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Statistical physics: Study of physical systems with many particles
via probability techniques.

How do interactions between particles at a microscopic level lead to
different behaviors of the model macroscopically?

We are particularly interested in their phase transition and the
behavior at the critical point.
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TO DO

I. Why is there a phase transition?

II. Computation of the critical point via self-duality (the
example of the FK percolation)

III. Computation of the critical point via discrete
holomorphicity (the example of the SAW)
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Hugo Duminil-Copin, Université de Genève Computation of critical points for planar statistical physics models



TO DO

I. Why is there a phase transition?

II. Computation of the critical point via self-duality (the
example of the FK percolation)

III. Computation of the critical point via discrete
holomorphicity (the example of the SAW)
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Hugo Duminil-Copin, Université de Genève Computation of critical points for planar statistical physics models



Warm up: the case of Bernoulli percolation (1)

Each edge of Z2 is open with probability p, and closed with
probability 1− p. The subgraph obtained by keeping all the
vertices and the open edges is called a configuration ωp.

This model undergoes a phase transition at some pc ∈ (0, 1):
I when p < pc , φp(0←→∞) = 0,
I when p > pc , φp(0←→∞) > 0.
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Warm up: the case of Bernoulli percolation (2)

Proof of the existence of a critical point. Main difficulty:
compare φp(0↔∞) with φp′(0↔∞) for p ≤ p′.

Construct ωp and ωp′ on the same probability space.

1. Assign to each edge e a uniform random variable Ue on [0, 1]

2. e is open in ωp iff Ue ≤ p.

3. e is open in ωp′ iff Ue ≤ p′ (same Ue as before).

pc = inf{p ∈ [0, 1] : φp(0↔∞) > 0} = sup{p ∈ [0, 1] : φp(0↔∞) = 0}

Remains to prove that pc > 0 and pc < 1 (Peirls argument which
is combinatorial in nature).
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Harder case: Ising model

Assign to each site outside [−n, n]2 the spin +1 and each site of [−n, n]2

a spin +1 or −1 according to the following probability measure:

E (σ) :=
∑
x∼y
−σxσy .

Then P+
T ,2,n[σ] ∝ exp(−E (σ)/T ). This model undergoes a phase

transition at some critical temperature Tc :

For T > Tc , P+
T ,2,n[σ0 = +] tends to 1

2 as n→∞

For T < Tc , P+
T ,2,n[σ0 = +] tends to 1+M(T )

2 > 1
2 as n→∞
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Harder case: Potts model

Assign to each site outside [−n, n]2 the color red and each site of [−n, n]2

a color amongst q colors according to the following probability measure:

E (σ) := number disagreeing neighbors.

Then P+
T ,q,n[σ] ∝ exp(−E (σ)/T ). This model undergoes a phase

transition at some critical temperature Tc(q):

For T > Tc(q), P+
T ,q,n[σ0 = red ] tends to 1

q as n→∞

For T < Tc(q), P+
T ,q,n[σ0 = red ] tends to 1+M(T )

q > 1
q as n→∞
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One model to rule them all: FK percolation (1)

We rather study a geometric representation of the Potts model, called
the FK percolation model. This percolation model has the following
distribution:

φp(ω) := p#open edges(1− p)#closed edges

Similarly to the Bernoulli percolation case, there exists an increasing
coupling at fixed q ≥ 1 and there exists a critical value pc(q).

Coupling with the Potts model: consider a FK percolation with
parameters q and p = 1− e−2/T and color each clusters uniformly
at random, except those touching the boundary which receive red.
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The coupling provides us with a dictionary between properties of FK
percolation and spin models. For instance,

PT ,q,n[σ0 = red] = φp(T ),q,n

(
0↔ ∂[−n, n]2

)
+

1

q
φp(T ),q,n

(
0 6↔ ∂[−n, n]2

)

As a consequence, the transition exists and 1− pc(q) = e−2/Tc (q).

Conclusion: Using couplings, one can prove the existence of a
phase transition for percolation and spin models.

Question: Can we compute these critical points?

It is sufficient to compute pc(q) for FK percolation with q ≥ 1
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A first guess for pc(q)

A dual model can be defined on a dual graph:

type 1: open

type 2: closed

For Bernoulli percolation, it is a Bernoulli percolation with p?

defined by p? = 1− p.
For FK percolation, it is a FK percolation with p? and q?

defined by

q? = q and
pp?

(1− p)(1− p?)
= q.

If p? = p, i.e. p = psd =
√

q/(1 +
√

q), the primal and dual
models play symmetric roles.

For instance, φpsd ,q,n(An) = 1
2 .
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Hugo Duminil-Copin, Université de Genève Computation of critical points for planar statistical physics models



The derivative of an event is governed by the influence of
isolated sites.

Proposition (Margulis/Russo’s formula)

For any increasing event A,

φp+ε[A]− φp[A] = P[ωp+ε ∈ A and ωp /∈ A]

=

(∑
e∈E

φp(ωe ∈ A and ωe /∈ A)

)
ε+ o(ε).

At least one site must have a ’large’ influence when the event
has probability away from 0 and 1.

Theorem (Kahn, Kalai & Linial 1988 – Bourgain, K., K.,
Katznelson & L. 1992)

For every increasing event A on the graph [−n, n]2,

max
e∈E

φp(ωe ∈ A and ωe /∈ A) ≥ c φp[A]
(
1− φp[A]

) log n

n2
.
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For every increasing event A on the graph [−n, n]2,

max
e∈E

φp(ωe ∈ A and ωe /∈ A) ≥ c φp[A]
(
1− φp[A]

) log n

n2
.
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1 By duality, φ1/2(An) = 1
2 .

2 By sharp threshold arguments and invariance by translation,

d

dp
φp[An] ≥ cφp[An]

(
1− φp[An]

)
log n.

3 By integrating the differential inequality with respect to p,

φp[An] decays fast (as n tends to ∞) when p < 1
2 .

φp[An] tends fast to 1 (as n tends to ∞) when p > 1
2 .

4 If φp(An) ≥ 1− ε (resp. ≤ ε), then p > pc (resp. p < pc).

The difficulty lies mostly in this last step!

But it applies to q > 1 as well!
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Theorem (Beffara, D-C, 2010)

The critical point pc(q) of the FK percolation on the square lattice
satisfies

pc(q) =

√
q

1 +
√

q
.

Corollary (Beffara, D-C, 2010)

The critical temperature of the square lattice q-state Potts model
satisfies

Tc(q) =
2

ln(1 +
√

q)
.

Conclusion: This general philosophy has been very successful
thanks to its robustness. Ongoing works suggest that this
approach can be implemented for a wide class of models, known as
positively correlated models, which are natural candidates for
geometric representations of spin models.
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TO DO

I. Why is there a phase transition?

II. Computation of the critical point via self-duality (the
example of the FK percolation)

III. Computation of the critical point via discrete
integrability (the example of the SAW)
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On a lattice (for instance hexagonal H), consider self-avoiding
trajectories (or walks) of length n (the length is denoted by `(γ))
starting at the origin. Introduced by Flory and Ott in the ’50s.

0

Combinatorial question: What is the asymptotic behavior
of the number of self-avoiding walks of length n?
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Proposition

Let cn := # SAW of length n. Then, cn = µ
n+o(n)
c , where µc is the

connective constant.

For any n,m,
cn+m ≤ cncm

so that the sequence is sub-multiplicative.

We have the obvious bounds:

√
2
n ≤ cn ≤ 3 · 2n−1.

The foundamental subadditive lemma of Fekete implies the result.
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Hugo Duminil-Copin, Université de Genève Computation of critical points for planar statistical physics models



Proposition

Let cn := # SAW of length n. Then, cn = µ
n+o(n)
c , where µc is the

connective constant.

For any n,m,
cn+m ≤ cncm

so that the sequence is sub-multiplicative.

We have the obvious bounds:

√
2
n ≤ cn ≤ 3 · 2n−1.

The foundamental subadditive lemma of Fekete implies the result.
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The connective constant µc as a critical parameter?

For δ > 0, we define a probability measure on self-avoiding paths
from aδ to bδ by assigning a weight proportional to µ−`(γ). When
δ → 0, we are interested in the limit of this sequence of random
continuous curves (scaling limit).

Theorem (Ioffe, 1998)

For µ > µc , the scaling limit of the SAW is a line.
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The connective constant µc as a critical parameter?

δ Dδγδ

aδ

bδ

For δ > 0, we define a probability measure on self-avoiding paths
from aδ to bδ by assigning a weight proportional to µ−`(γ). When
δ → 0, we are interested in the limit of this sequence of random
continuous curves (scaling limit).

Theorem (D.-C., Kozma, Yadin, 2012)

For µ < µc , the scaling limit of the SAW is space filling.
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The connective constant µc as a critical parameter?

a

b

D
γ SLE8/3

For δ > 0, we define a probability measure on self-avoiding paths
from aδ to bδ by assigning a weight proportional to µ−`(γ). When
δ → 0, we are interested in the limit of this sequence of random
continuous curves (scaling limit).

Conjecture (Lawler, Schramm, Werner, 2001)

For µ = µc , the scaling limit of the SAW is SLE(8/3)

which is
conformally invariant.
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The connective constant µc as a critical parameter?

a

b

D
γ

Φ conformal

Φ(a)

Φ(b)

Φ(D)

Φ(γ)

γ′

For δ > 0, we define a probability measure on self-avoiding paths
from aδ to bδ by assigning a weight proportional to µ−`(γ). When
δ → 0, we are interested in the limit of this sequence of random
continuous curves (scaling limit).

Conjecture (Lawler, Schramm, Werner, 2001)

For µ = µc , the scaling limit of the SAW is SLE(8/3) which is
conformally invariant.
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1000 steps Self-avoiding walk and SLE(8/3)

Theorem (D-C, Smirnov, 2010),

conjectured by Nienhuis (1980)

The connective constant µc of the hexagonal lattice satisfies

µc := limn→∞ c
1
n

n =
√

2 +
√

2.
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1000 steps Self-avoiding walk and SLE(8/3)

Theorem (D-C, Smirnov, 2010), conjectured by Nienhuis (1980)

The connective constant µc of the hexagonal lattice satisfies

cn ∼ An11/32
√

2 +
√

2
n

as n −→∞
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We restrict our attention to finite domains D and we weight walks
by µ−`(γ) times a topological term depending on the winding.

mid-edge

a

G

z

Definition

The winding WΓ(a, b) of a curve Γ between a and b is the rotation (in
radians) of the curve between a and b.

The parafermionic operator at a mid-point z ∈ D is defined by

F (z) :=
∑

γ⊂D: a→z

µ−`(γ).
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We restrict our attention to finite domains D and we weight walks
by µ−`(γ) times a topological term depending on the winding.

mid-edge

a

G

z

Definition

The winding WΓ(a, b) of a curve Γ between a and b is the rotation (in
radians) of the curve between a and b.

The parafermionic operator at a mid-point z ∈ D is defined by

F (z) :=
∑

γ⊂D: a→z

e−iσWγ(a,z)µ−`(γ).
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Lemma (Local relation around a vertex)

If σ = 5
8 and µ =

√
2 +
√

2, then F satisfies the following relation for
every vertex v ∈ V (D),

(p − v)F (p) + (q − v)F (q) + (r − v)F (r) = 0

where p, q, r are the mid-edges of the three edges adjacent to v.

This relation means that
∮

F (z)dz = 0 along the contour

q

r
v p

Proposition (Discrete holomorphicity)

If D is simply connected, then
∮
γ

F (z)dz = 0 for any discrete contour γ.
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Hugo Duminil-Copin, Université de Genève Computation of critical points for planar statistical physics models



Lemma (Local relation around a vertex)

If σ = 5
8 and µ =

√
2 +
√

2, then F satisfies the following relation for
every vertex v ∈ V (D),

(p − v)F (p) + (q − v)F (q) + (r − v)F (r) = 0

where p, q, r are the mid-edges of the three edges adjacent to v.

This relation means that
∮

F (z)dz = 0 along the contour

q

r
v p

Proposition (Discrete holomorphicity)

If D is simply connected, then
∮
γ

F (z)dz = 0 for any discrete contour γ.
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We write c(γ) for the contribution of the walk γ to the sum.

One can partition the set of walks γ finishing
at p, q or r into pairs and triplets of walks:

γ1 γ2 γ1 γ2 γ3

In the first case,

c(γ1) + c(γ2) = (q − v)e−iσWγ1
(a,q)µ−`(γ1) + (r − v)e−iσWγ2

(a,r)µ−`(γ2)

= (p − v)e−iσWγ1
(a,p)µ−`(γ1)

(
ei

2π
3 e−iσ·

−4π
3 + e−i

2π
3 e−iσ·

4π
3

)
In the second case,

c(γ1) + c(γ2) + c(γ3)

= (p − v)e−iσWγ1
(a,p)µ−`(γ1)

(
1 + µ−1ei

2π
3 e−i

5
8 ·

−π
3 + µ−1e−i

2π
3 e−i

5
8 ·

π
3

)
.
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Hugo Duminil-Copin, Université de Genève Computation of critical points for planar statistical physics models



We write c(γ) for the contribution of the walk γ to the sum.

One can partition the set of walks γ finishing
at p, q or r into pairs and triplets of walks:

γ1 γ2 γ1 γ2 γ3

In the first case, providing σ := 5
8 ,

c(γ1) + c(γ2) = (q − v)e−iσWγ1
(a,q)µ−`(γ1) + (r − v)e−iσWγ2

(a,r)µ−`(γ2)

= (p − v)e−i
5
8 Wγ1

(a,p)µ−`(γ1)
(
ei

2π
3 e−i

5
8 ·

−4π
3 + e−i

2π
3 e−i

5
8 ·

4π
3

)
= 0

In the second case,

c(γ1) + c(γ2) + c(γ3)

= (p − v)e−iσWγ1
(a,p)µ−`(γ1)

(
1 + µ−1ei

2π
3 e−i

5
8 ·

−π
3 + µ−1e−i

2π
3 e−i

5
8 ·

π
3

)
.
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8 ,

c(γ1) + c(γ2) = (q − v)e−iσWγ1
(a,q)µ−`(γ1) + (r − v)e−iσWγ2

(a,r)µ−`(γ2)

= (p − v)e−i
5
8 Wγ1

(a,p)µ−`(γ1)
(
ei

2π
3 e−i

5
8 ·

−4π
3 + e−i

2π
3 e−i

5
8 ·

4π
3

)
= 0

In the second case, providing µ :=
√

2 +
√

2,

c(γ1) + c(γ2) + c(γ3)

= (p − v)e−iσWγ1
(a,p)µ−`(γ1)

(
1 + µ−1ei

2π
3 e−i

5
8 ·

−π
3 + µ−1e−i

2π
3 e−i

5
8 ·

π
3

)
= 0.
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0

ST,L

a

T cells

L cells

If we consider the exterior boundary of the domain, we obtain

When σ = 5
8 and µ =

√
2 +
√

2, we have

0 = −
∑

z∈bottom

F (z) +
∑
z∈top

F (z) + ei
2π
3

∑
z∈left

F (z) + e−i
2π
3

∑
z∈right

F (z)

We know the winding on the boundary! Thus, we can replace F by
the sum of Boltzman weights.

The result follows from this combinatorial relation.
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3π

8
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4
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µc(H) ≤
√

2 +
√

2

When µ =
√

2 +
√

2,

1 = cos

(
3π

8

) ∑
γ:a→bottom

µ−`(γ) +
∑

γ:a→top

µ−`(γ)

implies that
∑
γ:a→top µ

−`(γ) ≤ 1.

Therefore, the number of walks bn,T of length n and height T never
going below their start and above their end satisfies bn,T ≤ µ n.

Summing over T ≤ n, the number of walks bn of length n never going
below their start and above their end satisfies bn ≤ nµ n.

The number of such walks is the same (at the exponential scale) as the
number of unconstrained walks (use an unfolding argument). Therefore,

µc(H)n+o(n) = bn ≤ nµ n.
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µc ≥
√

2 +
√

2

Let CT =
∑
γ:a→top µ

−`(γ) and AT =
∑
γ:a→bottom µ

−`(γ) in the strip
of height T . With these notations, the relation

1 = cos
(

3π
8

) ∑
γ:a→bottom

µ−`(γ) +
∑

γ:a→top

µ−`(γ).

reads 1 = cos
(

3π
8

)
AT + CT .

Subtracting the relation for T and T + 1, we obtain:

CT − CT+1 = cos
(

3π
8

)
(AT+1 − AT ).

Yet, AT+1 − AT ≤ C 2
T since we can make two bridges from one arc

of height m + 1, thus:

CT − CT+1 ≤ cos
(

3π
8

)
C 2
T and CT ≥ c

T for large T .

But
CT ≤

∑
n≥T

bnµ
−n.

Thus, bnµ
−n cannot decay exponentially fast!
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Concluding words

Similar discrete holomorphic observables for O(n) models and
other models of planar statistical physics (percolation, Ising, Potts,
dimers, loop-erased random walk, harmonic explorer).

A method via discrete holomorphicity is available for FK percolation
as well, but it is rigorous only for q ≥ 4 (Beffara, D-C, Smirnov,
2012).

The method by discrete holomorphicity provides more information
on the critical phase, which is of great interest for mathematicians
and physicists (see example of the Ising model and the FK
percolation with cluster-weight q = 2).

The method by sharp threshold is more general and applies to a
wide variety of models.
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Thank you
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