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TYPICAL PROBLEM

Given: observations Z (si , tj) at a finite number locations

si , i = 1, . . . , I and time points tj , j = 1, . . . , J .

Desired: predictive distribution for the unknown value Z (s0, t0) at the

space-time coordinate (s0, t0).

Focus: continuous space and continuous time which allow for

prediction and interpolation at any location and any time.

Z (s, t), (s, t) ∈ D × T , where D ⊆ ℜd , T ⊆ ℜ
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EXAMPLE: IRISH WIND DATA

[HASLETT AND RAFTERY, 1989]

Daily average wind speed in m/s at 11 meteorological stations in Ireland
during the period 1961-1970.
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Plot 1: Location of the 11 stations in Ireland;

Plot 2: Mean wind over all stations and years for each day of the year and fitted mean.
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REAL-VALUED STOCHASTIC PROCESSES

The uncertainty of the unobserved parts of the process can be expressed

probabilistically by a random function in space and time:

{Z (s, t); s ∈ D ⊂ ℜd , t ∈ T ⊆ ℜ+}

MEAN FUNCTION:

m(s, t) = E(Z (s, t)) =

∫

z(s, t)dF (z),

COVARIANCE FUNCTION:

Cov(Z (s1, t1),Z (s2, t2)) =

∫

[z(s1, t1)−m(s1, t1)][z(s2, t2)−m(s2, t2)]dF (z1, z2),

where (s, t), (s1, t1), (s2, t2) ∈ D × T .
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VALID FUNCTIONS

We need to specify a valid covariance structure for the process.

C(s1, s2; t1, t2) = Cov(Z (s1, t1),Z (s2, t2))

Positive definiteness: C has to imply that
∑n

i=1 aiZ (si , ti) has positive

variance for any (s1, t1), . . . , (sn, tn), any real a1, ..., an, and any

positive integer n.

It is quite difficult to check whether a function is positive definite.
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SIMPLIFYING ASSUMPTIONS

One way to ensure positive definiteness: separability

Cov(Z (s1, t1),Z (s2, t2)) = C1(s1, s2)C2(t1, t2),

C1 and C2 are valid functions in space and time, respectively.

Other simplifying assumptions:

Stationarity: Cov(Z (s1, t1),Z (s2, t2)) = C(s1 − s2, t1 − t2).

Isotropy: Cov(Z (s1, t1),Z (s2, t2)) = C(||s1 − s2||, |t1 − t2|).
Gaussianity: The process has finite dimensional Gaussian

distribution.

Initially, I will consider Gaussian processes with stationary and

isotropic covariance functions.

First I relax the separability assumption.
ABRIL, 2011 7/ 53
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DEFINITION

SEPARABLE COVARIANCE FUNCTION

A stationary isotropic separable covariance function is defined as

Cov(Z (s1, t1),Z (s2, t2)) = C(s1 − s2, t1 − t2) = C1(s1 − s2)C2(t1 − t2),
(1)

where (s1, t1), (s2, t2) ∈ D × T .

It is computationally very convenient: Σ = Σ1 ⊗ Σ2.

But it is very unrealistic.

It has severe theoretical limitations.
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THEORETICAL LIMITATION

Separability means that for different fixed time points, the marginal spatial

covariances are just proportional.
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EXAMPLE: IRISH WIND DATA

Separable function:

C(s, t) = σ2
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Plot: posterior median of the correlation function against empirical correlation at temporal lags zero until five, with black

corresponding to lag 0, red to lag 1, green to lag 2, dark blue to lag 3, light blue to lag 4 and pink to lag 5.
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SOME MODELS PROPOSED IN THE LITERATURE

[Cressie and Huang, 1999] proposed a model that is not always valid;

[Gneiting, 2002] proposed a model that might have lack of smoothness

away from the origin;

[Ma, 2002] proposed an approach based on the mixture of separable

covariance functions;

[Fuentes et al, 2005] proposed covariance functions in d + 1

dimensions.

I will consider the mixture approach.
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CONTINUOUS MIXTURE

MIXTURE MODELS

C(s, t) =

∫

C1(s; u)C2(t ; v)dF (u, v) (2)

Idea: convex combinations of valid separable covariance functions are

valid and nonseparable functions.

C1(s; u) is a valid spatial covariance in D and C2(t ; v) is a valid

temporal covariance in T .

(U,V ) is a bivariate nonnegative random vector with cumulative

distribution function F .
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MAIN ADVANTAGES

1 One may take advantage of the whole available literature of spatial

statistics and time series; C is the unconditional covariance of

Z (s, t ;U,V ) = Z1(s;U)Z2(t ;V )

2 It is natural to make separate modeling decisions regarding the spatial

and temporal components, eg. smoothness and long range dependence

can be different across space and time.
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DEFINING F

MIXTURE MODELS

If C1(s; u) = σ1 exp{−γ1(s)u} and C2(t ; v) = σ2 exp{−γ2(t)v} then

C(s, t) =

∫

C1(s; u)C2(t ; v)dF (u, v)

= σ2M(−γ1(s),−γ2(t))

where γ1(s) = ||s/a||α and γ2(t) = |t/b|β . And M(., .) is the joint moment

generating function of (U,V ).

ABRIL, 2011 14/
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INTERACTION IN SPACE AND TIME

If (U,V ) independent then

C(s, t) = σ2M(−γ1(s),−γ2(t)) = σ2M1(−γ1(s))M2(−γ2(t)),

that is, C is separable.

The dependence between U and V will define the interaction between

spatial and temporal components.

Thus, the definition of the joint distribution F is crucial in the

spatiotemporal covariance modelling.

ABRIL, 2011 15/
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DEFINING THE JOINT DISTRIBUTION OF (U,V )

Simple way to generate dependence between U and V :

U = X0 + X1 and V = X0 + X2

MIXTURE MODELS

C(s, t) = σ2M(−γ1(s),−γ2(t))

= σ2M0(−γ1(s)− γ2(t))M1(−γ1(s))M2(−γ2(t)), (3)

where Mk (.) is the joint moment generating function of Xk , k = 0, 1, 2.

ABRIL, 2011 16/
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POSSIBLE CHOICES FOR Xk , k = 0, 1, 2

CAUCHY COVARIANCE

If Xk ∼ Ga(λk , 1) then Mk (x) = (1 − x)−λk ;

MATÉRN COVARIANCE

If Xk ∼ InvGa(ν, 1) then Mk (x) =
(2
√

x)ν

2ν−1Γ(ν)
Kν

(

2
√

x
)

;

GENERALIZED MATÉRN COVARIANCE

If Xk ∼ GIG(λk , δ, δ) then Mk (x) =
{

1 − x
δ

}−λ1/2 Kλ1(2δ
√

1− x
δ )

Kλ1
(2δ) ;

ABRIL, 2011 17/
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MATÉRN COVARIANCE

If Xk ∼ InvGa(ν, 1) then Mk (x) =
(2
√

x)ν

2ν−1Γ(ν)
Kν

(

2
√

x
)

;

GENERALIZED MATÉRN COVARIANCE

If Xk ∼ GIG(λk , δ, δ) then Mk (x) =
{

1 − x
δ

}−λ1/2 Kλ1(2δ
√

1− x
δ )

Kλ1
(2δ) ;
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MATÉRN COVARIANCE FUNCTION

REALIZATION OF A GAUSSIAN RANDOM FUNCTION WITH s = (s1, s2).

(a) ν = 1. (b) ν = 2.
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CAUCHY COVARIANCE FUNCTION

REALIZATION OF A GAUSSIAN RANDOM FUNCTION WITH s = (s1, s2).

(a) β = 0.6. (b) β = 1.8.
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EXAMPLES OF SPATIOTEMPORAL FUNCTIONS

Model 1: X0 ∼ Ga(λ0, 1), X1 ∼ GIG(λ1, δ, δ) and X2 ∼ Ga(λ2, 1)

C(s, t) = σ
2
{

1 + ||s/a||
α

+ |t/b|
β
}−λ0

{

1 +
||s/a||α

δ

}−λ1/2 Kλ1

(

2δ

√

1 +
||s/a||α

δ

)

Kλ1
(2δ)

{

1 + |t/b|
β
}−

Model 2: X0 ∼ Ga(λ0, 1), X1 ∼ InvGa(ν, 1) and X2 ∼ Ga(λ2, 1)

C(s, t) = σ
2
{

1 + ||s/a||
α

+ |t/b|
β
}−λ0 (2||s/a||α/2)ν

2ν−1Γ(ν)
Kν

(

2||s/a||
α/2

){

1 + |t/b|
β
}−λ2 .

Model 3: X0 ∼ Ga(λ0, 1), X1 ∼ Ga(λ1, 1) and X2 ∼ Ga(λ2, 1)

C(s, t) = σ
2
{

1 + ||s/a||
α

+ |t/b|
β
}−λ0 {

1 + ||s/a||
α}−λ1

{

1 + |t/b|
β
}−λ2 .

ABRIL, 2011 20/
53



SPATIOTEMPORAL MODELING SEPARABILITY NONSEPARABILITY IRISH WIND DATA EXTENDING THE MODEL CONCLUSIONS

EXAMPLES OF SPATIOTEMPORAL FUNCTIONS

Model 1: X0 ∼ Ga(λ0, 1), X1 ∼ GIG(λ1, δ, δ) and X2 ∼ Ga(λ2, 1)

C(s, t) = σ
2
{

1 + ||s/a||
α

+ |t/b|
β
}−λ0

{

1 +
||s/a||α

δ

}−λ1/2 Kλ1

(

2δ

√

1 +
||s/a||α

δ

)

Kλ1
(2δ)

{

1 + |t/b|
β
}−

Model 2: X0 ∼ Ga(λ0, 1), X1 ∼ InvGa(ν, 1) and X2 ∼ Ga(λ2, 1)

C(s, t) = σ
2
{

1 + ||s/a||
α

+ |t/b|
β
}−λ0 (2||s/a||α/2)ν

2ν−1Γ(ν)
Kν

(

2||s/a||
α/2

){

1 + |t/b|
β
}−λ2 .

Model 3: X0 ∼ Ga(λ0, 1), X1 ∼ Ga(λ1, 1) and X2 ∼ Ga(λ2, 1)

C(s, t) = σ
2
{

1 + ||s/a||
α

+ |t/b|
β
}−λ0 {

1 + ||s/a||
α}−λ1

{

1 + |t/b|
β
}−λ2 .

ABRIL, 2011 20/
53



SPATIOTEMPORAL MODELING SEPARABILITY NONSEPARABILITY IRISH WIND DATA EXTENDING THE MODEL CONCLUSIONS

EXAMPLES OF SPATIOTEMPORAL FUNCTIONS

Model 1: X0 ∼ Ga(λ0, 1), X1 ∼ GIG(λ1, δ, δ) and X2 ∼ Ga(λ2, 1)

C(s, t) = σ
2
{

1 + ||s/a||
α

+ |t/b|
β
}−λ0

{

1 +
||s/a||α

δ

}−λ1/2 Kλ1

(

2δ

√

1 +
||s/a||α

δ

)

Kλ1
(2δ)

{

1 + |t/b|
β
}−

Model 2: X0 ∼ Ga(λ0, 1), X1 ∼ InvGa(ν, 1) and X2 ∼ Ga(λ2, 1)

C(s, t) = σ
2
{

1 + ||s/a||
α

+ |t/b|
β
}−λ0 (2||s/a||α/2)ν

2ν−1Γ(ν)
Kν

(

2||s/a||
α/2

){

1 + |t/b|
β
}−λ2 .

Model 3: X0 ∼ Ga(λ0, 1), X1 ∼ Ga(λ1, 1) and X2 ∼ Ga(λ2, 1)

C(s, t) = σ
2
{

1 + ||s/a||
α

+ |t/b|
β
}−λ0 {

1 + ||s/a||
α}−λ1

{

1 + |t/b|
β
}−λ2 .

ABRIL, 2011 20/
53



SPATIOTEMPORAL MODELING SEPARABILITY NONSEPARABILITY IRISH WIND DATA EXTENDING THE MODEL CONCLUSIONS

DEGREE OF SEPARABILITY

It is defined by the correlation between (U,V ).

MEASURE OF SEPARABILITY

c = corr(U,V ) =
Var(X0)

√

(Var(X0) + Var(X1))(Var(X0) + Var(X2))
, (4)

0 ≤ c ≤ 1.

0 means separability and 1 means strong nonseparability.
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IRISH WIND DATA: MODEL COMPARISON

TABLE: Natural logarithm of the Bayes factor in favour of the nonseparable

Model 1 using Newton-Raftery (d = 0.01), Bridge-sampling and

Shifted-Gamma (λ = 0.98) estimators for the marginal likelihood.

log(BF ) > 5 suggests strong evidence.

Newton-Raftery Bridge-Sampling Shifted-Gamma

Separable Model 1 49 46 50

Nonseparable Model 2 57 68 42

Nonseparable Model 3 6 9 7
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POSTERIOR DISTRIBUTION OF c

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

 

c

D
en

si
ty

FIGURE: Nonseparable model 1: Posterior (solid line) and prior (dashed

line) densities for c in (4).
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EMPIRICAL FIT

●

●
●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Empirical correlation

F
itt

ed
 c

or
re

la
tio

n

●

● ●●
●

●
●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

● ●

●
●

●

●

●
●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●
●

●

●

●
●

●

●

●●

●● ●
●

●
● ●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●●

●
●

●

●

●
●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●
●

●

●

●
●

●

●

●

●

●●●●
●●●

●●
●

●

●
●
●

●
●●

●
●

●

●

●●●●
● ●

●●

●
●
●
●●
●●

●

●

●●● ●
●

●

●
●

●
●

● ●

●

● ●
●●

●

●●
●

●

●●

●

●

●●

●● ●●
●●●

● ●
●

●

●
●
●

●
●●

●
●

●

●

●●●●
●●

●●

●
●

●
● ●

● ●

●

●

● ●●●
●

●

●
●

●
●

●●

●

●●
●●

●

● ●
●

●

●●

●

●

●

●
●● ●●●●● ●●
●

●

●
●●

●●
●

●●
●

●
●●●●● ●●●

●
●

●●●●●
●

●
● ●● ●●●

●
●

● ●
● ●

●
● ●

●●

●
●●

●

●

●●
●

●

●●
●●●●●●● ●●
●

●

●
●●

●● ●
● ●

●

●
●●●●●●●●

●
●

●● ●
●●

●

●
●●●●●●

●
●
● ●

●●

●
●● ●●

●
●●

●

●

●●
●

●

●

●
●● ●●●●●●●●

●
● ●●●●●●●

●

●
●●●●●●●●

●
●●●●●●●

●
● ●●●●●

●●● ●
● ●

●
●●●●

●
●●●

●
●●

●
●

●●
●●●●●●●●●●

●
● ● ●●●●●●

●

●
●●●●●●●●

●
●●● ●●●

●

●
●●●●●●

●●● ●
●●

●
●● ●●

●
●●●

●
●●

●
●

●
●
●● ●●●●●●●●

●
● ●●●●●●●●

●●●●● ●●●●
●●●● ●●●●

●● ●●●●●
●●●●●●

●●●●●
●●●●

●
●●

●
●

●●
●● ●●●●●●●●

●
● ●●●● ●●●●

● ●●●● ●●●●
●●●● ●●●●

●●●●●●●
●●● ●●●

●●● ●●
●●●●

●
●●

●
●

●

●

●
●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Empirical correlation
F

itt
ed

 c
or

re
la

tio
n

●

● ●●
●

●●●
●●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●●
● ●

●
●

●

●

●
●●

●●

●

●

●
●

● ●
●

●

●

●

●

●

●
●

●

●
●

● ●

●

●
●

●

●

●
●

●

●

●●

●● ●
●

●● ●
● ●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

● ●
●●

●
●

●

●

●
● ●

● ●

●

●

●
●

●●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●
●

●

●

●
●

●

●

●

●

●●●●
●●● ●●

●

●

●
●
●

●●
●

●●

●

●

●●●●● ●
●●

●
●
●●

●
●●

●

●

●●● ●●●

●
●

●
●

● ●

●

● ●
●●

●

●●
●

●

●●

●

●

●●

●● ●●
●●●● ●

●

●

●
●
●

●●
●
● ●

●

●

●●●●●●
●●

●
●

●●
●

● ●
●

●

● ●●● ●●

●
●

●
●
●●

●

●●
●●

●

● ●
●

●

●●

●

●

●

●
●● ●●●●● ●●●

●
● ●●●●● ●●●

●
●●●●● ●●●

●
●●●●●●●

●
● ●● ●●●

●
●● ●

● ●
●

● ●●●
●
●●●

●
●●

●
●

●●
●●●●●●● ●●●

●
● ●●●● ●● ●

●

●
●●●●●●●●

●
●●● ●●●●

●
●●●●●●

●
●● ●

●●
●

●● ●●
●

●●●
●

●●
●

●
●

●
●● ●●●●●●●●

●
● ●●●●●●●●

●●●●●●●●●
●●●●●●●●

●
● ●●●●●

●●● ●● ●
●●●●●

●
●●●

●
●●

●
●

●●
●●●●●●●●●●

●
● ● ●●●●●●●
●●●●●●●●●

●●●● ●●●●
●

●●●●●●
●●● ●●●

●●● ●●
●

●●●
●

●●
●

●
●

●●● ●●●●●●●●
●● ●●●●●●●●

●●●●● ●●●●
●●●● ●●●●

●● ●●●●●
●●●●●●

●●●●● ●●●● ●●● ●● ●●●● ●●●●●●●●
●● ●●●● ●●●●

● ●●●● ●●●●
●●●● ●●●●

●●●●●●●
●●● ●●●

●●● ●● ●●●● ●●● ●● ●

(a) Separable model (b) Nonseparable model
Plot: Posterior median of the correlation function against empirical correlation at temporal lags zero until five, with black

corresponding to lag 0, red to lag 1, green to lag 2, dark blue to lag 3, light blue to lag 4 and pink to lag 5.
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REALISTIC MODELS

The model just presented can be easily extended to accommodate

realistic features of space-time data as decisions regarding time and

space can be taken separately;

Z (s, t ;U,V ) = Z1(s;U)Z2(t ;V )

The following extensions were considered:

Nongaussianity;

Nonstationarity;

Asymmetry.
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ASYMMETRIC MODEL

Notice the clear lack of fit at lag one.

This is due to asymmetry of the covariance function at lag one.

Simple way to address this problem:

C∗(s, t) = C(s − ǫtw , t),

where ǫ is a parameter to be estimated and w is a unit vector.

As the asymmetries in this example are mainly functions of differences

in longitude, we take w = (0, 1) as suggested by [Stein, 2005].

In our framework, this is equivalent to replacing the variogram γ1(s)
by γ1(s − ǫtw).
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MODEL COMPARISON

TABLE: Natural logarithm of the Bayes factor in favour of the asymmetric

Model 1 with free λ0. Bayes factors were calculated using Newton-Raftery

(d = 0.01), Bridge-sampling and Shifted gamma (λ = 0.98) estimators for

the marginal likelihood. log(BF ) > 5 suggests strong evidence.

Newton-Raftery Bridge sampling Shifted gamma

Asym. Model 1 λ0 = 0 149 153 148

Nonseparable Model 1 166 159 162

Separable Model 1 215 205 212

Nonseparable Model 2 223 227 205

Nonseparable Model 3 172 168 169

Model of Gneiting et al. 206 212 204

ABRIL, 2011 27/
53



SPATIOTEMPORAL MODELING SEPARABILITY NONSEPARABILITY IRISH WIND DATA EXTENDING THE MODEL CONCLUSIONS

EMPIRICAL FIT

●

●
●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Empirical correlation

F
itt

ed
 c

or
re

la
tio

n

●

● ●●
●

●
●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

● ●

●
●

●

●

●
●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●
●

●

●

●
●

●

●

●●

●● ●
●

●
● ●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●●

●
●

●

●

●
●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●
●

●

●

●
●

●

●

●

●

●●●●
●●●

●●
●

●

●
●
●

●
●●

●
●

●

●

●●●●
● ●

●●

●
●
●
●●
●●

●

●

●●● ●
●

●

●
●

●
●

● ●

●

● ●
●●

●

●●
●

●

●●

●

●

●●

●● ●●
●●●

● ●
●

●

●
●
●

●
●●

●
●

●

●

●●●●
●●

●●

●
●

●
● ●

● ●

●

●

● ●●●
●

●

●
●

●
●

●●

●

●●
●●

●

● ●
●

●

●●

●

●

●

●
●● ●●●●● ●●
●

●

●
●●

●●
●

●●
●

●
●●●●● ●●●

●
●

●●●●●
●

●
● ●● ●●●

●
●

● ●
● ●

●
● ●

●●

●
●●

●

●

●●
●

●

●●
●●●●●●● ●●
●

●

●
●●

●● ●
● ●

●

●
●●●●●●●●

●
●

●● ●
●●

●

●
●●●●●●

●
●
● ●

●●

●
●● ●●

●
●●

●

●

●●
●

●

●

●
●● ●●●●●●●●

●
● ●●●●●●●

●

●
●●●●●●●●

●
●●●●●●●

●
● ●●●●●

●●● ●
● ●

●
●●●●

●
●●●

●
●●

●
●

●●
●●●●●●●●●●

●
● ● ●●●●●●

●

●
●●●●●●●●

●
●●● ●●●

●

●
●●●●●●

●●● ●
●●

●
●● ●●

●
●●●

●
●●

●
●

●
●
●● ●●●●●●●●

●
● ●●●●●●●●

●●●●● ●●●●
●●●● ●●●●

●● ●●●●●
●●●●●●

●●●●●
●●●●

●
●●

●
●

●●
●● ●●●●●●●●

●
● ●●●● ●●●●

● ●●●● ●●●●
●●●● ●●●●

●●●●●●●
●●● ●●●

●●● ●●
●●●●

●
●●

●
●

●

●

●
●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Empirical correlation

F
itt

ed
 c

or
re

la
tio

n

●

● ●●
●

●●●
●●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●●
● ●

●
●

●

●

●
●●

●●

●

●

●
●

● ●
●

●

●

●

●

●

●
●

●

●
●

● ●

●

●
●

●

●

●
●

●

●

●●

●● ●
●

●● ●
● ●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

● ●
●●

●
●

●

●

●
● ●

● ●

●

●

●
●

●●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●
●

●

●

●
●

●

●

●

●

●●●●
●●● ●●

●

●

●
●
●

●●
●

●●

●

●

●●●●● ●
●●

●
●
●●

●
●●

●

●

●●● ●●●

●
●

●
●

● ●

●

● ●
●●

●

●●
●

●

●●

●

●

●●

●● ●●
●●●● ●

●

●

●
●
●

●●
●
● ●

●

●

●●●●●●
●●

●
●

●●
●

● ●
●

●

● ●●● ●●

●
●

●
●
●●

●

●●
●●

●

● ●
●

●

●●

●

●

●

●
●● ●●●●● ●●●

●
● ●●●●● ●●●

●
●●●●● ●●●

●
●●●●●●●

●
● ●● ●●●

●
●● ●

● ●
●

● ●●●
●
●●●

●
●●

●
●

●●
●●●●●●● ●●●

●
● ●●●● ●● ●

●

●
●●●●●●●●

●
●●● ●●●

●

●
●●●●●●

●
●● ●

●●
●

●● ●●
●

●●●
●

●●
●

●
●

●
●● ●●●●●●●●

●
● ●●●●●●●●

●●●●●●●●●
●●●●●●●●

●
● ●●●●●

●●● ●● ●
●●●●●

●
●●●

●
●●

●
●

●●
●●●●●●●●●●

●
● ● ●●●●●●●
●●●●●●●●●

●●●● ●●●●
●

●●●●●●
●●● ●●●

●●● ●●
●

●●●
●

●●
●

●
●

●●● ●●●●●●●●
●● ●●●●●●●●

●●●●● ●●●●
●●●● ●●●●

●● ●●●●●
●●●●●●

●●●●● ●●●● ●●● ●● ●●●● ●●●●●●●●
●● ●●●● ●●●●

● ●●●● ●●●●
●●●● ●●●●

●●●●●●●
●●● ●●●

●●● ●● ●●●● ●●● ●● ●

●

●
●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Empirical correlation

F
itt

ed
 c

or
re

la
tio

n

●

●

●

●
● ●

●

● ●

●
●

●
●●●

●●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●●●

●
●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●
●

●
●

● ●

●
●

●●
●●

● ●

●●

●

●
●

●
●

●
●

●
●

●●
●
●

●
●

●
●

●●
●

●
●

●
●

●

●
●

●

●
●

●

●
●

●

●

●●

●
●

●

●

●

●● ●●

●

●
●
●

●
●
●
●

●●

●
●

●●
●●
●●

●●

●

●
●

●
●
●
●

●
●

●●
●
●

●
●

●
●

●●
●

●
●

●
●

●

●
●

●

●
●

●

●
●

●

●

●●

●
●

●

●

●

●● ●

●

●
●

●●
●●

● ●
●●

●
●

●●●●
● ●

●●
●

●●
●●

●
●

●
●

●●
●●
●
●

●
●

●● ●
●

●
●

●
●

●
●

●
●

●

●
●

●
●
●

●●
●

● ●

●
●

●● ●●

●
●

●●
●●

● ●
●●

●
●

●●●●
●● ●●

●

●●
●●
●
●
●

●
●●

●●
●
●

●
●

●●●
●
●
●

●
●

●
●

●
●
●

●
●
●

●
●

●●
●

● ●

●
●

●● ●

●
●

● ●●●●●●●●
●● ●●●●●●

●●●●●
●●●●●●

●●●●●●●● ●● ●●●
●● ●

●● ●● ●
●

●●●●
●●

●● ●
●● ●● ●●

●
●●●●●●●●●

●● ● ●●●●●●●●●●●●●●●●
●●●● ●●●● ●●●●●●● ●

●● ●●●
●

●● ●●
●●

●● ●
●● ●● ●

●●● ●●●●●●●●
●● ●●●●●●●●●●●●● ●●●● ●●●● ●●●● ●● ●●●●● ●●●●●●●●●●●

●●●● ●
●● ●● ●●●● ●●●●●●●● ●● ●●●● ●●●●● ●●●● ●●●● ●●●● ●●●● ●●●●●●● ●●● ●●●
●●● ●● ●●●● ●
●● ●● ●

(a) Separable model (b) Nonseparable model (c) Asymmetric model
Plot: Posterior median of the correlation function against empirical correlation at temporal lags zero until five, with black

corresponding to lag 0, red to lag 1, green to lag 2, dark blue to lag 3, light blue to lag 4 and pink to lag 5.
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NONGAUSSIANITY

Now I exemplify how to extend the proposed nonseparable models to

accommodate nongaussianity;

This is a problem of interest in many fields of science such as geology,

hydrology and meteorology where extreme events and heterogeneity is

often observed;

I consider the approach of Palacios and Steel [2006] used in spatial

data in order to account for nongaussian tail behaviour;
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OUTLIERS

The models will account for individual outliers and regions in space

with larger observational variance.

The latter is quite common in meteorological applications where

outliers are often associated with severe weather events such as

tornados and hurricanes.

These events do not usually happen in a single location but cover an

extended region.
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SPATIOTEMPORAL DATA - EXAMPLE

Maximum temperature data - Spanish Basque Country (67 stations)
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EXAMPLE

Maximum temperature data - Spanish Basque Country
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MIXING IN SPACE AND TIME

We consider the process

Z̃ (s, t ;U,V ) = Z̃1(s;U)Z̃2(t ;V ), (5)

MIXING IN SPACE

Z̃1(s;U) =
√

1 − τ2
Z1(s;U)
√

λ1(s)
+ τ

ǫ(s)
√

h(s)
(6)

MIXING IN TIME

Z̃2(t ;V ) =
Z2(t ;V )
√

λ2(t)
(7)
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PROCESS λ1(s)

MIXING IN SPACE

Z̃1(s;U) =
√

1 − τ2
Z1(s;U)
√

λ1(s)
+ τ

ǫ(s)
√

h(s)

λ1(s) accounts for regions in space with larger observational variance.

Z̃ is multivariate Gaussian with covariance matrix

Cov(Z̃ij , Z̃i′ j′) = σ2
M0(−γ1−γ2)

[

(1 − τ 2)
M1(−γ1)√
λ1iλ1i′

+ τ 2 I(si = si′)√
hihi′

]

M2(−γ2),

(8)

where λ1i = λ1(si).

Note that Gaussian behaviour is only assumed given λ1 and h.

Integrating out with respect to these mixing variables leads to

non-Gaussian distributions.
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PROCESS λ1(s)

Scale mixing introduces a potential problem with the continuity of the

resulting random function Z.

Thus λ1(s) needs to be correlated to induce m.s. continuity of

Z̃1(s;U), this is equivalent to E [λ
−1/2

1 (si)λ
−1/2

1 (si′)] → E [λ−1
1 (si)]

as si → si′ .

Example: λ1(s) = λ, ∀s ⇒ Student-t process.

But this does not account for regions with larger variance.

We want to account for different variances in different regions.

Solution: glg process where {ln(λ1(s)); s ∈ D} is a gaussian process

with mean − ν
2

and covariance structure νC1(.).
[Palacios and Steel, 2006]
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PROCESS h(s)

MIXING IN SPACE

Z̃1(s;U) =
√

1 − τ2
Z1(s;U)
√

λ1(s)
+ τ

ǫ(s)
√

h(s)

h(s) accounts for traditional outliers (different nugget effects).

We consider the detection of outliers jointly in the estimation

procedure and the variable hi = h(si), i = 1, . . . , I are considered

latent variables

Their posterior distribution indicate outlying observations (hi close to

0).

We consider

log(hi) ∼ N(−νh/2, νh).
hi ∼ Ga(1/νh, 1/νh).
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We consider the detection of outliers jointly in the estimation

procedure and the variable hi = h(si), i = 1, . . . , I are considered

latent variables

Their posterior distribution indicate outlying observations (hi close to

0).

We consider
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PROCESS λ2(t)

MIXING IN TIME

Z̃2(t ;V ) =
Z2(t ;V )
√

λ2(t)

λ2(t) accounts for sections in time with larger observational variance.

This can be seen as a way to address the issue of volatility clustering,

which is common in finantial time series data.

We consider the log gaussian process where {ln(λ2(t)); t ∈ T} is a

gaussian process with mean − ν2

2
and covariance structure ν2C2(.).
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PREDICTIONS

(λ1i , hi , λ2j) are considered latent variables and sampled in our MCMC

sampler.

Given (λ1i , hi , λ2j) the process is gaussian and we can predict at

unobserved locations and time points.

We compare the predictive performance using proper scoring rules

[Gneiting and Raftery, 2008]:

LPS(p, x) = −log(p(x))

IS(q1, q2; x) = (q2 − q1) +
2
ξ (q1 − x)I(x <

q1) +
2
ξ (x − q2)I(x > q2). We use ξ = 0.05 resulting in a 95%

credible interval.
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SIMULATED EXAMPLE: DATA CONTAMINATION

This data set has I = 30 locations and J = 30 time points generated

from a Gaussian model with no nugget effect (τ2 = 0).

The covariance model is nonseparable Cauchy (Xi ∼ Ga(λi , 1),
i = 0, 1, 2) in space and time with c = 0.5.

We contaminated this data set with different kinds of ”outliers” in order

to see the performance of the proposed models in each situation.
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SPATIAL DOMAIN
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The proposal for λ1i , hi , i = 1, . . . , I in the MCMC sampler is

constructed by dividing the observations in blocks defined by position

in the spatial domain.
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DATA 1 (TRADITIONAL OUTLIER) - DESCRIPTION

One location was selected at random (location 7) and a random increment

from Unif(1.0, 1.5) times the standard deviation was added to each

observation for this location for the first 20 time points.
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ESTIMATED CORRELATION FUNCTION - t0 = 1
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(c) Nongaussian with h and λ1 (d) Gaussian (Uncontaminated data)
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NONGAUSSIAN MODEL WITH λ1
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NONGAUSSIAN MODEL WITH h (LOGNORMAL)
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NONGAUSSIAN MODEL WITH λ1 AND h
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TEMPERATURE DATA - MODEL

Mean function:

µ(s, t) = δ0 + δ1s1 + δ2s2 + δ3h + δ4t + δ5t2

Z̃ is multivariate Gaussian with covariance matrix

Cov(Z̃ij , Z̃i′ j′) = σ2
M0(−γ1−γ2)

[

(1 − τ 2)
M1(−γ1)√
λ1iλ1i′

+ τ 2 I(si = si′)√
hihi′

]

M2(−γ2),

(9)

where λ1i = λ1(si).

M0, M1 and M2 are Cauchy covariance functions.
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LIKELIHOOD

In order to calculate the likelihood function we need to invert a matrix

with dimension 2077 × 2077.

We approximate the likelihood by using conditional distributions.

We consider a partition of Z into subvectors Z1, ...,Z31 where

Zj = (Z (s1, tj), . . . ,Z (s67, tj))
′ and we define Z(j) = (Zj−L+1, ...,Zj).

Then

p(z|φ) ≈ p(z1|φ)
31
∏

j=2

p(zj |z(j−1), φ). (10)

This means the distribution of Zj will only depend on the observations

in space for the previous L time points.

In this application we used L = 5 to make the MCMC feasible.
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BAYES FACTOR

h λ1 λ1 & h λ2 λ2 & h λ1 & λ2 λ1, h & λ2

Shifted gamma 172 148 345 138 279 417 547

TABLE: The natural logarithm of the Bayes factor in favor of the model in

the column versus Gaussian model using Shifted-Gamma (λ = 0.98)

estimator for the predictive density of z.
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MODEL COMPARISON

model Average width ¯IS LPS

Gaussian 3.78 4.35 97.25

h 3.83 4.34 112.56

λ1 3.74 4.36 107.43

λ1 & h 3.75 4.48 117.20

λ2 3.73 3.94 76.73

λ2 & h 3.73 3.87 77.60

λ1 & λ2 4.51 4.65 96.35

λ1, h & λ2 3.84 4.02 90.30
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MODEL WITH h AND λ2
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PREDICTED TEMPERATURE AT THE OUT-OF-SAMPLE
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CONCLUSIONS AND FUTURE WORK

The resulting model has very useful theoretical properties

[Fonseca and Steel, 2011];

For practical modelling purposes, I suggest a number of different

parameterisations, leading to a variety of special cases;

The examples clearly show the overwhelming data support for our

proposed covariance functions.

We have extended the model to accommodate nongaussianity,

nonstationarity (not presented here) and intend to extend it to

multivariate processes.
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