \text{closed edges}}$$

- - E + - E +

We rather study a geometric representation of the Potts model, called the FK percolation model. This **percolation model** has the following distribution:

 $\phi_{p,q,n}(\omega) := p^{\# \text{open edges}} (1-p)^{\# \text{closed edges}} q^{\# \text{connected components}}.$

伺 と く ヨ と く ヨ と

We rather study a geometric representation of the Potts model, called the FK percolation model. This **percolation model** has the following distribution:

$$\phi_{p,q,n}(\omega) := rac{1}{Z_{p,q,n}} \cdot p^{\# ext{open edges}} (1-p)^{\# ext{closed edges}} q^{\# ext{connected components}}.$$

- A - B - M

We rather study a geometric representation of the Potts model, called the FK percolation model. This **percolation model** has the following distribution:

$$\phi_{p,q,n}(\omega) := \frac{1}{Z_{p,q,n}} \cdot p^{\# \text{open edges}} (1-p)^{\# \text{closed edges}} q^{\# \text{connected components}}.$$

 Similarly to the Bernoulli percolation case, there exists an increasing coupling at fixed q ≥ 1 and there exists a critical value p_c(q).

通 と イ ヨ と イ ヨ と

We rather study a geometric representation of the Potts model, called the FK percolation model. This **percolation model** has the following distribution:

$$\phi_{p,q,n}(\omega) := rac{1}{Z_{p,q,n}} \cdot p^{\# ext{open edges}} (1-p)^{\# ext{closed edges}} q^{\# ext{connected components}}.$$

- Similarly to the Bernoulli percolation case, there exists an increasing coupling at fixed q ≥ 1 and there exists a critical value p_c(q).
- Coupling with the Potts model: consider a FK percolation with parameters q and $p = 1 e^{-2/T}$ and color each clusters uniformly at random, except those touching the boundary which receive red.

We rather study a geometric representation of the Potts model, called the FK percolation model. This **percolation model** has the following distribution:

$$\phi_{p,q,n}(\omega) := rac{1}{Z_{p,q,n}} \cdot p^{\# ext{open edges}} (1-p)^{\# ext{closed edges}} q^{\# ext{connected components}}.$$

- Similarly to the Bernoulli percolation case, there exists an increasing coupling at fixed q ≥ 1 and there exists a critical value p_c(q).
- Coupling with the Potts model: consider a FK percolation with parameters q and $p = 1 e^{-2/T}$ and color each clusters uniformly at random, except those touching the boundary which receive red.

直 と く ヨ と く ヨ と

$$\mathbb{P}_{\mathcal{T},q,n}[\sigma_0 = \operatorname{red}] = \phi_{p(\mathcal{T}),q,n}\left(0 \leftrightarrow \partial [-n,n]^2\right) + \frac{1}{q}\phi_{p(\mathcal{T}),q,n}\left(0 \not\leftrightarrow \partial [-n,n]^2\right)$$

Hugo Duminil-Copin, Université de Genève Computation of critical points for planar statistical physics mode

直 と く ヨ と く ヨ と

$$\mathbb{P}_{\mathcal{T},q,n}[\sigma_0 = \operatorname{red}] = \frac{1}{q} + \left(1 - \frac{1}{q}\right)\phi_{p(\mathcal{T}),q,n}\left(0 \leftrightarrow \partial [-n,n]^2\right)$$

直 と く ヨ と く ヨ と

$$\mathbb{P}_{\mathcal{T},q,n}[\sigma_0 = \operatorname{red}] = \frac{1}{q} + \left(1 - \frac{1}{q}\right)\phi_{p(\mathcal{T}),q,n}\left(0 \leftrightarrow \partial [-n,n]^2\right)$$

$$\mathbb{P}_{\mathcal{T},q,n}[\sigma_0 = \operatorname{red}] = \frac{1}{q} + \left(1 - \frac{1}{q}\right)\phi_{p(\mathcal{T}),q,n}\left(0 \leftrightarrow \partial [-n,n]^2\right)$$

As a consequence, the transition exists and $1 - p_c(q) = e^{-2/T_c(q)}$.

- **Conclusion:** Using couplings, one can prove the existence of a phase transition for percolation and spin models.
- Question: Can we compute these critical points?

通 と イ ヨ と イ ヨ と
The coupling provides us with a **dictionary** between properties of FK percolation and spin models. For instance,

$$\mathbb{P}_{\mathcal{T},q,n}[\sigma_0 = \operatorname{red}] = \frac{1}{q} + \left(1 - \frac{1}{q}\right)\phi_{p(\mathcal{T}),q,n}\left(0 \leftrightarrow \partial [-n,n]^2\right)$$

As a consequence, the transition exists and $1 - p_c(q) = e^{-2/T_c(q)}$.

- **Conclusion:** Using couplings, one can prove the existence of a phase transition for percolation and spin models.
- Question: Can we compute these critical points?

 $^{
m t}$ It is sufficient to compute $p_c(q)$ for FK percolation with $q\geq 1$

→ □ → → □ →

I. Why is there a phase transition?

II. Computation of the critical point via self-duality (the example of the FK percolation)

III. Computation of the critical point via discrete holomorphicity (the example of the SAW)

A **dual model** can be defined on a dual graph:

A dual model can be defined on a dual graph:

• For Bernoulli percolation, it is a Bernoulli percolation with p^* defined by $p^* = 1 - p$.

A dual model can be defined on a dual graph:

- For Bernoulli percolation, it is a Bernoulli percolation with p^* defined by $p^* = 1 p$.
- For FK percolation, it is a FK percolation with p^{*} and q^{*} defined by

$$q^\star=q$$
 and $rac{pp^\star}{(1-p)(1-p^\star)}=q.$

A dual model can be defined on a dual graph:

- For Bernoulli percolation, it is a Bernoulli percolation with p^* defined by $p^* = 1 p$.
- For FK percolation, it is a FK percolation with p^{*} and q^{*} defined by

$$q^\star=q$$
 and $rac{pp^\star}{(1-p)(1-p^\star)}=q.$

If $p^* = p$, i.e. $p = p_{sd} = \sqrt{q}/(1 + \sqrt{q})$, the primal and dual models play symmetric roles.

Hugo Duminil-Copin, Université de Genève

Computation of critical points for planar statistical physics mode

A dual model can be defined on a dual graph:

- For Bernoulli percolation, it is a Bernoulli percolation with p^* defined by $p^* = 1 p$.
- For FK percolation, it is a FK percolation with p^{*} and q^{*} defined by

$$q^\star=q \quad ext{and} \quad rac{pp^\star}{(1-p)(1-p^\star)}=q.$$

If $p^* = p$, i.e. $p = p_{sd} = \sqrt{q}/(1 + \sqrt{q})$, the primal and dual models play symmetric roles. For instance, $\phi_{p_{sd},q,n}(A_n) = \frac{1}{2}$.

Hugo Duminil-Copin, Université de Genève

Computation of critical points for planar statistical physics mode

- ∢ ≣ ▶

Proposition (Margulis/Russo's formula)

For any increasing event A,

$$\phi_{p+\varepsilon}[A] - \phi_p[A] = \mathbb{P}[\omega_{p+\varepsilon} \in A \text{ and } \omega_p \notin A]$$

= $\left(\sum_{e \in E} \phi_p(\omega^e \in A \text{ and } \omega_e \notin A)\right) \varepsilon + o(\varepsilon).$

Proposition (Margulis/Russo's formula)

For any increasing event A,

$$\frac{d}{dp}\phi_p[A] = \sum_{e \in E} \phi_p(\omega^e \in A \text{ and } \omega_e \notin A).$$

Proposition (Margulis/Russo's formula)

For any increasing event A,

$$\frac{d}{dp}\phi_p[A] = \sum_{e \in E} \phi_p(\omega^e \in A \text{ and } \omega_e \notin A).$$

At least one site must have a 'large' influence when the event has probability away from 0 and 1.

Theorem (Kahn, Kalai & Linial 1988 – Bourgain, K., K., Katznelson & L. 1992)

For every increasing event A on the graph $[-n, n]^2$,

$$\max_{e \in E} \phi_p(\omega^e \in A \text{ and } \omega_e \notin A) \ge c \phi_p[A] (1 - \phi_p[A]) \frac{\log n}{n^2}.$$

▲御▶ ▲理▶ ▲理▶

æ

• By duality, $\phi_{1/2}(A_n) = \frac{1}{2}$.

By sharp threshold arguments and invariance by translation,

$$\frac{d}{dp}\phi_p[A_n] \ge c\phi_p[A_n] (1-\phi_p[A_n]) \log n.$$

伺 ト く ヨ ト く ヨ ト

э

1 By duality,
$$\phi_{1/2}(A_n) = \frac{1}{2}$$
.

By sharp threshold arguments and invariance by translation,

$$\frac{d}{dp}\phi_p[A_n] \ge c\phi_p[A_n] (1-\phi_p[A_n]) \log n.$$

(3) By integrating the differential inequality with respect to p,

- $\phi_p[A_n]$ decays fast (as *n* tends to ∞) when $p < \frac{1}{2}$.
- $\phi_p[A_n]$ tends fast to 1 (as *n* tends to ∞) when $p > \frac{1}{2}$.

伺下 イヨト イヨト ニヨ

1 By duality,
$$\phi_{1/2}(A_n) = \frac{1}{2}$$
.

By sharp threshold arguments and invariance by translation,

$$\frac{d}{dp}\phi_p[A_n] \ge c\phi_p[A_n] (1-\phi_p[A_n]) \log n.$$

③ By integrating the differential inequality with respect to p,

•
$$\phi_p[A_n]$$
 decays fast (as *n* tends to ∞) when $p < \frac{1}{2}$.

• $\phi_p[A_n]$ tends fast to 1 (as *n* tends to ∞) when $p > \frac{1}{2}$.

• If
$$\phi_p(A_n) \ge 1 - \varepsilon$$
 (resp. $\le \varepsilon$), then $p > p_c$ (resp. $p < p_c$).

高 と く ヨ と く ヨ と

1 By duality,
$$\phi_{1/2}(A_n) = \frac{1}{2}$$
.

By sharp threshold arguments and invariance by translation,

$$\frac{d}{dp}\phi_p[A_n] \ge c\phi_p[A_n] (1-\phi_p[A_n]) \log n.$$

(3) By integrating the differential inequality with respect to p,

•
$$\phi_p[A_n]$$
 decays fast (as *n* tends to ∞) when $p < \frac{1}{2}$.

• $\phi_p[A_n]$ tends fast to 1 (as *n* tends to ∞) when $p > \frac{1}{2}$.

• If $\phi_p(A_n) \ge 1 - \varepsilon$ (resp. $\le \varepsilon$), then $p > p_c$ (resp. $p < p_c$).

The difficulty lies mostly in this last step! But it applies to q > 1 as well!

Theorem (Beffara, D-C, 2010)

The critical point $p_c(q)$ of the FK percolation on the square lattice satisfies

$$p_c(q) = rac{\sqrt{q}}{1+\sqrt{q}}.$$

Theorem (Beffara, D-C, 2010)

The critical point $p_c(q)$ of the FK percolation on the square lattice satisfies _____

$$p_c(q) = rac{\sqrt{q}}{1+\sqrt{q}}.$$

Corollary (Beffara, D-C, 2010)

The critical temperature of the square lattice *q*-state Potts model satisfies

$$T_c(q) = \frac{2}{\ln(1+\sqrt{q})}.$$

Theorem (Beffara, D-C, 2010)

The critical point $p_c(q)$ of the FK percolation on the square lattice satisfies _____

$$p_c(q) = rac{\sqrt{q}}{1+\sqrt{q}}.$$

Corollary (Beffara, D-C, 2010)

The critical temperature of the square lattice *q*-state Potts model satisfies

$$T_c(q) = rac{2}{\ln(1+\sqrt{q})}.$$

Conclusion: This general philosophy has been very successful thanks to its robustness. Ongoing works suggest that this approach can be implemented for a wide class of models, known as **positively correlated models**, which are natural candidates for geometric representations of spin models.

I. Why is there a phase transition?

II. Computation of the critical point via self-duality (the example of the FK percolation)

III. Computation of the critical point via discrete integrability (the example of the SAW)

On a lattice (for instance hexagonal \mathbb{H}), consider self-avoiding trajectories (or walks) of length *n* (the length is denoted by $\ell(\gamma)$) starting at the origin. Introduced by Flory and Ott in the '50s.

同 ト イ ヨ ト イ ヨ ト

On a lattice (for instance hexagonal \mathbb{H}), consider self-avoiding trajectories (or walks) of length *n* (the length is denoted by $\ell(\gamma)$) starting at the origin. Introduced by Flory and Ott in the '50s.

• **Combinatorial question:** What is the **asymptotic behavior** of the number of self-avoiding walks of length *n*?

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let $c_n := \#$ SAW of length *n*. Then, $c_n = \mu_c^{n+o(n)}$, where μ_c is the connective constant.

伺 と く ヨ と く ヨ と

3

Let $c_n := \#$ SAW of length *n*. Then, $c_n = \mu_c^{n+o(n)}$, where μ_c is the connective constant.

• For any *n*, *m*,

$$c_{n+m} \leq c_n c_m$$

so that the sequence is sub-multiplicative.

Let $c_n := \#$ SAW of length *n*. Then, $c_n = \mu_c^{n+o(n)}$, where μ_c is the connective constant.

• For any *n*, *m*,

$$c_{n+m} \leq c_n c_m$$

so that the sequence is sub-multiplicative.

• We have the obvious bounds:

$$\sqrt{2}^n \le c_n \le 3 \cdot 2^{n-1}.$$

- A 🗄 🕨

Let $c_n := \#$ SAW of length *n*. Then, $c_n = \mu_c^{n+o(n)}$, where μ_c is the connective constant.

• For any *n*, *m*,

$$c_{n+m} \leq c_n c_m$$

so that the sequence is sub-multiplicative.

• We have the obvious bounds:

$$\sqrt{2}^n \le c_n \le 3 \cdot 2^{n-1}.$$

The foundamental subadditive lemma of Fekete implies the result.

→ □ → → □ →

Hugo Duminil-Copin, Université de Genève Computation of critical points for planar statistical physics mode

< 回 > < 回 > < 回 >

3

< ∃ →

< ∃⇒

For δ > 0, we define a probability measure on self-avoiding paths from a_δ to b_δ by assigning a weight proportional to μ^{-ℓ(γ)}. When δ → 0, we are interested in the limit of this sequence of random continuous curves (scaling limit).

 For δ > 0, we define a probability measure on self-avoiding paths from a_δ to b_δ by assigning a weight proportional to μ^{-ℓ(γ)}. When δ → 0, we are interested in the limit of this sequence of random continuous curves (scaling limit).

Theorem (loffe, 1998)

For $\mu > \mu_c$, the scaling limit of the SAW is a line.

 For δ > 0, we define a probability measure on self-avoiding paths from a_δ to b_δ by assigning a weight proportional to μ^{-ℓ(γ)}. When δ → 0, we are interested in the limit of this sequence of random continuous curves (scaling limit).

Theorem (D.-C., Kozma, Yadin, 2012)

For $\mu < \mu_c$, the scaling limit of the SAW is space filling.

 For δ > 0, we define a probability measure on self-avoiding paths from a_δ to b_δ by assigning a weight proportional to μ^{-ℓ(γ)}. When δ → 0, we are interested in the limit of this sequence of random continuous curves (scaling limit).

Conjecture (Lawler, Schramm, Werner, 2001)

For $\mu = \mu_c$, the scaling limit of the SAW is SLE(8/3)

 For δ > 0, we define a probability measure on self-avoiding paths from a_δ to b_δ by assigning a weight proportional to μ^{-ℓ(γ)}. When δ → 0, we are interested in the limit of this sequence of random continuous curves (scaling limit).

Conjecture (Lawler, Schramm, Werner, 2001) For $\mu = \mu_c$, the scaling limit of the SAW is SLE(8/3) which is **conformally invariant**.

1000 steps Self-avoiding walk and SLE(8/3)

1000 steps Self-avoiding walk and SLE(8/3)

Theorem (D-C, Smirnov, 2010),

The connective constant μ_c of the **hexagonal lattice** satisfies

$$\mu_{c} := \lim_{n \to \infty} c_n^{\frac{1}{n}} = \sqrt{2 + \sqrt{2}}.$$

1000 steps Self-avoiding walk and SLE(8/3)

Theorem (D-C, Smirnov, 2010), conjectured by Nienhuis (1980)

The connective constant μ_c of the **hexagonal lattice** satisfies

$$c_n \sim An^{11/32}\sqrt{2+\sqrt{2}}^n$$
 as $n \longrightarrow \infty$
We restrict our attention to *finite domains* \mathcal{D} and we weight walks by $\mu^{-\ell(\gamma)}$ times a topological term depending on the *winding*.

$$F(z) := \sum_{\gamma \subset \mathcal{D}: a \to z} \mu^{-\ell(\gamma)}$$

Hugo Duminil-Copin, Université de Genève Computation of critical points for planar statistical physics mode

御 と く ほ と く ほ と

We restrict our attention to *finite domains* \mathcal{D} and we weight walks by $\mu^{-\ell(\gamma)}$ times a topological term depending on the *winding*.

Definition

The winding $W_{\Gamma}(a, b)$ of a curve Γ between *a* and *b* is the rotation (in radians) of the curve between *a* and *b*.

$$F(z) := \sum_{\gamma \subset \mathcal{D}: a \to z} \mu^{-\ell(\gamma)}.$$

伺 と く ヨ と く ヨ と

We restrict our attention to *finite domains* \mathcal{D} and we weight walks by $\mu^{-\ell(\gamma)}$ times a topological term depending on the *winding*.

Definition

The winding $W_{\Gamma}(a, b)$ of a curve Γ between *a* and *b* is the rotation (in radians) of the curve between *a* and *b*.

The **parafermionic operator** at a mid-point $z \in D$ is defined by

$$F(z) := \sum_{\gamma \subset \mathcal{D}: \ a \to z} e^{-i\sigma W_{\gamma}(a,z)} \mu^{-\ell(\gamma)}.$$

御 と く ほ と く ほ と

Lemma (Local relation around a vertex)

If $\sigma = \frac{5}{8}$ and $\mu = \sqrt{2 + \sqrt{2}}$, then F satisfies the following relation for every vertex $v \in V(D)$,

$$(p-v)F(p) + (q-v)F(q) + (r-v)F(r) = 0$$

where p, q, r are the mid-edges of the three edges adjacent to v.

Lemma (Local relation around a vertex)

If $\sigma = \frac{5}{8}$ and $\mu = \sqrt{2 + \sqrt{2}}$, then F satisfies the following relation for every vertex $v \in V(D)$,

$$(p-v)F(p) + (q-v)F(q) + (r-v)F(r) = 0$$

where p, q, r are the mid-edges of the three edges adjacent to v.

Lemma (Local relation around a vertex)

If $\sigma = \frac{5}{8}$ and $\mu = \sqrt{2 + \sqrt{2}}$, then F satisfies the following relation for every vertex $v \in V(D)$,

$$(p-v)F(p) + (q-v)F(q) + (r-v)F(r) = 0$$

where p, q, r are the mid-edges of the three edges adjacent to v.

This relation means that $\oint F(z)dz = 0$ along the contour

Proposition (Discrete holomorphicity)

If \mathcal{D} is simply connected, then $\oint_{\gamma} F(z) dz = 0$ for any discrete contour γ .

伺 ト イヨト イヨト

э

One can partition the set of walks γ finishing at p, q or r into **pairs** and **triplets** of walks:

One can partition the set of walks γ finishing at p, q or r into **pairs** and **triplets** of walks:

$$\mathcal{T}$$

In the first case,

$$\begin{aligned} \boldsymbol{c}(\gamma_1) + \boldsymbol{c}(\gamma_2) &= (\boldsymbol{q} - \boldsymbol{v}) \mathrm{e}^{-\mathrm{i}\sigma \mathrm{W}_{\gamma_1}(\boldsymbol{a}, \boldsymbol{q})} \boldsymbol{\mu}^{-\ell(\gamma_1)} + (\boldsymbol{r} - \boldsymbol{v}) \mathrm{e}^{-\mathrm{i}\sigma \mathrm{W}_{\gamma_2}(\boldsymbol{a}, \boldsymbol{r})} \boldsymbol{\mu}^{-\ell(\gamma_2)} \\ &= (\boldsymbol{p} - \boldsymbol{v}) \mathrm{e}^{-\mathrm{i}\sigma \mathrm{W}_{\gamma_1}(\boldsymbol{a}, \boldsymbol{p})} \boldsymbol{\mu}^{-\ell(\gamma_1)} \left(\mathrm{e}^{\mathrm{i}\frac{2\pi}{3}} \mathrm{e}^{-\mathrm{i}\sigma \cdot \frac{-4\pi}{3}} + \mathrm{e}^{-\mathrm{i}\frac{2\pi}{3}} \mathrm{e}^{-\mathrm{i}\sigma \cdot \frac{4\pi}{3}} \right) \end{aligned}$$

伺 ト イヨト イヨト

One can partition the set of walks γ finishing at p, q or r into **pairs** and **triplets** of walks:

$$\mathcal{T}^{\gamma_1}$$

In the first case, providing $\sigma := \frac{5}{8}$,

$$\begin{aligned} c(\gamma_1) + c(\gamma_2) &= (q - v) \mathrm{e}^{-\mathrm{i}\sigma W_{\gamma_1}(a,q)} \mu^{-\ell(\gamma_1)} + (r - v) \mathrm{e}^{-\mathrm{i}\sigma W_{\gamma_2}(a,r)} \mu^{-\ell(\gamma_2)} \\ &= (p - v) \mathrm{e}^{-\mathrm{i}\frac{5}{8}W_{\gamma_1}(a,p)} \mu^{-\ell(\gamma_1)} \left(\mathrm{e}^{\mathrm{i}\frac{2\pi}{3}} \mathrm{e}^{-\mathrm{i}\frac{5}{8}\cdot\frac{-4\pi}{3}} + \mathrm{e}^{-\mathrm{i}\frac{2\pi}{3}} \mathrm{e}^{-\mathrm{i}\frac{5}{8}\cdot\frac{4\pi}{3}} \right) = 0 \end{aligned}$$

One can partition the set of walks γ finishing at p, q or r into **pairs** and **triplets** of walks:

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$$

In the first case, providing $\sigma := \frac{5}{8}$,

$$\begin{aligned} c(\gamma_1) + c(\gamma_2) &= (q - v) \mathrm{e}^{-\mathrm{i}\sigma \mathrm{W}_{\gamma_1}(a,q)} \mu^{-\ell(\gamma_1)} + (r - v) \mathrm{e}^{-\mathrm{i}\sigma \mathrm{W}_{\gamma_2}(a,r)} \mu^{-\ell(\gamma_2)} \\ &= (p - v) \mathrm{e}^{-\mathrm{i}\frac{5}{8}\mathrm{W}_{\gamma_1}(a,p)} \mu^{-\ell(\gamma_1)} \left(\mathrm{e}^{\mathrm{i}\frac{2\pi}{3}} \mathrm{e}^{-\mathrm{i}\frac{5}{8}\cdot\frac{-4\pi}{3}} + \mathrm{e}^{-\mathrm{i}\frac{2\pi}{3}} \mathrm{e}^{-\mathrm{i}\frac{5}{8}\cdot\frac{4\pi}{3}} \right) = 0 \end{aligned}$$

In the second case,

$$\begin{aligned} c(\gamma_1) + c(\gamma_2) + c(\gamma_3) \\ &= (p - v) \mathrm{e}^{-\mathrm{i}\sigma \mathrm{W}_{\gamma_1}(a,p)} \mu^{-\ell(\gamma_1)} \left(1 + \mu^{-1} \mathrm{e}^{\mathrm{i}\frac{2\pi}{3}} \mathrm{e}^{-\mathrm{i}\frac{5}{8} \cdot \frac{-\pi}{3}} + \mu^{-1} \mathrm{e}^{-\mathrm{i}\frac{2\pi}{3}} \mathrm{e}^{-\mathrm{i}\frac{5}{8} \cdot \frac{\pi}{3}} \right) \end{aligned}$$

One can partition the set of walks γ finishing at p, q or r into **pairs** and **triplets** of walks:

In the first case, providing $\sigma := \frac{5}{8}$,

$$\begin{aligned} c(\gamma_1) + c(\gamma_2) &= (q - v) \mathrm{e}^{-\mathrm{i}\sigma W_{\gamma_1}(a,q)} \mu^{-\ell(\gamma_1)} + (r - v) \mathrm{e}^{-\mathrm{i}\sigma W_{\gamma_2}(a,r)} \mu^{-\ell(\gamma_2)} \\ &= (p - v) \mathrm{e}^{-\mathrm{i}\frac{5}{8}W_{\gamma_1}(a,p)} \mu^{-\ell(\gamma_1)} \left(\mathrm{e}^{\mathrm{i}\frac{2\pi}{3}} \mathrm{e}^{-\mathrm{i}\frac{5}{8}\cdot\frac{-4\pi}{3}} + \mathrm{e}^{-\mathrm{i}\frac{2\pi}{3}} \mathrm{e}^{-\mathrm{i}\frac{5}{8}\cdot\frac{4\pi}{3}} \right) = 0 \end{aligned}$$

In the second case, providing $\mu := \sqrt{2 + \sqrt{2}}$,

$$\begin{split} & c(\gamma_1) + c(\gamma_2) + c(\gamma_3) \\ & = (\rho - \nu) \mathrm{e}^{-\mathrm{i}\sigma \mathrm{W}_{\gamma_1}(\mathfrak{s}, \rho)} \mu^{-\ell(\gamma_1)} \left(1 + \mu^{-1} \mathrm{e}^{\mathrm{i}\frac{2\pi}{3}} \mathrm{e}^{-\mathrm{i}\frac{5}{8} \cdot \frac{-\pi}{3}} + \mu^{-1} \mathrm{e}^{-\mathrm{i}\frac{2\pi}{3}} \mathrm{e}^{-\mathrm{i}\frac{5}{8} \cdot \frac{\pi}{3}} \right) = 0. \end{split}$$

One can partition the set of walks γ finishing at p, q or r into **pairs** and **triplets** of walks:

In the first case, providing $\sigma := \frac{5}{8}$,

$$\begin{aligned} c(\gamma_1) + c(\gamma_2) &= (q - v) \mathrm{e}^{-\mathrm{i}\sigma W_{\gamma_1}(a,q)} \mu^{-\ell(\gamma_1)} + (r - v) \mathrm{e}^{-\mathrm{i}\sigma W_{\gamma_2}(a,r)} \mu^{-\ell(\gamma_2)} \\ &= (p - v) \mathrm{e}^{-\mathrm{i}\frac{5}{8}W_{\gamma_1}(a,p)} \mu^{-\ell(\gamma_1)} \left(\mathrm{e}^{\mathrm{i}\frac{2\pi}{3}} \mathrm{e}^{-\mathrm{i}\frac{5}{8}\cdot\frac{-4\pi}{3}} + \mathrm{e}^{-\mathrm{i}\frac{2\pi}{3}} \mathrm{e}^{-\mathrm{i}\frac{5}{8}\cdot\frac{4\pi}{3}} \right) = 0 \end{aligned}$$

In the second case, providing $\mu := \sqrt{2 + \sqrt{2}}$,

 $\begin{aligned} c(\gamma_1) + c(\gamma_2) + c(\gamma_3) \\ &= (p - \nu) \mathrm{e}^{-\mathrm{i}\sigma \mathrm{W}_{\gamma_1}(a,p)} \mu^{-\ell(\gamma_1)} \left(1 + \mu^{-1} \mathrm{e}^{\mathrm{i}\frac{2\pi}{3}} \mathrm{e}^{-\mathrm{i}\frac{5}{8} \cdot \frac{-\pi}{3}} + \mu^{-1} \mathrm{e}^{-\mathrm{i}\frac{2\pi}{3}} \mathrm{e}^{-\mathrm{i}\frac{5}{8} \cdot \frac{\pi}{3}} \right) = 0. \end{aligned}$

а по з адо з во з в 🙂

When
$$\sigma = \frac{5}{8}$$
 and $\mu = \sqrt{2 + \sqrt{2}}$, we have

$$0 = -\sum_{z \in bottom} F(z) + \sum_{z \in top} F(z) + e^{i\frac{2\pi}{3}} \sum_{z \in left} F(z) + e^{-i\frac{2\pi}{3}} \sum_{z \in right} F(z)$$

< ∃ >

When
$$\sigma = \frac{5}{8}$$
 and $\mu = \sqrt{2 + \sqrt{2}}$, we have

$$0 = -\sum_{z \in bottom} F(z) + \sum_{z \in top} F(z) + e^{i\frac{2\pi}{3}} \sum_{z \in left} F(z) + e^{-i\frac{2\pi}{3}} \sum_{z \in right} F(z)$$

We know the winding on the boundary! Thus, we can replace F by the sum of Boltzman weights.

- ∢ ≣ ▶

When
$$\sigma = \frac{5}{8}$$
 and $\mu = \sqrt{2 + \sqrt{2}}$, we have
 $1 = \cos\left(\frac{3\pi}{8}\right) \sum_{\gamma:a \to bottom} \mu^{-\ell(\gamma)} + \sum_{\gamma:a \to top} \mu^{-\ell(\gamma)} + \cos\left(\frac{\pi}{4}\right) \sum_{\gamma:a \to sides} \mu^{-\ell(\gamma)}.$

We know the winding on the boundary! Thus, we can replace F by the sum of Boltzman weights.

→ Ξ →

When
$$\sigma = \frac{5}{8}$$
 and $\mu = \sqrt{2 + \sqrt{2}}$, we have
 $1 = \cos\left(\frac{3\pi}{8}\right) \sum_{\gamma:a \to bottom} \mu^{-\ell(\gamma)} + \sum_{\gamma:a \to top} \mu^{-\ell(\gamma)}.$

We know the winding on the boundary! Thus, we can replace F by the sum of Boltzman weights.

< ∃ → <

When
$$\sigma = \frac{5}{8}$$
 and $\mu = \sqrt{2 + \sqrt{2}}$, we have

We know the winding on the boundary! Thus, we can replace F by the sum of Boltzman weights.

• The result follows from this combinatorial relation.

→ Ξ →

$$\mu_{c}(\mathbb{H}) \leq \sqrt{2 + \sqrt{2}}$$

Hugo Duminil-Copin, Université de Genève Computation of critical points for planar statistical physics mode

$$\mu_{c}(\mathbb{H}) \leq \sqrt{2 + \sqrt{2}}$$

• When
$$\mu = \sqrt{2 + \sqrt{2}}$$
,
 $1 = \cos\left(\frac{3\pi}{8}\right) \sum_{\gamma:a \rightarrow bottom} \mu^{-\ell(\gamma)} + \sum_{\gamma:a \rightarrow top} \mu^{-\ell(\gamma)}$

implies that $\sum_{\gamma: \mathbf{a} \to \textit{top}} \mu^{-\ell(\gamma)} \leq 1.$

$$\mu_{c}(\mathbb{H}) \leq \sqrt{2 + \sqrt{2}}$$

• When
$$\mu = \sqrt{2 + \sqrt{2}}$$
,
 $1 = \cos\left(\frac{3\pi}{8}\right) \sum_{\gamma:a \rightarrow bottom} \mu^{-\ell(\gamma)} + \sum_{\gamma:a \rightarrow top} \mu^{-\ell(\gamma)}$

implies that $\sum_{\gamma: a \to top} \mu^{-\ell(\gamma)} \leq 1$.

Therefore, the number of walks $b_{n,T}$ of length *n* and height *T* never going below their start and above their end satisfies $b_{n,T} \leq \mu^n$.

伺 と く ヨ と く ヨ と

$$\mu_{c}(\mathbb{H}) \leq \sqrt{2 + \sqrt{2}}$$

• When
$$\mu = \sqrt{2 + \sqrt{2}}$$
,
 $1 = \cos\left(\frac{3\pi}{8}\right) \sum_{\gamma:a \rightarrow bottom} \mu^{-\ell(\gamma)} + \sum_{\gamma:a \rightarrow top} \mu^{-\ell(\gamma)}$

implies that $\sum_{\gamma: a \to top} \mu^{-\ell(\gamma)} \leq 1$.

Therefore, the number of walks $b_{n,T}$ of length *n* and height *T* never going below their start and above their end satisfies $b_{n,T} \leq \mu^n$.

Summing over $T \leq n$, the number of walks b_n of length n never going below their start and above their end satisfies $b_n \leq n\mu^n$.

伺い イラト イラト

$$\mu_{c}(\mathbb{H}) \leq \sqrt{2 + \sqrt{2}}$$

• When
$$\mu = \sqrt{2 + \sqrt{2}}$$
,
 $1 = \cos\left(\frac{3\pi}{8}\right) \sum_{\gamma:a \rightarrow bottom} \mu^{-\ell(\gamma)} + \sum_{\gamma:a \rightarrow top} \mu^{-\ell(\gamma)}$

implies that $\sum_{\gamma: \mathbf{a} \to \mathbf{top}} \mu^{-\ell(\gamma)} \leq 1.$

Therefore, the number of walks $b_{n,T}$ of length *n* and height *T* never going below their start and above their end satisfies $b_{n,T} \leq \mu^n$.

Summing over $T \leq n$, the number of walks b_n of length n never going below their start and above their end satisfies $b_n \leq n\mu^n$.

The number of such walks is the same (at the exponential scale) as the number of unconstrained walks (use an unfolding argument). Therefore,

$$\mu_c(\mathbb{H})^{n+o(n)}=b_n\leq n\mu^n.$$

$$\mu_c \ge \sqrt{2 + \sqrt{2}}$$

Hugo Duminil-Copin, Université de Genève Computation of critical points for planar statistical physics mode

$$\mu_{\rm c} \geq \sqrt{2+\sqrt{2}}$$

$$1 = \cos\left(\frac{3\pi}{8}\right) \sum_{\gamma: \mathbf{a} \to \mathbf{bottom}} \mu^{-\ell(\gamma)} + \sum_{\gamma: \mathbf{a} \to \mathbf{top}} \mu^{-\ell(\gamma)}.$$

reads $1 = \cos\left(\frac{3\pi}{8}\right)A_T + C_T$.

A B + A B +

$$\mu_{\rm c} \geq \sqrt{2+\sqrt{2}}$$

$$1 = \cos\left(\frac{3\pi}{8}\right) \sum_{\gamma: a \to bottom} \mu^{-\ell(\gamma)} + \sum_{\gamma: a \to top} \mu^{-\ell(\gamma)}.$$

reads $1 = \cos\left(\frac{3\pi}{8}\right)A_T + C_T$.

• Subtracting the relation for T and T + 1, we obtain:

$$C_T - C_{T+1} = \cos\left(\frac{3\pi}{8}\right)(A_{T+1} - A_T).$$

(*) *) *) *)

$$\mu_{\rm c} \geq \sqrt{2+\sqrt{2}}$$

$$1 = \cos\left(\frac{3\pi}{8}\right) \sum_{\gamma: a \to bottom} \mu^{-\ell(\gamma)} + \sum_{\gamma: a \to top} \mu^{-\ell(\gamma)}.$$

reads $1 = \cos\left(\frac{3\pi}{8}\right)A_T + C_T$.

• Subtracting the relation for T and T + 1, we obtain:

$$C_T - C_{T+1} = \cos\left(\frac{3\pi}{8}\right) (A_{T+1} - A_T).$$

Yet, A_{T+1} − A_T ≤ C²_T since we can make two bridges from one arc of height m + 1, thus:

伺 と イ ヨ と イ ヨ と

$$\mu_{\rm c} \geq \sqrt{2+\sqrt{2}}$$

$$1 = \cos\left(\frac{3\pi}{8}\right) \sum_{\gamma: a \to bottom} \mu^{-\ell(\gamma)} + \sum_{\gamma: a \to top} \mu^{-\ell(\gamma)}.$$

reads $1 = \cos\left(\frac{3\pi}{8}\right)A_T + C_T$.

• Subtracting the relation for T and T + 1, we obtain:

$$C_{T}-C_{T+1}=\cos\left(\frac{3\pi}{8}\right)(A_{T+1}-A_{T}).$$

- Yet, A_{T+1} − A_T ≤ C²_T since we can make two bridges from one arc of height m + 1, thus:
- $C_T C_{T+1} \le \cos\left(\frac{3\pi}{8}\right) C_T^2$ and $C_T \ge \frac{c}{T}$ for large T. But

$$C_T \leq \sum_{n \geq T} b_n \mu^{-n}$$

Thus, $b_n \mu^{-n}$ cannot decay exponentially fast!

$$\mu_{\rm c} \geq \sqrt{2+\sqrt{2}}$$

$$1 = \cos\left(\frac{3\pi}{8}\right) \sum_{\gamma: a \to bottom} \mu^{-\ell(\gamma)} + \sum_{\gamma: a \to top} \mu^{-\ell(\gamma)}.$$

reads $1 = \cos\left(\frac{3\pi}{8}\right)A_T + C_T$.

• Subtracting the relation for T and T + 1, we obtain:

$$C_{T}-C_{T+1}=\cos\left(\frac{3\pi}{8}\right)(A_{T+1}-A_{T}).$$

- Yet, A_{T+1} − A_T ≤ C²_T since we can make two bridges from one arc of height m + 1, thus:
- $C_T C_{T+1} \le \cos\left(\frac{3\pi}{8}\right) C_T^2$ and $C_T \ge \frac{c}{T}$ for large T. But

$$C_T \leq \sum_{n \geq T} b_n \mu^{-n}$$

Thus, $b_n \mu^{-n}$ cannot decay exponentially fast!

• Similar discrete holomorphic observables for O(n) models and other models of planar statistical physics (percolation, Ising, Potts, dimers, loop-erased random walk, harmonic explorer).

Image: A Image: A

- Similar discrete holomorphic observables for O(n) models and other models of planar statistical physics (percolation, Ising, Potts, dimers, loop-erased random walk, harmonic explorer).
- A method via discrete holomorphicity is available for FK percolation as well, but it is rigorous only for q ≥ 4 (Beffara, D-C, Smirnov, 2012).

直 と く ヨ と く ヨ と

- Similar discrete holomorphic observables for O(n) models and other models of planar statistical physics (percolation, Ising, Potts, dimers, loop-erased random walk, harmonic explorer).
- A method via discrete holomorphicity is available for FK percolation as well, but it is rigorous only for q ≥ 4 (Beffara, D-C, Smirnov, 2012).
- The method by **discrete holomorphicity** provides more information on the *critical phase*, which is of great interest for mathematicians and physicists (see example of the Ising model and the FK percolation with cluster-weight q = 2).

- Similar discrete holomorphic observables for O(n) models and other models of planar statistical physics (percolation, Ising, Potts, dimers, loop-erased random walk, harmonic explorer).
- A method via discrete holomorphicity is available for FK percolation as well, but it is rigorous only for q ≥ 4 (Beffara, D-C, Smirnov, 2012).
- The method by **discrete holomorphicity** provides more information on the *critical phase*, which is of great interest for mathematicians and physicists (see example of the Ising model and the FK percolation with cluster-weight q = 2).
- The method by **sharp threshold** is more general and applies to a wide variety of models.

< 回 > < 回 > < 回 >

