Computation of critical points for planar statistical physics models

Hugo Duminil-Copin, Université de Genève

Rio 2013
joint work with V. Beffara / S. Smirnov

- Statistical physics: Study of physical systems with many particles via probability techniques.
- Statistical physics: Study of physical systems with many particles via probability techniques.

- Statistical physics: Study of physical systems with many particles via probability techniques.

- How do interactions between particles at a microscopic level lead to different behaviors of the model macroscopically?
- Statistical physics: Study of physical systems with many particles via probability techniques.

- How do interactions between particles at a microscopic level lead to different behaviors of the model macroscopically?
- We are particularly interested in their phase transition and the behavior at the critical point.

I. Why is there a phase transition?

I. Why is there a phase transition?

II. Computation of the critical point via self-duality (the example of the FK percolation)

I. Why is there a phase transition?
II. Computation of the critical point via self-duality (the example of the FK percolation)
III. Computation of the critical point via discrete holomorphicity (the example of the SAW)

I. Why is there a phase transition?

II. Computation of the critical point via self-duality (the example of the FK percolation)

III. Computation of the critical point via discrete holomorphicity (the example of the SAW)

Warm up: the case of Bernoulli percolation (1)

- Each edge of \mathbb{Z}^{2} is open with probability p, and closed with probability $1-p$. The subgraph obtained by keeping all the vertices and the open edges is called a configuration ω_{p}.

Warm up: the case of Bernoulli percolation (1)

- Each edge of \mathbb{Z}^{2} is open with probability p, and closed with probability $1-p$. The subgraph obtained by keeping all the vertices and the open edges is called a configuration ω_{p}.

This model undergoes a phase transition at some $p_{c} \in(0,1)$:

- when $p<p_{c}, \phi_{p}(0 \longleftrightarrow \infty)=0$,
- when $p>p_{c}, \phi_{p}(0 \longleftrightarrow \infty)>0$.

Warm up: the case of Bernoulli percolation (1)

- Each edge of \mathbb{Z}^{2} is open with probability p, and closed with probability $1-p$. The subgraph obtained by keeping all the vertices and the open edges is called a configuration ω_{p}.

This model undergoes a phase transition at some $p_{c} \in(0,1)$:

- when $p<p_{c}, \phi_{p}(0 \longleftrightarrow \infty)=0$,
- when $p>p_{c}, \phi_{p}(0 \longleftrightarrow \infty)>0$.

Warm up: the case of Bernoulli percolation (2)

Proof of the existence of a critical point. Main difficulty: compare $\phi_{p}(0 \leftrightarrow \infty)$ with $\phi_{p^{\prime}}(0 \leftrightarrow \infty)$ for $p \leq p^{\prime}$.

Warm up: the case of Bernoulli percolation (2)

Proof of the existence of a critical point. Main difficulty: compare $\phi_{p}(0 \leftrightarrow \infty)$ with $\phi_{p^{\prime}}(0 \leftrightarrow \infty)$ for $p \leq p^{\prime}$.

Construct ω_{p} and $\omega_{p^{\prime}}$ on the same probability space.

Warm up: the case of Bernoulli percolation (2)

Proof of the existence of a critical point. Main difficulty: compare $\phi_{p}(0 \leftrightarrow \infty)$ with $\phi_{p^{\prime}}(0 \leftrightarrow \infty)$ for $p \leq p^{\prime}$.

Construct ω_{p} and $\omega_{p^{\prime}}$ on the same probability space.

1. Assign to each edge e a uniform random variable U_{e} on $[0,1]$

Warm up: the case of Bernoulli percolation (2)

Proof of the existence of a critical point. Main difficulty: compare $\phi_{p}(0 \leftrightarrow \infty)$ with $\phi_{p^{\prime}}(0 \leftrightarrow \infty)$ for $p \leq p^{\prime}$.

Construct ω_{p} and $\omega_{p^{\prime}}$ on the same probability space.

1. Assign to each edge e a uniform random variable U_{e} on $[0,1]$
2. e is open in ω_{p} iff $U_{e} \leq p$.

Warm up: the case of Bernoulli percolation (2)

Proof of the existence of a critical point. Main difficulty: compare $\phi_{p}(0 \leftrightarrow \infty)$ with $\phi_{p^{\prime}}(0 \leftrightarrow \infty)$ for $p \leq p^{\prime}$.

Construct ω_{p} and $\omega_{p^{\prime}}$ on the same probability space.

1. Assign to each edge e a uniform random variable U_{e} on $[0,1]$
2. e is open in ω_{p} iff $U_{e} \leq p$.
3. e is open in $\omega_{p^{\prime}}$ iff $U_{e} \leq p^{\prime}$ (same U_{e} as before).

Warm up: the case of Bernoulli percolation (2)

Proof of the existence of a critical point. Main difficulty: compare $\phi_{p}(0 \leftrightarrow \infty)$ with $\phi_{p^{\prime}}(0 \leftrightarrow \infty)$ for $p \leq p^{\prime}$.

Construct ω_{p} and $\omega_{p^{\prime}}$ on the same probability space.

1. Assign to each edge e a uniform random variable U_{e} on $[0,1]$
2. e is open in ω_{p} iff $U_{e} \leq p$.
3. e is open in $\omega_{p^{\prime}}$ iff $U_{e} \leq p^{\prime}$ (same U_{e} as before).
$p_{c}=\inf \left\{p \in[0,1]: \phi_{p}(0 \leftrightarrow \infty)>0\right\}=\sup \left\{p \in[0,1]: \phi_{p}(0 \leftrightarrow \infty)=0\right\}$

Warm up: the case of Bernoulli percolation (2)

Proof of the existence of a critical point. Main difficulty: compare $\phi_{p}(0 \leftrightarrow \infty)$ with $\phi_{p^{\prime}}(0 \leftrightarrow \infty)$ for $p \leq p^{\prime}$.

Construct ω_{p} and $\omega_{p^{\prime}}$ on the same probability space.

1. Assign to each edge e a uniform random variable U_{e} on $[0,1]$
2. e is open in ω_{p} iff $U_{e} \leq p$.
3. e is open in $\omega_{p^{\prime}}$ iff $U_{e} \leq p^{\prime}$ (same U_{e} as before).
$p_{c}=\inf \left\{p \in[0,1]: \phi_{p}(0 \leftrightarrow \infty)>0\right\}=\sup \left\{p \in[0,1]: \phi_{p}(0 \leftrightarrow \infty)=0\right\}$
Remains to prove that $p_{c}>0$ and $p_{c}<1$ (Peirls argument which is combinatorial in nature).

Harder case: Ising model

Assign to each site outside $[-n, n]^{2}$ the spin +1 and each site of $[-n, n]^{2}$ a spin +1 or -1 according to the following probability measure:

$$
E(\sigma):=\sum_{x \sim y}-\sigma_{x} \sigma_{y} .
$$

Harder case: Ising model

Assign to each site outside $[-n, n]^{2}$ the spin +1 and each site of $[-n, n]^{2}$ a spin +1 or -1 according to the following probability measure:

$$
E(\sigma):=\sum_{x \sim y}-\sigma_{x} \sigma_{y} .
$$

Then $\mathbb{P}_{T, 2, n}^{+}[\sigma] \propto \exp (-E(\sigma) / T)$.

Harder case: Ising model

Assign to each site outside $[-n, n]^{2}$ the spin +1 and each site of $[-n, n]^{2}$ a spin +1 or -1 according to the following probability measure:

$$
E(\sigma):=\sum_{x \sim y}-\sigma_{x} \sigma_{y}
$$

Then $\mathbb{P}_{T, 2, n}^{+}[\sigma] \propto \exp (-E(\sigma) / T)$. This model undergoes a phase transition at some critical temperature T_{c} :

- For $T>T_{c}, \mathbb{P}_{T, 2, n}^{+}\left[\sigma_{0}=+\right]$ tends to $\frac{1}{2}$ as $n \rightarrow \infty$
- For $T<T_{c}, \mathbb{P}_{T, 2, n}^{+}\left[\sigma_{0}=+\right]$ tends to $\frac{1+M(T)}{2}>\frac{1}{2}$ as $n \rightarrow \infty$

Harder case: Potts model

Assign to each site outside $[-n, n]^{2}$ the color red and each site of $[-n, n]^{2}$ a color amongst q colors according to the following probability measure:

$$
E(\sigma):=\text { number disagreeing neighbors. }
$$

Then $\mathbb{P}_{T, q, n}^{+}[\sigma] \propto \exp (-E(\sigma) / T)$. This model undergoes a phase transition at some critical temperature $T_{c}(q)$:

- For $T>T_{c}(q), \mathbb{P}_{T, q, n}^{+}\left[\sigma_{0}=r e d\right]$ tends to $\frac{1}{q}$ as $n \rightarrow \infty$
- For $T<T_{c}(q), \mathbb{P}_{T, q, n}^{+}\left[\sigma_{0}=r e d\right]$ tends to $\frac{1+M(T)}{q}>\frac{1}{q}$ as $n \rightarrow \infty$

Harder case: Potts model

Assign to each site outside $[-n, n]^{2}$ the color red and each site of $[-n, n]^{2}$ a color amongst q colors according to the following probability measure:

$$
E(\sigma):=\text { number disagreeing neighbors. }
$$

Then $\mathbb{P}_{T, q, n}^{+}[\sigma] \propto \exp (-E(\sigma) / T)$. This model undergoes a phase transition at some critical temperature $T_{c}(q)$:

- For $T>T_{c}(q), \mathbb{P}_{T, q, n}^{+}\left[\sigma_{0}=r e d\right]$ tends to $\frac{1}{q}$ as $n \rightarrow \infty$
- For $T<T_{c}(q), \mathbb{P}_{T, q, n}^{+}\left[\sigma_{0}=r e d\right]$ tends to $\frac{1+M(T)}{q}>\frac{1}{q}$ as $n \rightarrow \infty$

Harder case: Potts model

Assign to each site outside $[-n, n]^{2}$ the color red and each site of $[-n, n]^{2}$ a color amongst q colors according to the following probability measure:

$$
E(\sigma):=\text { number disagreeing neighbors. }
$$

Then $\mathbb{P}_{T, q, n}^{+}[\sigma] \propto \exp (-E(\sigma) / T)$. This model undergoes a phase transition at some critical temperature $T_{c}(q)$:

- For $T>T_{c}(q), \mathbb{P}_{T, q, n}^{+}\left[\sigma_{0}=r e d\right]$ tends to $\frac{1}{q}$ as $n \rightarrow \infty$
- For $T<T_{c}(q), \mathbb{P}_{T, q, n}^{+}\left[\sigma_{0}=r e d\right]$ tends to $\frac{1+M(T)}{q}>\frac{1}{q}$ as $n \rightarrow \infty$

One model to rule them all: FK percolation (1)

We rather study a geometric representation of the Potts model, called the FK percolation model. This percolation model has the following distribution:

$$
\phi_{p}(\omega):=p^{\# \text { open edges }}(1-p)^{\# \text { closed edges }}
$$

One model to rule them all: FK percolation (1)

We rather study a geometric representation of the Potts model, called the FK percolation model. This percolation model has the following distribution:

$$
\phi_{p, q, n}(\omega):=p^{\# \text { open edges }}(1-p)^{\# \text { closed edges }} q^{\# \text { connected components }} .
$$

One model to rule them all: FK percolation (1)

We rather study a geometric representation of the Potts model, called the FK percolation model. This percolation model has the following distribution:

$$
\phi_{p, q, n}(\omega):=\frac{1}{Z_{p, q, n}} \cdot p^{\# \text { open edges }}(1-p)^{\# \text { closed edges }} q^{\# \text { connected components }}
$$

One model to rule them all: FK percolation (1)

We rather study a geometric representation of the Potts model, called the FK percolation model. This percolation model has the following distribution:

$$
\phi_{p, q, n}(\omega):=\frac{1}{Z_{p, q, n}} \cdot p^{\# \text { open edges }}(1-p)^{\# \text { closed edges }} q^{\# \text { connected components }} .
$$

- Similarly to the Bernoulli percolation case, there exists an increasing coupling at fixed $q \geq 1$ and there exists a critical value $p_{c}(q)$.

One model to rule them all: FK percolation (1)

We rather study a geometric representation of the Potts model, called the FK percolation model. This percolation model has the following distribution:

$$
\phi_{p, q, n}(\omega):=\frac{1}{Z_{p, q, n}} \cdot p^{\# \text { open edges }}(1-p)^{\# \text { closed edges }} q^{\# \text { connected components. }}
$$

- Similarly to the Bernoulli percolation case, there exists an increasing coupling at fixed $q \geq 1$ and there exists a critical value $p_{c}(q)$.
- Coupling with the Potts model: consider a FK percolation with parameters q and $p=1-e^{-2 / T}$ and color each clusters uniformly at random, except those touching the boundary which receive red.

One model to rule them all: FK percolation (1)

We rather study a geometric representation of the Potts model, called the FK percolation model. This percolation model has the following distribution:

$$
\phi_{p, q, n}(\omega):=\frac{1}{Z_{p, q, n}} \cdot p^{\# \text { open edges }}(1-p)^{\# \text { closed edges }} q^{\# \text { connected components. }}
$$

- Similarly to the Bernoulli percolation case, there exists an increasing coupling at fixed $q \geq 1$ and there exists a critical value $p_{c}(q)$.
- Coupling with the Potts model: consider a FK percolation with parameters q and $p=1-e^{-2 / T}$ and color each clusters uniformly at random, except those touching the boundary which receive red.

The coupling provides us with a dictionary between properties of FK percolation and spin models. For instance,

The coupling provides us with a dictionary between properties of FK percolation and spin models. For instance,
$\mathbb{P}_{T, q, n}\left[\sigma_{0}=\mathrm{red}\right]=\phi_{p(T), q, n}\left(0 \leftrightarrow \partial[-n, n]^{2}\right)+\frac{1}{q} \phi_{p(T), q, n}\left(0 \nLeftarrow \partial[-n, n]^{2}\right)$

The coupling provides us with a dictionary between properties of FK percolation and spin models. For instance,

$$
\mathbb{P}_{T, q, n}\left[\sigma_{0}=\mathrm{red}\right]=\frac{1}{q}+\left(1-\frac{1}{q}\right) \phi_{p(T), q, n}\left(0 \leftrightarrow \partial[-n, n]^{2}\right)
$$

The coupling provides us with a dictionary between properties of FK percolation and spin models. For instance,

$$
\mathbb{P}_{T, q, n}\left[\sigma_{0}=\mathrm{red}\right]=\frac{1}{q}+\left(1-\frac{1}{q}\right) \phi_{p(T), q, n}\left(0 \leftrightarrow \partial[-n, n]^{2}\right)
$$

As a consequence, the transition exists and $1-p_{c}(q)=e^{-2 / T_{c}(q)}$.

The coupling provides us with a dictionary between properties of FK percolation and spin models. For instance,

$$
\mathbb{P}_{T, q, n}\left[\sigma_{0}=\mathrm{red}\right]=\frac{1}{q}+\left(1-\frac{1}{q}\right) \phi_{p(T), q, n}\left(0 \leftrightarrow \partial[-n, n]^{2}\right)
$$

As a consequence, the transition exists and $1-p_{c}(q)=e^{-2 / T_{c}(q)}$.

- Conclusion: Using couplings, one can prove the existence of a phase transition for percolation and spin models.
- Question: Can we compute these critical points?

The coupling provides us with a dictionary between properties of FK percolation and spin models. For instance,

$$
\mathbb{P}_{T, q, n}\left[\sigma_{0}=\mathrm{red}\right]=\frac{1}{q}+\left(1-\frac{1}{q}\right) \phi_{p(T), q, n}\left(0 \leftrightarrow \partial[-n, n]^{2}\right)
$$

As a consequence, the transition exists and $1-p_{c}(q)=e^{-2 / T_{c}(q)}$.

- Conclusion: Using couplings, one can prove the existence of a phase transition for percolation and spin models.
- Question: Can we compute these critical points?
- It is sufficient to compute $p_{c}(q)$ for FK percolation with $q \geq 1$
I. Why is there a phase transition?
II. Computation of the critical point via self-duality (the example of the FK percolation)

III. Computation of the critical point via discrete holomorphicity (the example of the SAW)

A first guess for $p_{c}(q)$

A dual model can be defined on a dual graph:

A first guess for $p_{c}(q)$

A dual model can be defined on a dual graph:

- For Bernoulli percolation, it is a Bernoulli percolation with p^{\star} defined by $p^{\star}=1-p$.

A first guess for $p_{c}(q)$

A dual model can be defined on a dual graph:

- For Bernoulli percolation, it is a Bernoulli percolation with p^{\star} defined by $p^{\star}=1-p$.
- For FK percolation, it is a FK percolation with p^{\star} and q^{\star} defined by

$$
q^{\star}=q \quad \text { and } \quad \frac{p p^{\star}}{(1-p)\left(1-p^{\star}\right)}=q .
$$

A first guess for $p_{c}(q)$

A dual model can be defined on a dual graph:

- For Bernoulli percolation, it is a Bernoulli percolation with p^{\star} defined by $p^{\star}=1-p$.
- For FK percolation, it is a FK percolation with p^{\star} and q^{\star} defined by

$$
q^{\star}=q \quad \text { and } \quad \frac{p p^{\star}}{(1-p)\left(1-p^{\star}\right)}=q .
$$

If $p^{\star}=p$, i.e. $p=p_{\text {sd }}=\sqrt{q} /(1+\sqrt{q})$, the primal and dual models play symmetric roles.

A first guess for $p_{c}(q)$

A dual model can be defined on a dual graph:

- For Bernoulli percolation, it is a Bernoulli percolation with p^{\star} defined by $p^{\star}=1-p$.
- For FK percolation, it is a FK percolation with p^{\star} and q^{\star} defined by

$$
q^{\star}=q \quad \text { and } \quad \frac{p p^{\star}}{(1-p)\left(1-p^{\star}\right)}=q .
$$

If $p^{\star}=p$, i.e. $p=p_{\text {sd }}=\sqrt{q} /(1+\sqrt{q})$, the primal and dual models play symmetric roles. For instance, $\phi_{p_{s d}, q, n}\left(A_{n}\right)=\frac{1}{2}$.

The derivative of an event is governed by the influence of isolated sites.

The derivative of an event is governed by the influence of isolated sites.

Proposition (Margulis/Russo's formula)

For any increasing event A,

$$
\begin{aligned}
\phi_{p+\varepsilon}[A]-\phi_{p}[A] & =\mathbb{P}\left[\omega_{p+\varepsilon} \in A \text { and } \omega_{p} \notin A\right] \\
& =\left(\sum_{e \in E} \phi_{p}\left(\omega^{e} \in A \text { and } \omega_{e} \notin A\right)\right) \varepsilon+o(\varepsilon) .
\end{aligned}
$$

The derivative of an event is governed by the influence of isolated sites.

Proposition (Margulis/Russo's formula)

For any increasing event A,

$$
\frac{d}{d p} \phi_{p}[A]=\sum_{e \in E} \phi_{p}\left(\omega^{e} \in A \text { and } \omega_{e} \notin A\right) .
$$

The derivative of an event is governed by the influence of isolated sites.

Proposition (Margulis/Russo's formula)

For any increasing event A,

$$
\frac{d}{d p} \phi_{p}[A]=\sum_{e \in E} \phi_{p}\left(\omega^{e} \in A \text { and } \omega_{e} \notin A\right) .
$$

- At least one site must have a 'large' influence when the event has probability away from 0 and 1 .

Theorem (Kahn, Kalai \& Linial 1988 - Bourgain, K., K., Katznelson \& L. 1992)

For every increasing event A on the graph $[-n, n]^{2}$,

$$
\max _{e \in E} \phi_{p}\left(\omega^{e} \in A \text { and } \omega_{e} \notin A\right) \geq c \phi_{p}[A]\left(1-\phi_{p}[A]\right) \frac{\log n}{n^{2}} .
$$

(1) By duality, $\phi_{1 / 2}\left(A_{n}\right)=\frac{1}{2}$.
(1) By duality, $\phi_{1 / 2}\left(A_{n}\right)=\frac{1}{2}$.
(2) By sharp threshold arguments and invariance by translation,

$$
\frac{d}{d p} \phi_{p}\left[A_{n}\right] \geq c \phi_{p}\left[A_{n}\right]\left(1-\phi_{p}\left[A_{n}\right]\right) \log n .
$$

(1) By duality, $\phi_{1 / 2}\left(A_{n}\right)=\frac{1}{2}$.
(2) By sharp threshold arguments and invariance by translation,

$$
\frac{d}{d p} \phi_{p}\left[A_{n}\right] \geq c \phi_{p}\left[A_{n}\right]\left(1-\phi_{p}\left[A_{n}\right]\right) \log n
$$

(3) By integrating the differential inequality with respect to p,

- $\phi_{p}\left[A_{n}\right]$ decays fast (as n tends to ∞) when $p<\frac{1}{2}$.
- $\phi_{p}\left[A_{n}\right]$ tends fast to 1 (as n tends to ∞) when $p>\frac{1}{2}$.
(1) By duality, $\phi_{1 / 2}\left(A_{n}\right)=\frac{1}{2}$.
(2) By sharp threshold arguments and invariance by translation,

$$
\frac{d}{d p} \phi_{p}\left[A_{n}\right] \geq c \phi_{p}\left[A_{n}\right]\left(1-\phi_{p}\left[A_{n}\right]\right) \log n
$$

(3) By integrating the differential inequality with respect to p,

- $\phi_{p}\left[A_{n}\right]$ decays fast (as n tends to ∞) when $p<\frac{1}{2}$.
- $\phi_{p}\left[A_{n}\right]$ tends fast to 1 (as n tends to ∞) when $p>\frac{1}{2}$.
(1) If $\phi_{p}\left(A_{n}\right) \geq 1-\varepsilon($ resp. $\leq \varepsilon)$, then $p>p_{c}$ (resp. $p<p_{c}$).
(1) By duality, $\phi_{1 / 2}\left(A_{n}\right)=\frac{1}{2}$.
(2) By sharp threshold arguments and invariance by translation,

$$
\frac{d}{d p} \phi_{p}\left[A_{n}\right] \geq c \phi_{p}\left[A_{n}\right]\left(1-\phi_{p}\left[A_{n}\right]\right) \log n
$$

(3) By integrating the differential inequality with respect to p,

- $\phi_{p}\left[A_{n}\right]$ decays fast (as n tends to ∞) when $p<\frac{1}{2}$.
- $\phi_{p}\left[A_{n}\right]$ tends fast to 1 (as n tends to ∞) when $p>\frac{1}{2}$.
(1) If $\phi_{p}\left(A_{n}\right) \geq 1-\varepsilon($ resp. $\leq \varepsilon)$, then $p>p_{c}$ (resp. $p<p_{c}$).

4 The difficulty lies mostly in this last step! But it applies to $q>1$ as well!

Theorem (Beffara, D-C, 2010)
The critical point $p_{c}(q)$ of the FK percolation on the square lattice satisfies

$$
p_{c}(q)=\frac{\sqrt{q}}{1+\sqrt{q}} .
$$

Theorem (Beffara, D-C, 2010)

The critical point $p_{c}(q)$ of the FK percolation on the square lattice satisfies

$$
p_{c}(q)=\frac{\sqrt{q}}{1+\sqrt{q}} .
$$

Corollary (Beffara, D-C, 2010)

The critical temperature of the square lattice q-state Potts model satisfies

$$
T_{c}(q)=\frac{2}{\ln (1+\sqrt{q})}
$$

Theorem (Beffara, D-C, 2010)

The critical point $p_{c}(q)$ of the FK percolation on the square lattice satisfies

$$
p_{c}(q)=\frac{\sqrt{q}}{1+\sqrt{q}} .
$$

Corollary (Beffara, D-C, 2010)

The critical temperature of the square lattice q-state Potts model satisfies

$$
T_{c}(q)=\frac{2}{\ln (1+\sqrt{q})}
$$

Conclusion: This general philosophy has been very successful thanks to its robustness. Ongoing works suggest that this approach can be implemented for a wide class of models, known as positively correlated models, which are natural candidates for geometric representations of spin models.
I. Why is there a phase transition?

II. Computation of the critical point via self-duality (the example of the FK percolation)
III. Computation of the critical point via discrete integrability (the example of the SAW)

On a lattice (for instance hexagonal \mathbb{H}), consider self-avoiding trajectories (or walks) of length n (the length is denoted by $\ell(\gamma)$) starting at the origin. Introduced by Flory and Ott in the '50s.

On a lattice (for instance hexagonal \mathbb{H}), consider self-avoiding trajectories (or walks) of length n (the length is denoted by $\ell(\gamma)$) starting at the origin. Introduced by Flory and Ott in the '50s.

- Combinatorial question: What is the asymptotic behavior of the number of self-avoiding walks of length n ?

Proposition

Let $c_{n}:=\#$ SAW of length n. Then, $c_{n}=\mu_{c}^{n+o(n)}$, where μ_{c} is the connective constant.

Proposition

Let $c_{n}:=\#$ SAW of length n. Then, $c_{n}=\mu_{c}^{n+o(n)}$, where μ_{c} is the connective constant.

- For any n, m,

$$
c_{n+m} \leq c_{n} c_{m}
$$

so that the sequence is sub-multiplicative.

Proposition

Let $c_{n}:=\#$ SAW of length n. Then, $c_{n}=\mu_{c}^{n+o(n)}$, where μ_{c} is the connective constant.

- For any n, m,

$$
c_{n+m} \leq c_{n} c_{m}
$$

so that the sequence is sub-multiplicative.

- We have the obvious bounds:

$$
\sqrt{2}^{n} \leq c_{n} \leq 3 \cdot 2^{n-1} .
$$

Proposition

Let $c_{n}:=\#$ SAW of length n. Then, $c_{n}=\mu_{c}^{n+o(n)}$, where μ_{c} is the connective constant.

- For any n, m,

$$
c_{n+m} \leq c_{n} c_{m}
$$

so that the sequence is sub-multiplicative.

- We have the obvious bounds:

$$
\sqrt{2}^{n} \leq c_{n} \leq 3 \cdot 2^{n-1} .
$$

The foundamental subadditive lemma of Fekete implies the result.

The connective constant μ_{c} as a critical parameter?

The connective constant μ_{c} as a critical parameter?

The connective constant μ_{c} as a critical parameter?

- For $\delta>0$, we define a probability measure on self-avoiding paths from a_{δ} to b_{δ} by assigning a weight proportional to $\mu^{-\ell(\gamma)}$. When $\delta \rightarrow 0$, we are interested in the limit of this sequence of random continuous curves (scaling limit).

The connective constant μ_{c} as a critical parameter?

- For $\delta>0$, we define a probability measure on self-avoiding paths from a_{δ} to b_{δ} by assigning a weight proportional to $\mu^{-\ell(\gamma)}$. When $\delta \rightarrow 0$, we are interested in the limit of this sequence of random continuous curves (scaling limit).

Theorem (loffe, 1998)

For $\mu>\mu_{c}$, the scaling limit of the SAW is a line.

The connective constant μ_{c} as a critical parameter?

- For $\delta>0$, we define a probability measure on self-avoiding paths from a_{δ} to b_{δ} by assigning a weight proportional to $\mu^{-\ell(\gamma)}$. When $\delta \rightarrow 0$, we are interested in the limit of this sequence of random continuous curves (scaling limit).

Theorem (D.-C., Kozma, Yadin, 2012)

For $\mu<\mu_{c}$, the scaling limit of the SAW is space filling.

The connective constant μ_{c} as a critical parameter?

- For $\delta>0$, we define a probability measure on self-avoiding paths from a_{δ} to b_{δ} by assigning a weight proportional to $\mu^{-\ell(\gamma)}$. When $\delta \rightarrow 0$, we are interested in the limit of this sequence of random continuous curves (scaling limit).

(Lawler, Schramm, Werner, 2001)

For $\mu=\mu_{c}$, the scaling limit of the SAW is $\operatorname{SLE}(8 / 3)$

The connective constant μ_{c} as a critical parameter?

- For $\delta>0$, we define a probability measure on self-avoiding paths from a_{δ} to b_{δ} by assigning a weight proportional to $\mu^{-\ell(\gamma)}$. When $\delta \rightarrow 0$, we are interested in the limit of this sequence of random continuous curves (scaling limit).

(Lawler, Schramm, Werner, 2001)

For $\mu=\mu_{c}$, the scaling limit of the SAW is $\operatorname{SLE}(8 / 3)$ which is conformally invariant.

1000 steps Self-avoiding walk and SLE(8/3)

1000 steps Self-avoiding walk and SLE(8/3)

Theorem (D-C, Smirnov, 2010),

The connective constant μ_{c} of the hexagonal lattice satisfies

$$
\mu_{c}:=\lim _{n \rightarrow \infty} c_{n} \frac{1}{n}=\sqrt{2+\sqrt{2}} .
$$

1000 steps Self-avoiding walk and SLE(8/3)

Theorem (D-C, Smirnov, 2010), conjectured by Nienhuis (1980)

The connective constant μ_{c} of the hexagonal lattice satisfies

$$
c_{n} \sim A n^{11 / 32}{\sqrt{2+\sqrt{2}^{2}}}^{n} \text { as } n \longrightarrow \infty
$$

.
We restrict our attention to finite domains \mathcal{D} and we weight walks by $\mu^{-\ell(\gamma)}$ times a topological term depending on the winding.

$$
F(z):=\sum_{\gamma \subset \mathcal{D}: a \rightarrow z} \mu^{-\ell(\gamma)} .
$$

We restrict our attention to finite domains \mathcal{D} and we weight walks by $\mu^{-\ell(\gamma)}$ times a topological term depending on the winding.

Definition

The winding $\mathrm{W}_{\Gamma}(a, b)$ of a curve Γ between a and b is the rotation (in radians) of the curve between a and b.

$$
F(z):=\sum_{\gamma \subset \mathcal{D}: a \rightarrow z} \mu^{-\ell(\gamma)}
$$

We restrict our attention to finite domains \mathcal{D} and we weight walks by $\mu^{-\ell(\gamma)}$ times a topological term depending on the winding.

Definition

The winding $\mathrm{W}_{\Gamma}(a, b)$ of a curve Γ between a and b is the rotation (in radians) of the curve between a and b.

The parafermionic operator at a mid-point $z \in \mathcal{D}$ is defined by

$$
F(z):=\sum_{\gamma \subset \mathcal{D}: a \rightarrow z} \mathrm{e}^{-\mathrm{i} \sigma \mathrm{~W}_{\gamma}(a, z)} \mu^{-\ell(\gamma)}
$$

Lemma (Local relation around a vertex)

If $\sigma=\frac{5}{8}$ and $\mu=\sqrt{2+\sqrt{2}}$, then F satisfies the following relation for every vertex $v \in V(\mathcal{D})$,

$$
(p-v) F(p)+(q-v) F(q)+(r-v) F(r)=0
$$

where p, q, r are the mid-edges of the three edges adjacent to v.

Lemma (Local relation around a vertex)

If $\sigma=\frac{5}{8}$ and $\mu=\sqrt{2+\sqrt{2}}$, then F satisfies the following relation for every vertex $v \in V(\mathcal{D})$,

$$
(p-v) F(p)+(q-v) F(q)+(r-v) F(r)=0
$$

where p, q, r are the mid-edges of the three edges adjacent to v.

This relation means that $\oint F(z) d z=0$ along the contour

Lemma (Local relation around a vertex)

If $\sigma=\frac{5}{8}$ and $\mu=\sqrt{2+\sqrt{2}}$, then F satisfies the following relation for every vertex $v \in V(\mathcal{D})$,

$$
(p-v) F(p)+(q-v) F(q)+(r-v) F(r)=0
$$

where p, q, r are the mid-edges of the three edges adjacent to v.

This relation means that $\oint F(z) d z=0$ along the contour

Proposition (Discrete holomorphicity)

If \mathcal{D} is simply connected, then $\oint_{\gamma} F(z) d z=0$ for any discrete contour γ.

- We write $c(\gamma)$ for the contribution of the walk γ to the sum.
- We write $c(\gamma)$ for the contribution of the walk γ to the sum.

One can partition the set of walks γ finishing at p, q or r into pairs and triplets of walks:

- We write $c(\gamma)$ for the contribution of the walk γ to the sum.

One can partition the set of walks γ finishing at p, q or r into pairs and triplets of walks:

In the first case,

$$
\begin{aligned}
c\left(\gamma_{1}\right)+c\left(\gamma_{2}\right) & =(q-v) \mathrm{e}^{-\mathrm{i} \sigma \mathrm{~W}_{\gamma_{1}}(a, q)} \mu^{-\ell\left(\gamma_{1}\right)}+(r-v) \mathrm{e}^{-\mathrm{i} \sigma \mathrm{~W}_{\gamma_{2}}(a, r)} \mu^{-\ell\left(\gamma_{2}\right)} \\
& =(p-v) \mathrm{e}^{-\mathrm{i} \sigma \mathrm{~W}_{\gamma_{1}}(a, p)} \mu^{-\ell\left(\gamma_{1}\right)}\left(\mathrm{e}^{\mathrm{i} \frac{2 \pi}{3}} \mathrm{e}^{-\mathrm{i} \sigma \cdot \frac{-4 \pi}{3}}+\mathrm{e}^{-\mathrm{i} \frac{2 \pi}{3}} \mathrm{e}^{-\mathrm{i} \sigma \cdot \frac{4 \pi}{3}}\right)
\end{aligned}
$$

- We write $c(\gamma)$ for the contribution of the walk γ to the sum.
- One can partition the set of walks γ finishing at p, q or r into pairs and triplets of walks:

In the first case, providing $\sigma:=\frac{5}{8}$,

$$
\begin{aligned}
c\left(\gamma_{1}\right)+c\left(\gamma_{2}\right) & =(q-v) \mathrm{e}^{-\mathrm{i} \sigma \mathrm{~W}_{\gamma_{1}}(\mathrm{a}, q)} \mu^{-\ell\left(\gamma_{1}\right)}+(r-v) \mathrm{e}^{-\mathrm{i} \sigma \mathrm{~W}_{\gamma_{2}}(a, r)} \mu^{-\ell\left(\gamma_{2}\right)} \\
& =(p-v) \mathrm{e}^{-\mathrm{i} \frac{5}{8} \mathrm{~W}_{\gamma_{1}}(a, p)} \mu^{-\ell\left(\gamma_{1}\right)}\left(\mathrm{e}^{\mathrm{i} \frac{2 \pi}{3}} \mathrm{e}^{-\mathrm{i} \frac{5}{8} \cdot \frac{-4 \pi}{3}}+\mathrm{e}^{-\mathrm{i} \frac{2 \pi}{3}} \mathrm{e}^{-\mathrm{i} \frac{5}{8} \cdot \frac{4 \pi}{3}}\right)=0
\end{aligned}
$$

- We write $c(\gamma)$ for the contribution of the walk γ to the sum.

One can partition the set of walks γ finishing at p, q or r into pairs and triplets of walks:

In the first case, providing $\sigma:=\frac{5}{8}$,

$$
\begin{aligned}
c\left(\gamma_{1}\right)+c\left(\gamma_{2}\right) & =(q-v) \mathrm{e}^{-\mathrm{i} \sigma \mathrm{~W}_{\gamma_{1}}(a, q)} \mu^{-\ell\left(\gamma_{1}\right)}+(r-v) \mathrm{e}^{-\mathrm{i} \sigma \mathrm{~W}_{\gamma_{2}}(a, r)} \mu^{-\ell\left(\gamma_{2}\right)} \\
& =(p-v) \mathrm{e}^{-\mathrm{i} \frac{5}{8} \mathrm{~W}_{\gamma_{1}}(a, p)} \mu^{-\ell\left(\gamma_{1}\right)}\left(\mathrm{e}^{\mathrm{i} \frac{2 \pi}{3}} \mathrm{e}^{-\mathrm{i} \frac{5}{8} \cdot \frac{-4 \pi}{3}}+\mathrm{e}^{-\mathrm{i} \frac{2 \pi}{3}} \mathrm{e}^{-\mathrm{i} \frac{5}{8} \cdot \frac{4 \pi}{3}}\right)=0
\end{aligned}
$$

In the second case,

$$
\begin{aligned}
& c\left(\gamma_{1}\right)+c\left(\gamma_{2}\right)+c\left(\gamma_{3}\right) \\
& =(p-v) \mathrm{e}^{-\mathrm{i} \sigma \mathrm{~W}_{\gamma_{1}}(a, p)} \mu^{-\ell\left(\gamma_{1}\right)}\left(1+\mu^{-1} \mathrm{e}^{\mathrm{i} \frac{\pi}{3}} \mathrm{e}^{-\mathrm{i} \frac{5}{8} \cdot \frac{-\pi}{3}}+\mu^{-1} \mathrm{e}^{-\mathrm{i} \frac{2 \pi}{3}} \mathrm{e}^{-\mathrm{i} \frac{5}{8} \cdot \frac{\pi}{3}}\right) .
\end{aligned}
$$

- We write $c(\gamma)$ for the contribution of the walk γ to the sum.
- One can partition the set of walks γ finishing at p, q or r into pairs and triplets of walks:

In the first case, providing $\sigma:=\frac{5}{8}$,

$$
\begin{aligned}
c\left(\gamma_{1}\right)+c\left(\gamma_{2}\right) & =(q-v) \mathrm{e}^{-\mathrm{i} \sigma \mathrm{~W}_{\gamma_{1}}(\mathrm{a}, q)} \mu^{-\ell\left(\gamma_{1}\right)}+(r-v) \mathrm{e}^{-\mathrm{i} \sigma \mathrm{~W}_{\gamma_{2}}(a, r)} \mu^{-\ell\left(\gamma_{2}\right)} \\
& =(p-v) \mathrm{e}^{-\mathrm{i} \frac{5}{8} \mathrm{~W}_{\gamma_{1}}(a, p)} \mu^{-\ell\left(\gamma_{1}\right)}\left(\mathrm{e}^{\mathrm{i} \frac{2 \pi}{3}} \mathrm{e}^{-\mathrm{i} \frac{5}{8} \cdot \frac{-4 \pi}{3}}+\mathrm{e}^{-\mathrm{i} \frac{2 \pi}{3}} \mathrm{e}^{-\mathrm{i} \frac{5}{8} \cdot \frac{4 \pi}{3}}\right)=0
\end{aligned}
$$

In the second case, providing $\mu:=\sqrt{2+\sqrt{2}}$,

$$
\begin{aligned}
& c\left(\gamma_{1}\right)+c\left(\gamma_{2}\right)+c\left(\gamma_{3}\right) \\
& =(p-v) \mathrm{e}^{-\mathrm{i} \sigma \mathrm{~W}_{\gamma_{1}}(a, p)} \mu^{-\ell\left(\gamma_{1}\right)}\left(1+\mu^{-1} \mathrm{e}^{\mathrm{i} \frac{2 \pi}{3}} \mathrm{e}^{-\mathrm{i} \frac{5}{8} \cdot \frac{-\pi}{3}}+\mu^{-1} \mathrm{e}^{-\mathrm{i} \frac{2 \pi}{3}} \mathrm{e}^{-\mathrm{i} \frac{5}{8} \cdot \frac{\pi}{3}}\right)=0 .
\end{aligned}
$$

- We write $c(\gamma)$ for the contribution of the walk γ to the sum.
- One can partition the set of walks γ finishing at p, q or r into pairs and triplets of walks:

In the first case, providing $\sigma:=\frac{5}{8}$,

$$
\begin{aligned}
c\left(\gamma_{1}\right)+c\left(\gamma_{2}\right) & =(q-v) \mathrm{e}^{-\mathrm{i} \sigma \mathrm{~W}_{\gamma_{1}}(\mathrm{a}, q)} \mu^{-\ell\left(\gamma_{1}\right)}+(r-v) \mathrm{e}^{-\mathrm{i} \sigma \mathrm{~W}_{\gamma_{2}}(a, r)} \mu^{-\ell\left(\gamma_{2}\right)} \\
& =(p-v) \mathrm{e}^{-\mathrm{i} \frac{5}{8} \mathrm{~W}_{\gamma_{1}}(a, p)} \mu^{-\ell\left(\gamma_{1}\right)}\left(\mathrm{e}^{\mathrm{i} \frac{2 \pi}{3}} \mathrm{e}^{-\mathrm{i} \frac{5}{8} \cdot \frac{-4 \pi}{3}}+\mathrm{e}^{-\mathrm{i} \frac{2 \pi}{3}} \mathrm{e}^{-\mathrm{i} \frac{5}{8} \cdot \frac{4 \pi}{3}}\right)=0
\end{aligned}
$$

In the second case, providing $\mu:=\sqrt{2+\sqrt{2}}$,

$$
\begin{aligned}
& c\left(\gamma_{1}\right)+c\left(\gamma_{2}\right)+c\left(\gamma_{3}\right) \\
& =(p-v) \mathrm{e}^{-\mathrm{i} \sigma \mathrm{~W}_{\gamma_{1}}(a, p)} \mu^{-\ell\left(\gamma_{1}\right)}\left(1+\mu^{-1} \mathrm{e}^{\mathrm{i} \frac{2 \pi}{3}} \mathrm{e}^{-\mathrm{i} \frac{5}{8} \cdot \frac{-\pi}{3}}+\mu^{-1} \mathrm{e}^{-\mathrm{i} \frac{2 \pi}{3}} \mathrm{e}^{-\mathrm{i} \frac{5}{8} \cdot \frac{\pi}{3}}\right)=0 .
\end{aligned}
$$

If we consider the exterior boundary of the domain, we obtain
When $\sigma=\frac{5}{8}$ and $\mu=\sqrt{2+\sqrt{2}}$, we have

$$
0=-\sum_{z \in \text { bottom }} F(z)+\sum_{z \in \text { top }} F(z)+\mathrm{e}^{\mathrm{i} \frac{2 \pi}{3}} \sum_{z \in \text { left }} F(z)+\mathrm{e}^{-\mathrm{i} \frac{2 \pi}{3}} \sum_{z \in \text { right }} F(z)
$$

If we consider the exterior boundary of the domain, we obtain
When $\sigma=\frac{5}{8}$ and $\mu=\sqrt{2+\sqrt{2}}$, we have

$$
0=-\sum_{z \in \text { bottom }} F(z)+\sum_{z \in \text { top }} F(z)+\mathrm{e}^{\mathrm{i} \frac{2 \pi}{3}} \sum_{z \in \text { left }} F(z)+\mathrm{e}^{-\mathrm{i} \frac{2 \pi}{3}} \sum_{z \in \text { right }} F(z)
$$

-

We know the winding on the boundary! Thus, we can replace F by the sum of Boltzman weights.

If we consider the exterior boundary of the domain, we obtain
When $\sigma=\frac{5}{8}$ and $\mu=\sqrt{2+\sqrt{2}}$, we have
$1=\cos \left(\frac{3 \pi}{8}\right) \sum_{\gamma: a \rightarrow \text { bottom }} \mu^{-\ell(\gamma)}+\sum_{\gamma: a \rightarrow \text { top }} \mu^{-\ell(\gamma)}+\cos \left(\frac{\pi}{4}\right) \sum_{\gamma: a \rightarrow \text { sides }} \mu^{-\ell(\gamma)}$.

We know the winding on the boundary! Thus, we can replace F by the sum of Boltzman weights.

If we consider the exterior boundary of the domain, we obtain
When $\sigma=\frac{5}{8}$ and $\mu=\sqrt{2+\sqrt{2}}$, we have

$$
1=\cos \left(\frac{3 \pi}{8}\right) \sum_{\gamma: a \rightarrow \text { bottom }} \mu^{-\ell(\gamma)}+\sum_{\gamma: a \rightarrow \text { top }} \mu^{-\ell(\gamma)} .
$$

We know the winding on the boundary! Thus, we can replace F by the sum of Boltzman weights.

If we consider the exterior boundary of the domain, we obtain
When $\sigma=\frac{5}{8}$ and $\mu=\sqrt{2+\sqrt{2}}$, we have
We know the winding on the boundary! Thus, we can replace F by the sum of Boltzman weights.

- The result follows from this combinatorial relation.

$$
\mu_{c}(\mathbb{H}) \leq \sqrt{2+\sqrt{2}}
$$

$$
\mu_{c}(\mathbb{H}) \leq \sqrt{2+\sqrt{2}}
$$

When $\mu=\sqrt{2+\sqrt{2}}$,

$$
1=\cos \left(\frac{3 \pi}{8}\right) \sum_{\gamma: a \rightarrow b \text { bttom }} \mu^{-\ell(\gamma)}+\sum_{\gamma: a \rightarrow \text { top }} \mu^{-\ell(\gamma)}
$$

implies that $\sum_{\gamma: a \rightarrow \text { top }} \mu^{-\ell(\gamma)} \leq 1$.

$$
\mu_{c}(\mathbb{H}) \leq \sqrt{2+\sqrt{2}}
$$

When $\mu=\sqrt{2+\sqrt{2}}$,

$$
1=\cos \left(\frac{3 \pi}{8}\right) \sum_{\gamma: a \rightarrow \text { bottom }} \mu^{-\ell(\gamma)}+\sum_{\gamma: a \rightarrow \text { top }} \mu^{-\ell(\gamma)}
$$

implies that $\sum_{\gamma: a \rightarrow \text { top }} \mu^{-\ell(\gamma)} \leq 1$.
Therefore, the number of walks $b_{n, T}$ of length n and height T never going below their start and above their end satisfies $b_{n, T} \leq \mu^{n}$.

$$
\mu_{c}(\mathbb{H}) \leq \sqrt{2+\sqrt{2}}
$$

When $\mu=\sqrt{2+\sqrt{2}}$,

$$
1=\cos \left(\frac{3 \pi}{8}\right) \sum_{\gamma: a \rightarrow \text { bottom }} \mu^{-\ell(\gamma)}+\sum_{\gamma: a \rightarrow t o p} \mu^{-\ell(\gamma)}
$$

implies that $\sum_{\gamma: a \rightarrow \text { top }} \mu^{-\ell(\gamma)} \leq 1$.
Therefore, the number of walks $b_{n, T}$ of length n and height T never going below their start and above their end satisfies $b_{n, T} \leq \mu^{n}$.

Summing over $T \leq n$, the number of walks b_{n} of length n never going below their start and above their end satisfies $b_{n} \leq n \mu^{n}$.

$$
\mu_{c}(\mathbb{H}) \leq \sqrt{2+\sqrt{2}}
$$

When $\mu=\sqrt{2+\sqrt{2}}$,

$$
1=\cos \left(\frac{3 \pi}{8}\right) \sum_{\gamma: a \rightarrow \text { bottom }} \mu^{-\ell(\gamma)}+\sum_{\gamma: a \rightarrow t o p} \mu^{-\ell(\gamma)}
$$

implies that $\sum_{\gamma: a \rightarrow \text { top }} \mu^{-\ell(\gamma)} \leq 1$.
Therefore, the number of walks $b_{n, T}$ of length n and height T never going below their start and above their end satisfies $b_{n, T} \leq \mu^{n}$.

Summing over $T \leq n$, the number of walks b_{n} of length n never going below their start and above their end satisfies $b_{n} \leq n \mu^{n}$.

The number of such walks is the same (at the exponential scale) as the number of unconstrained walks (use an unfolding argument). Therefore,

$$
\mu_{c}(\mathbb{H})^{n+o(n)}=b_{n} \leq n \mu^{n}
$$

$$
\mu_{c} \geq \sqrt{2+\sqrt{2}}
$$

$$
\mu_{c} \geq \sqrt{2+\sqrt{2}}
$$

Let $C_{T}=\sum_{\gamma: a \rightarrow \text { top }} \mu^{-\ell(\gamma)}$ and $A_{T}=\sum_{\gamma: a \rightarrow \text { bottom }} \mu^{-\ell(\gamma)}$ in the strip of height T. With these notations, the relation

$$
1=\cos \left(\frac{3 \pi}{8}\right) \sum_{\gamma: a \rightarrow \text { bottom }} \mu^{-\ell(\gamma)}+\sum_{\gamma: a \rightarrow \text { top }} \mu^{-\ell(\gamma)}
$$

reads $1=\cos \left(\frac{3 \pi}{8}\right) A_{T}+C_{T}$.

$$
\mu_{c} \geq \sqrt{2+\sqrt{2}}
$$

Let $C_{T}=\sum_{\gamma: a \rightarrow \text { top }} \mu^{-\ell(\gamma)}$ and $A_{T}=\sum_{\gamma: a \rightarrow \text { bottom }} \mu^{-\ell(\gamma)}$ in the strip of height T. With these notations, the relation

$$
1=\cos \left(\frac{3 \pi}{8}\right) \sum_{\gamma: a \rightarrow \text { bottom }} \mu^{-\ell(\gamma)}+\sum_{\gamma: a \rightarrow \text { top }} \mu^{-\ell(\gamma)}
$$

reads $1=\cos \left(\frac{3 \pi}{8}\right) A_{T}+C_{T}$.

- Subtracting the relation for T and $T+1$, we obtain:

$$
C_{T}-C_{T+1}=\cos \left(\frac{3 \pi}{8}\right)\left(A_{T+1}-A_{T}\right) .
$$

$$
\mu_{c} \geq \sqrt{2+\sqrt{2}}
$$

Let $C_{T}=\sum_{\gamma: a \rightarrow \text { top }} \mu^{-\ell(\gamma)}$ and $A_{T}=\sum_{\gamma: a \rightarrow \text { bottom }} \mu^{-\ell(\gamma)}$ in the strip of height T. With these notations, the relation

$$
1=\cos \left(\frac{3 \pi}{8}\right) \sum_{\gamma: a \rightarrow b o t t o m} \mu^{-\ell(\gamma)}+\sum_{\gamma: a \rightarrow \text { top }} \mu^{-\ell(\gamma)}
$$

reads $1=\cos \left(\frac{3 \pi}{8}\right) A_{T}+C_{T}$.

- Subtracting the relation for T and $T+1$, we obtain:

$$
C_{T}-C_{T+1}=\cos \left(\frac{3 \pi}{8}\right)\left(A_{T+1}-A_{T}\right) .
$$

- Yet, $A_{T+1}-A_{T} \leq C_{T}^{2}$ since we can make two bridges from one arc of height $m+1$, thus:

$$
\mu_{c} \geq \sqrt{2+\sqrt{2}}
$$

Let $C_{T}=\sum_{\gamma: a \rightarrow \text { top }} \mu^{-\ell(\gamma)}$ and $A_{T}=\sum_{\gamma: a \rightarrow \text { bottom }} \mu^{-\ell(\gamma)}$ in the strip of height T. With these notations, the relation

$$
1=\cos \left(\frac{3 \pi}{8}\right) \sum_{\gamma: a \rightarrow \text { bottom }} \mu^{-\ell(\gamma)}+\sum_{\gamma: a \rightarrow \text { top }} \mu^{-\ell(\gamma)}
$$

reads $1=\cos \left(\frac{3 \pi}{8}\right) A_{T}+C_{T}$.

- Subtracting the relation for T and $T+1$, we obtain:

$$
C_{T}-C_{T+1}=\cos \left(\frac{3 \pi}{8}\right)\left(A_{T+1}-A_{T}\right) .
$$

- Yet, $A_{T+1}-A_{T} \leq C_{T}^{2}$ since we can make two bridges from one arc of height $m+1$, thus:
- $C_{T}-C_{T+1} \leq \cos \left(\frac{3 \pi}{8}\right) C_{T}^{2}$ and $C_{T} \geq \frac{c}{T}$ for large T. But

$$
C_{T} \leq \sum_{n \geq T} b_{n} \mu^{-n}
$$

Thus, $b_{n} \mu^{-n}$ cannot decay exponentially fast!

$$
\mu_{c} \geq \sqrt{2+\sqrt{2}}
$$

Let $C_{T}=\sum_{\gamma: a \rightarrow \text { top }} \mu^{-\ell(\gamma)}$ and $A_{T}=\sum_{\gamma: a \rightarrow \text { bottom }} \mu^{-\ell(\gamma)}$ in the strip of height T. With these notations, the relation

$$
1=\cos \left(\frac{3 \pi}{8}\right) \sum_{\gamma: a \rightarrow \text { bottom }} \mu^{-\ell(\gamma)}+\sum_{\gamma: a \rightarrow \text { top }} \mu^{-\ell(\gamma)}
$$

reads $1=\cos \left(\frac{3 \pi}{8}\right) A_{T}+C_{T}$.

- Subtracting the relation for T and $T+1$, we obtain:

$$
C_{T}-C_{T+1}=\cos \left(\frac{3 \pi}{8}\right)\left(A_{T+1}-A_{T}\right) .
$$

- Yet, $A_{T+1}-A_{T} \leq C_{T}^{2}$ since we can make two bridges from one arc of height $m+1$, thus:
- $C_{T}-C_{T+1} \leq \cos \left(\frac{3 \pi}{8}\right) C_{T}^{2}$ and $C_{T} \geq \frac{c}{T}$ for large T. But

$$
C_{T} \leq \sum_{n \geq T} b_{n} \mu^{-n}
$$

Thus, $b_{n} \mu^{-n}$ cannot decay exponentially fast!

Concluding words

- Similar discrete holomorphic observables for $O(n)$ models and other models of planar statistical physics (percolation, Ising, Potts, dimers, loop-erased random walk, harmonic explorer).

Concluding words

- Similar discrete holomorphic observables for $O(n)$ models and other models of planar statistical physics (percolation, Ising, Potts, dimers, loop-erased random walk, harmonic explorer).
- A method via discrete holomorphicity is available for FK percolation as well, but it is rigorous only for $q \geq 4$ (Beffara, D-C, Smirnov, 2012).

Concluding words

- Similar discrete holomorphic observables for $O(n)$ models and other models of planar statistical physics (percolation, Ising, Potts, dimers, loop-erased random walk, harmonic explorer).
- A method via discrete holomorphicity is available for FK percolation as well, but it is rigorous only for $q \geq 4$ (Beffara, D-C, Smirnov, 2012).
- The method by discrete holomorphicity provides more information on the critical phase, which is of great interest for mathematicians and physicists (see example of the Ising model and the FK percolation with cluster-weight $q=2$).

Concluding words

- Similar discrete holomorphic observables for $O(n)$ models and other models of planar statistical physics (percolation, Ising, Potts, dimers, loop-erased random walk, harmonic explorer).
- A method via discrete holomorphicity is available for FK percolation as well, but it is rigorous only for $q \geq 4$ (Beffara, D-C, Smirnov, 2012).
- The method by discrete holomorphicity provides more information on the critical phase, which is of great interest for mathematicians and physicists (see example of the Ising model and the FK percolation with cluster-weight $q=2$).
- The method by sharp threshold is more general and applies to a wide variety of models.

Thank you

