| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                   |             |
| 000                     |              | 000000          |                 | 000                 |             |
|                         |              | 0               |                 | 000000000           |             |
|                         |              |                 |                 |                     |             |

# MODELOS ESPAÇO-TEMPORAIS NÃO GAUSSIANOS

#### Thais C O da Fonseca - IM - UFRJ

Em colaboração com Prof Mark F J Steel - Warwick University

Abril, 2011

(日)

**ABRIL**, 2011

 Spatiotemporal modeling
 Separability
 Nonseparability
 Irish wind data
 Extending the model
 conclusions

 00
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

ABRIL, 2011

- SPATIOTEMPORAL MODELING
  - Introduction
  - Covariance modeling
- 2 SEPARABILITY
  - Properties and definition
- **3** NONSEPARABILITY
  - Mixture approach
  - Our proposal
  - Inference
- IRISH WIND DATA
  - Nonseparable model
- 5 Extending the model
  - Motivation
  - Asymmetric model
  - Nongaussian models
  - Examples

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| •0                      | 000          | 000             | 000             | 0                   |             |
| 000                     |              | 000000          |                 | 000                 |             |
|                         |              | 0               |                 | 0000000000          |             |

# TYPICAL PROBLEM

• Given: observations  $Z(s_i, t_j)$  at a finite number locations  $s_i$ , i = 1, ..., J and time points  $t_j$ , j = 1, ..., J.

• Desired: predictive distribution for the unknown value  $Z(s_0, t_0)$  at the space-time coordinate  $(s_0, t_0)$ .

• Focus: continuous space and continuous time which allow for prediction and interpolation at any location and any time.

 $Z(s,t), (s,t) \in D \times T$ , where  $D \subseteq \Re^d, T \subseteq \Re^d$ 

▲□ ▶ ▲□ ▶ ▲ ■ ▶ ▲ ■ ◆ ○ Q (~ ABRIL, 2011 3/53

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| •0                      | 000          | 000             | 000             | 0                   |             |
| 000                     |              | 000000          |                 | 000                 |             |
|                         |              | 0               |                 | 0000000000          |             |
|                         |              |                 |                 |                     |             |

### TYPICAL PROBLEM

- Given: observations  $Z(s_i, t_j)$  at a finite number locations  $s_i$ , i = 1, ..., J and time points  $t_j$ , j = 1, ..., J.
- Desired: predictive distribution for the unknown value  $Z(s_0, t_0)$  at the space-time coordinate  $(s_0, t_0)$ .
- Focus: continuous space and continuous time which allow for prediction and interpolation at any location and any time.

 $Z(s,t), (s,t) \in D \times T$ , where  $D \subseteq \Re^d, T \subseteq \Re^d$ 

ヘロト 人間 とくほとく ほと

ABRIL, 2011

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| •0                      | 000          | 000             | 000             | 0                   |             |
| 000                     |              | 000000          |                 | 000                 |             |
|                         |              | 0               |                 | 000000000           |             |
|                         |              |                 |                 |                     |             |

### TYPICAL PROBLEM

- Given: observations  $Z(s_i, t_j)$  at a finite number locations  $s_i$ , i = 1, ..., J and time points  $t_j$ , j = 1, ..., J.
- Desired: predictive distribution for the unknown value  $Z(s_0, t_0)$  at the space-time coordinate  $(s_0, t_0)$ .
- Focus: continuous space and continuous time which allow for prediction and interpolation at any location and any time.

 $Z(s,t), (s,t) \in D \times T$ , where  $D \subseteq \Re^d, T \subseteq \Re$ 



# EXAMPLE: IRISH WIND DATA [HASLETT AND RAFTERY, 1989]

Daily average wind speed in m/s at 11 meteorological stations in Ireland during the period 1961-1970.



Plot 1: Location of the 11 stations in Ireland;

Plot 2: Mean wind over all stations and years for each day of the year and fitted mean.

ABRIL, 2011

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                   |             |
| ●OO                     |              | 000000          |                 | 000                 |             |
|                         |              | 0               |                 | 0000000000          |             |

#### **REAL-VALUED STOCHASTIC PROCESSES**

The uncertainty of the unobserved parts of the process can be expressed probabilistically by a random function in space and time:

$$\{oldsymbol{Z}(oldsymbol{s},t);oldsymbol{s}\in oldsymbol{D}\subset \Re^d,t\in T\subseteq \Re_+\}$$

MEAN FUNCTION:

$$m(s,t) = E(Z(s,t)) = \int z(s,t)dF(z),$$

**COVARIANCE FUNCTION:** 

 $\operatorname{Cov}(Z(s_1, t_1), Z(s_2, t_2)) = \int [Z(s_1, t_1) - m(s_1, t_1)] [Z(s_2, t_2) - m(s_2, t_2)] dF(z_1, z_2),$ 

where  $(s, t), (s_1, t_1), (s_2, t_2) \in D \times T$ .

ABRIL, 2011 5/ 53

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                   |             |
| ●OO                     |              | 000000          |                 | 000                 |             |
|                         |              | 0               |                 | 0000000000          |             |

#### **REAL-VALUED STOCHASTIC PROCESSES**

The uncertainty of the unobserved parts of the process can be expressed probabilistically by a random function in space and time:

$$\{oldsymbol{Z}(oldsymbol{s},t);oldsymbol{s}\in oldsymbol{D}\subset \Re^{oldsymbol{d}},t\in oldsymbol{T}\subseteq \Re_+\}$$

MEAN FUNCTION:

$$m(s,t) = E(Z(s,t)) = \int z(s,t) dF(z),$$

**COVARIANCE FUNCTION:** 

 $\operatorname{Cov}(Z(s_1, t_1), Z(s_2, t_2)) = \int [Z(s_1, t_1) - m(s_1, t_1)] [Z(s_2, t_2) - m(s_2, t_2)] dF(z_1, z_2),$ 

where  $(s, t), (s_1, t_1), (s_2, t_2) \in D \times T$ .

ABRIL, 2011 5/ 53

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                   |             |
| 000                     |              | 000000          |                 | 000                 |             |
|                         |              | 0               |                 | 0000000000          |             |

#### **REAL-VALUED STOCHASTIC PROCESSES**

The uncertainty of the unobserved parts of the process can be expressed probabilistically by a random function in space and time:

$$\{oldsymbol{Z}(oldsymbol{s},t);oldsymbol{s}\in oldsymbol{D}\subset \Re^{oldsymbol{d}},t\in oldsymbol{T}\subseteq \Re_+\}$$

MEAN FUNCTION:

$$m(s,t) = E(Z(s,t)) = \int z(s,t) dF(z),$$

**COVARIANCE FUNCTION:** 

$$\operatorname{Cov}(Z(s_1, t_1), Z(s_2, t_2)) = \int [Z(s_1, t_1) - m(s_1, t_1)][Z(s_2, t_2) - m(s_2, t_2)] dF(z_1, z_2),$$

where  $(s, t), (s_1, t_1), (s_2, t_2) \in D \times T$ .

**ABRIL**, 2011

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                   |             |
| 000                     |              | 000000          |                 | 000                 |             |
|                         |              | 0               |                 | 000000000           |             |
|                         |              |                 |                 |                     |             |

# VALID FUNCTIONS

• We need to specify a valid covariance structure for the process.

$$C(s_1, s_2; t_1, t_2) = Cov(Z(s_1, t_1), Z(s_2, t_2))$$

- Positive definiteness: *C* has to imply that  $\sum_{i=1}^{n} a_i Z(s_i, t_i)$  has positive variance for any  $(s_1, t_1), \ldots, (s_n, t_n)$ , any real  $a_1, \ldots, a_n$ , and any positive integer *n*.
- It is quite difficult to check whether a function is positive definite.

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                   |             |
| 000                     |              | 000000          |                 | 000                 |             |
|                         |              | 0               |                 | 000000000           |             |
|                         |              |                 |                 |                     |             |

### VALID FUNCTIONS

• We need to specify a valid covariance structure for the process.

$$C(s_1, s_2; t_1, t_2) = Cov(Z(s_1, t_1), Z(s_2, t_2))$$

- Positive definiteness: *C* has to imply that  $\sum_{i=1}^{n} a_i Z(s_i, t_i)$  has positive variance for any  $(s_1, t_1), \ldots, (s_n, t_n)$ , any real  $a_1, \ldots, a_n$ , and any positive integer *n*.
- It is quite difficult to check whether a function is positive definite.

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                   |             |
| 000                     |              | 000000          |                 | 000                 |             |
|                         |              | 0               |                 | 000000000           |             |
|                         |              |                 |                 |                     |             |

### VALID FUNCTIONS

• We need to specify a valid covariance structure for the process.

$$C(s_1, s_2; t_1, t_2) = Cov(Z(s_1, t_1), Z(s_2, t_2))$$

- Positive definiteness: *C* has to imply that  $\sum_{i=1}^{n} a_i Z(s_i, t_i)$  has positive variance for any  $(s_1, t_1), \ldots, (s_n, t_n)$ , any real  $a_1, \ldots, a_n$ , and any positive integer *n*.
- It is quite difficult to check whether a function is positive definite.

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                   |             |
| 000                     |              | 000000          |                 | 000                 |             |
|                         |              | 0               |                 | 000000000           |             |
|                         |              |                 |                 |                     |             |

### SIMPLIFYING ASSUMPTIONS

• One way to ensure positive definiteness: separability

 $\operatorname{Cov}(Z(s_1, t_1), Z(s_2, t_2)) = C_1(s_1, s_2)C_2(t_1, t_2),$ 

 $C_1$  and  $C_2$  are valid functions in space and time, respectively.

• Other simplifying assumptions:

- Stationarity:  $Cov(Z(s_1, t_1), Z(s_2, t_2)) = C(s_1 s_2, t_1 t_2).$
- Isotropy:  $Cov(Z(s_1, t_1), Z(s_2, t_2)) = C(||s_1 s_2||, |t_1 t_2|).$
- Gaussianity: The process has finite dimensional Gaussian distribution.
- Initially, I will consider Gaussian processes with stationary and isotropic covariance functions.
- First I relax the separability assumption.

ヘロト ヘロト ヘビト ヘ

ABRIL, 2011

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                   |             |
| 000                     |              | 000000          |                 | 000                 |             |
|                         |              | 0               |                 | 0000000000          |             |

### SIMPLIFYING ASSUMPTIONS

• One way to ensure positive definiteness: separability

 $Cov(Z(s_1, t_1), Z(s_2, t_2)) = C_1(s_1, s_2)C_2(t_1, t_2),$ 

 $C_1$  and  $C_2$  are valid functions in space and time, respectively.

- Other simplifying assumptions:
  - Stationarity:  $Cov(Z(s_1, t_1), Z(s_2, t_2)) = C(s_1 s_2, t_1 t_2).$
  - Isotropy:  $Cov(Z(s_1, t_1), Z(s_2, t_2)) = C(||s_1 s_2||, |t_1 t_2|).$
  - Gaussianity: The process has finite dimensional Gaussian distribution.
- Initially, I will consider Gaussian processes with stationary and isotropic covariance functions.
- First I relax the separability assumption.

ヘロト 人間 ト 人 ヨト 人 ヨト

ABRIL, 2011

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                   |             |
| 000                     |              | 000000          |                 | 000                 |             |
|                         |              | 0               |                 | 000000000           |             |
|                         |              |                 |                 | 0000000000000       |             |

### SIMPLIFYING ASSUMPTIONS

• One way to ensure positive definiteness: separability

 $Cov(Z(s_1, t_1), Z(s_2, t_2)) = C_1(s_1, s_2)C_2(t_1, t_2),$ 

 $C_1$  and  $C_2$  are valid functions in space and time, respectively.

- Other simplifying assumptions:
  - Stationarity:  $Cov(Z(s_1, t_1), Z(s_2, t_2)) = C(s_1 s_2, t_1 t_2).$
  - Isotropy:  $Cov(Z(s_1, t_1), Z(s_2, t_2)) = C(||s_1 s_2||, |t_1 t_2|).$
  - Gaussianity: The process has finite dimensional Gaussian distribution.
- Initially, I will consider Gaussian processes with stationary and isotropic covariance functions.
- First I relax the separability assumption.

< □ > < ⑦ > < 注 > < 注 > 注 ABRIL, 2011

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | ●OO          | 000             | 000             | 0                   |             |
| 000                     |              | 000000          |                 | 000                 |             |
|                         |              | 0               |                 | 000000000           |             |
|                         |              |                 |                 |                     |             |

# DEFINITION

#### SEPARABLE COVARIANCE FUNCTION

A stationary isotropic separable covariance function is defined as

$$Cov(Z(s_1, t_1), Z(s_2, t_2)) = C(s_1 - s_2, t_1 - t_2) = C_1(s_1 - s_2)C_2(t_1 - t_2),$$
(1)
where  $(s_1, t_1), (s_2, t_2) \in D \times T$ .

(日)

ABRIL, 2011

8/53

• It is computationally very convenient:  $\Sigma = \Sigma_1 \otimes \Sigma_2$ .

- But it is very unrealistic.
- It has severe theoretical limitations.

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | ●OO          | 000             | 000             | 0                   |             |
| 000                     |              | 000000          |                 | 000                 |             |
|                         |              | 0               |                 | 000000000           |             |
|                         |              |                 |                 |                     |             |

# DEFINITION

#### SEPARABLE COVARIANCE FUNCTION

A stationary isotropic separable covariance function is defined as

$$Cov(Z(s_1, t_1), Z(s_2, t_2)) = C(s_1 - s_2, t_1 - t_2) = C_1(s_1 - s_2)C_2(t_1 - t_2),$$
(1)
where  $(s_1, t_1), (s_2, t_2) \in D \times T$ .

< □ > < □ > < □ >

ABRIL, 2011

- It is computationally very convenient:  $\Sigma = \Sigma_1 \otimes \Sigma_2$ .
- But it is very unrealistic.
- It has severe theoretical limitations.

| ARABILITY IRISH WIND DATA | EXTENDING THE MODEL                   | CONCLUSIONS                                                                                      |
|---------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------|
| 000                       | 0<br>000<br>0000000000                |                                                                                                  |
|                           | ARABILITY IRISH WIND DATA<br>000<br>0 | ARABILITY IRISH WIND DATA EXTENDING THE MODEL<br>000 0<br>000<br>000<br>000<br>000<br>000<br>000 |

# THEORETICAL LIMITATION

Separability means that for different fixed time points, the marginal spatial covariances are just proportional.



Plot of  $\rho(s, t) = \frac{C(s, t)}{C(0, 0)}$  for separable and nonseparable covariance functions.

| 00 000 000 | 000 0 |         |  |
|------------|-------|---------|--|
| 000000     | 000   |         |  |
| 0          | 000   | 0000000 |  |

### EXAMPLE: IRISH WIND DATA

Separable function:

$$C(s,t) = \sigma^{2} \left\{ 1 + \frac{||s/a||^{\alpha}}{\delta} \right\}^{-\lambda_{1}/2} \frac{K_{\lambda_{1}} \left( 2\delta \sqrt{1 + \frac{||s/a||^{\alpha}}{\delta}} \right)}{K_{\lambda_{1}}(2\delta)} \left\{ 1 + |t/b|^{\beta} \right\}^{-\lambda_{2}}$$

Plot: posterior median of the correlation function against empirical correlation at temporal lags zero until five, with black corresponding to lag 0, red to lag 1, green to lag 2, dark blue to lag 3, light blue to lag 4 and pink to lag 5, ABRIL, 2011

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY    | IRISH WIND DATA | EXTENDING THE MODEL   | CONCLUSIONS |
|-------------------------|--------------|--------------------|-----------------|-----------------------|-------------|
| 00<br>000               | 000          | 000<br>000000<br>0 | 000             | 0<br>000<br>000000000 |             |
|                         |              |                    |                 | 000000000000          |             |

#### Some models proposed in the literature

- [Cressie and Huang, 1999] proposed a model that is not always valid;
- [Gneiting, 2002] proposed a model that might have lack of smoothness away from the origin;
- [Ma, 2002] proposed an approach based on the mixture of separable covariance functions;
- [Fuentes et al, 2005] proposed covariance functions in d + 1 dimensions.
- I will consider the mixture approach.

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY    | IRISH WIND DATA | EXTENDING THE MODEL   | CONCLUSIONS |
|-------------------------|--------------|--------------------|-----------------|-----------------------|-------------|
| 00<br>000               | 000          | 000<br>000000<br>0 | 000             | 0<br>000<br>000000000 |             |
|                         |              |                    |                 | 000000000000          |             |

#### Some models proposed in the literature

- [Cressie and Huang, 1999] proposed a model that is not always valid;
- [Gneiting, 2002] proposed a model that might have lack of smoothness away from the origin;
- [Ma, 2002] proposed an approach based on the mixture of separable covariance functions;

< □ > < 🗇 > <

- [Fuentes et al, 2005] proposed covariance functions in d + 1 dimensions.
- I will consider the mixture approach.

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | 000          | •00             | 000             | 0                   |             |
| 000                     |              | 000000          |                 | 000                 |             |
|                         |              | 0               |                 | 0000000000          |             |

# CONTINUOUS MIXTURE

#### MIXTURE MODELS

$$C(\boldsymbol{s},t) = \int C_1(\boldsymbol{s};\boldsymbol{u}) C_2(t;\boldsymbol{v}) dF(\boldsymbol{u},\boldsymbol{v})$$
(2)

• • • • • • • • • • • •

- Idea: convex combinations of valid separable covariance functions are valid and nonseparable functions.
- $C_1(s; u)$  is a valid spatial covariance in D and  $C_2(t; v)$  is a valid temporal covariance in T.
- (U, V) is a bivariate nonnegative random vector with cumulative distribution function *F*.

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | 000          | <b>0</b> 00     | 000             | 0                   |             |
| 000                     |              | 000000          |                 | 000                 |             |
|                         |              | 0               |                 | 000000000           |             |
|                         |              |                 |                 | 00000000000000      |             |

# CONTINUOUS MIXTURE

MIXTURE MODELS

$$C(\boldsymbol{s},t) = \int C_1(\boldsymbol{s};\boldsymbol{u})C_2(t;\boldsymbol{v})dF(\boldsymbol{u},\boldsymbol{v}) \tag{2}$$

- Idea: convex combinations of valid separable covariance functions are valid and nonseparable functions.
- $C_1(s; u)$  is a valid spatial covariance in D and  $C_2(t; v)$  is a valid temporal covariance in T.
- (*U*, *V*) is a bivariate nonnegative random vector with cumulative distribution function *F*.

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                   |             |
| 000                     |              | 000000          |                 | 0000000000          |             |

### MAIN ADVANTAGES

• One may take advantage of the whole available literature of spatial statistics and time series; *C* is the unconditional covariance of

$$Z(s,t;U,V) = Z_1(s;U)Z_2(t;V)$$

It is natural to make separate modeling decisions regarding the spatial and temporal components, eg. smoothness and long range dependence can be different across space and time.

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                   |             |
| 000                     |              | 000000          |                 | 000                 |             |
|                         |              | 0               |                 | 000000000           |             |
|                         |              |                 |                 |                     |             |

### MAIN ADVANTAGES

• One may take advantage of the whole available literature of spatial statistics and time series; *C* is the unconditional covariance of

$$Z(s, t; U, V) = Z_1(s; U)Z_2(t; V)$$

It is natural to make separate modeling decisions regarding the spatial and temporal components, eg. smoothness and long range dependence can be different across space and time.

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                   |             |
| 000                     |              | 000000          |                 | 000                 |             |
|                         |              | 0               |                 | 000000000           |             |
|                         |              |                 |                 | 0000000000000       |             |

# DEFINING *F*

MIXTURE MODELS If  $C_1(s; u) = \sigma_1 \exp\{-\gamma_1(s)u\}$  and  $C_2(t; v) = \sigma_2 \exp\{-\gamma_2(t)v\}$  then  $C(s, t) = \int C_1(s; u)C_2(t; v)dF(u, v)$   $= \sigma^2 M(-\gamma_1(s), -\gamma_2(t))$ 

where  $\gamma_1(s) = ||s/a||^{\alpha}$  and  $\gamma_2(t) = |t/b|^{\beta}$ . And M(.,.) is the joint moment generating function of (U, V).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                   |             |
| 000                     |              | 00000           |                 | 000                 |             |
|                         |              | 0               |                 | 000000000           |             |
|                         |              |                 |                 |                     |             |

## INTERACTION IN SPACE AND TIME

• If (U, V) independent then

$$C(\boldsymbol{s},t) = \sigma^2 \boldsymbol{M}(-\gamma_1(\boldsymbol{s}),-\gamma_2(t)) = \sigma^2 \boldsymbol{M}_1(-\gamma_1(\boldsymbol{s})) \boldsymbol{M}_2(-\gamma_2(t)),$$

that is, C is separable.

- The dependence between U and V will define the interaction between spatial and temporal components.
- Thus, the definition of the joint distribution *F* is crucial in the spatiotemporal covariance modelling.

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                   |             |
| 000                     |              | 00000           |                 | 000                 |             |
|                         |              | 0               |                 | 000000000           |             |
|                         |              |                 |                 | 0000000000000       |             |

## INTERACTION IN SPACE AND TIME

• If (U, V) independent then

$$C(\boldsymbol{s},t) = \sigma^2 \boldsymbol{M}(-\gamma_1(\boldsymbol{s}),-\gamma_2(t)) = \sigma^2 \boldsymbol{M}_1(-\gamma_1(\boldsymbol{s})) \boldsymbol{M}_2(-\gamma_2(t)),$$

that is, *C* is separable.

- The dependence between U and V will define the interaction between spatial and temporal components.
- Thus, the definition of the joint distribution *F* is crucial in the spatiotemporal covariance modelling.

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                   |             |
| 000                     |              | 00000           |                 | 000                 |             |
|                         |              | 0               |                 | 000000000           |             |
|                         |              |                 |                 |                     |             |

#### INTERACTION IN SPACE AND TIME

• If (U, V) independent then

$$C(\boldsymbol{s},t) = \sigma^2 \boldsymbol{M}(-\gamma_1(\boldsymbol{s}),-\gamma_2(t)) = \sigma^2 \boldsymbol{M}_1(-\gamma_1(\boldsymbol{s})) \boldsymbol{M}_2(-\gamma_2(t)),$$

that is, *C* is separable.

• The dependence between U and V will define the interaction between spatial and temporal components.

A BRIL, 2011
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• Thus, the definition of the joint distribution *F* is crucial in the spatiotemporal covariance modelling.

# DEFINING THE JOINT DISTRIBUTION OF (U, V)

Simple way to generate dependence between U and V:  $U = X_0 + X_1$  and  $V = X_0 + X_2$ 

MIXTURE MODELS

$$C(s,t) = \sigma^{2} M(-\gamma_{1}(s), -\gamma_{2}(t)) = \sigma^{2} M_{0}(-\gamma_{1}(s) - \gamma_{2}(t)) M_{1}(-\gamma_{1}(s)) M_{2}(-\gamma_{2}(t)), \quad (3)$$

← → < □ → < □ → < □ → < □ → </li>
 ABRIL, 2011

where  $M_k(.)$  is the joint moment generating function of  $X_k$ , k = 0, 1, 2.

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                   |             |
| 000                     |              | 000000          |                 | 000                 |             |
|                         |              | 0               |                 | 000000000           |             |

# Possible choices for $X_k$ , k = 0, 1, 2

#### CAUCHY COVARIANCE

If  $X_k \sim Ga(\lambda_k, 1)$  then  $M_k(x) = (1 - x)^{-\lambda_k}$ ;

#### MATÉRN COVARIANCE

If  $X_k \sim InvGa(\nu, 1)$  then  $M_k(x) = \frac{(2\sqrt{x})^{\nu}}{2^{\nu-1}\Gamma(\nu)} K_{\nu}(2\sqrt{x});$ 

#### GENERALIZED MATÉRN COVARIANCE

If  $X_k \sim GlG(\lambda_k, \delta, \delta)$  then  $M_k(x) = \left\{1 - \frac{x}{\delta}\right\}^{-\lambda_1/2} \frac{K_{\lambda_1}(2\delta\sqrt{1-\frac{x}{\delta}})}{K_{\lambda_1}(2\delta)}$ ;

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                   |             |
| 000                     |              | 000000          |                 | 000                 |             |
|                         |              | 0               |                 | 000000000           |             |

# Possible choices for $X_k$ , k = 0, 1, 2

#### CAUCHY COVARIANCE

If  $X_k \sim Ga(\lambda_k, 1)$  then  $M_k(x) = (1 - x)^{-\lambda_k}$ ;

# MATÉRN COVARIANCE

If  $X_k \sim InvGa(\nu, 1)$  then  $M_k(x) = \frac{(2\sqrt{x})^{\nu}}{2^{\nu-1}\Gamma(\nu)}K_{\nu}(2\sqrt{x});$ 

# Generalized Matérn covariance

If  $X_k \sim GIG(\lambda_k, \delta, \delta)$  then  $M_k(x) = \left\{1 - \frac{x}{\delta}\right\}^{-\lambda_1/2} \frac{K_{\lambda_1}(2\delta\sqrt{1-\frac{x}{\delta}})}{K_{\lambda_1}(2\delta)}$ ;

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                   |             |
| 000                     |              | 000000          |                 | 000                 |             |
|                         |              | 0               |                 | 000000000           |             |

# Possible choices for $X_k$ , k = 0, 1, 2

#### CAUCHY COVARIANCE

If  $X_k \sim Ga(\lambda_k, 1)$  then  $M_k(x) = (1 - x)^{-\lambda_k}$ ;

#### MATÉRN COVARIANCE

If  $X_k \sim InvGa(\nu, 1)$  then  $M_k(x) = \frac{(2\sqrt{x})^{\nu}}{2^{\nu-1}\Gamma(\nu)}K_{\nu}(2\sqrt{x});$ 

#### GENERALIZED MATÉRN COVARIANCE

If 
$$X_k \sim GIG(\lambda_k, \delta, \delta)$$
 then  $M_k(x) = \left\{1 - \frac{x}{\delta}\right\}^{-\lambda_1/2} \frac{K_{\lambda_1}(2\delta\sqrt{1-\frac{x}{\delta}})}{K_{\lambda_1}(2\delta)};$ 



#### MATÉRN COVARIANCE FUNCTION Realization of a Gaussian random function with $s = (s_1, s_2)$ .



18/



#### CAUCHY COVARIANCE FUNCTION Realization of a Gaussian random function with $s = (s_1, s_2)$ .



19/

| SPATIOTEMPORAL MODELING SE | EPARABILITY NONSI | EPARABILITY IRISH WINI | DATA EXTENDING THE M | ODEL CONCLUSIONS |
|----------------------------|-------------------|------------------------|----------------------|------------------|
| 00 00                      | 000 000           | 000                    | 0                    |                  |
| 000                        | 0000              | 0●                     | 000                  |                  |
|                            | 0                 |                        | 0000000000           |                  |

#### EXAMPLES OF SPATIOTEMPORAL FUNCTIONS

• Model 1:  $X_0 \sim Ga(\lambda_0, 1), X_1 \sim GIG(\lambda_1, \delta, \delta)$  and  $X_2 \sim Ga(\lambda_2, 1)$ 

$$C(s,t) = \sigma^2 \left\{ 1 + \left| \left| s/a \right| \right|^{\alpha} + \left| t/b \right|^{\beta} \right\}^{-\lambda_0} \left\{ 1 + \frac{\left| \left| s/a \right| \right|^{\alpha}}{\delta} \right\}^{-\lambda_1/2} \frac{K_{\lambda_1} \left( 2\delta \sqrt{1 + \frac{\left| \left| s/a \right| \right|^{\alpha}}{\delta}} \right)}{K_{\lambda_1}(2\delta)} \left\{ 1 + \left| t/b \right|^{\beta} \right\}$$

• Model 2: 
$$X_0 \sim Ga(\lambda_0, 1), X_1 \sim InvGa(\nu, 1) \text{ and } X_2 \sim Ga(\lambda_2, 1)$$
  

$$C(s, t) = \sigma^2 \left\{ 1 + ||s/a||^{\alpha} + |t/b|^{\beta} \right\}^{-\lambda_0} \frac{(2||s/a||^{\alpha/2})^{\nu}}{2^{\nu-1}\Gamma(\nu)} \kappa_{\nu} \left( 2||s/a||^{\alpha/2} \right) \left\{ 1 + |t/b|^{\beta} \right\}^{-\lambda_2}.$$

• Model 3:  $X_0 \sim Ga(\lambda_0, 1), X_1 \sim Ga(\lambda_1, 1)$  and  $X_2 \sim Ga(\lambda_2, 1)$ 

 $C(s,t) = \sigma^{2} \left\{ 1 + ||s/a||^{\alpha} + |t/b|^{\beta} \right\}^{-\lambda_{0}} \left\{ 1 + ||s/a||^{\alpha} \right\}^{-\lambda_{1}} \left\{ 1 + |t/b|^{\beta} \right\}^{-\lambda_{2}}$
| SPATIOTEMPORAL MODELING SEI | PARABILITY NONSEPAR | RABILITY IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-----------------------------|---------------------|--------------------------|---------------------|-------------|
| 00 00                       | 000 000             | 000                      | 0                   |             |
| 000                         | 00000               |                          | 000                 |             |
|                             | 0                   |                          | 000000000           |             |

### EXAMPLES OF SPATIOTEMPORAL FUNCTIONS

• Model 1:  $X_0 \sim Ga(\lambda_0, 1), X_1 \sim GIG(\lambda_1, \delta, \delta)$  and  $X_2 \sim Ga(\lambda_2, 1)$ 

$$C(s,t) = \sigma^2 \left\{ 1 + ||s/a||^{\alpha} + |t/b|^{\beta} \right\}^{-\lambda_0} \left\{ 1 + \frac{||s/a||^{\alpha}}{\delta} \right\}^{-\lambda_1/2} \frac{K_{\lambda_1}\left(2\delta\sqrt{1 + \frac{||s/a||^{\alpha}}{\delta}}\right)}{K_{\lambda_1}(2\delta)} \left\{ 1 + |t/b|^{\beta} \right\}$$

• Model 2:  $X_0 \sim Ga(\lambda_0, 1), X_1 \sim InvGa(\nu, 1) \text{ and } X_2 \sim Ga(\lambda_2, 1)$  $C(s, t) = \sigma^2 \left\{ 1 + ||s/a||^{\alpha} + |t/b|^{\beta} \right\}^{-\lambda_0} \frac{(2||s/a||^{\alpha/2})^{\nu}}{2^{\nu-1}\Gamma(\nu)} K_{\nu} \left( 2||s/a||^{\alpha/2} \right) \left\{ 1 + |t/b|^{\beta} \right\}^{-\lambda_2}.$ 

• Model 3:  $X_0 \sim Ga(\lambda_0, 1)$ ,  $X_1 \sim Ga(\lambda_1, 1)$  and  $X_2 \sim Ga(\lambda_2, 1)$ 

 $C(s,t) = \sigma^{2} \left\{ 1 + ||s/a||^{\alpha} + |t/b|^{\beta} \right\}^{-\lambda_{0}} \left\{ 1 + ||s/a||^{\alpha} \right\}^{-\lambda_{1}} \left\{ 1 + |t/b|^{\beta} \right\}^{-\lambda_{2}}$ 

| SPATIOTEMPORAL MODELING SEI | PARABILITY NONSEPAR | RABILITY IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-----------------------------|---------------------|--------------------------|---------------------|-------------|
| 00 00                       | 000 000             | 000                      | 0                   |             |
| 000                         | 00000               |                          | 000                 |             |
|                             | 0                   |                          | 000000000           |             |

### EXAMPLES OF SPATIOTEMPORAL FUNCTIONS

• Model 1:  $X_0 \sim Ga(\lambda_0, 1), X_1 \sim GIG(\lambda_1, \delta, \delta)$  and  $X_2 \sim Ga(\lambda_2, 1)$ 

$$C(s,t) = \sigma^{2} \left\{ 1 + ||s/a||^{\alpha} + |t/b|^{\beta} \right\}^{-\lambda_{0}} \left\{ 1 + \frac{||s/a||^{\alpha}}{\delta} \right\}^{-\lambda_{1}/2} \frac{K_{\lambda_{1}}\left(2\delta\sqrt{1 + \frac{||s/a||^{\alpha}}{\delta}}\right)}{K_{\lambda_{1}}(2\delta)} \left\{ 1 + |t/b|^{\beta} \right\}$$

- Model 2:  $X_0 \sim Ga(\lambda_0, 1), X_1 \sim InvGa(\nu, 1) \text{ and } X_2 \sim Ga(\lambda_2, 1)$  $C(s, t) = \sigma^2 \left\{ 1 + ||s/a||^{\alpha} + |t/b|^{\beta} \right\}^{-\lambda_0} \frac{(2||s/a||^{\alpha/2})^{\nu}}{2^{\nu-1}\Gamma(\nu)} \kappa_{\nu} \left( 2||s/a||^{\alpha/2} \right) \left\{ 1 + |t/b|^{\beta} \right\}^{-\lambda_2}.$
- Model 3:  $X_0 \sim Ga(\lambda_0, 1), X_1 \sim Ga(\lambda_1, 1)$  and  $X_2 \sim Ga(\lambda_2, 1)$

$$C(s,t) = \sigma^{2} \left\{ 1 + ||s/a||^{\alpha} + |t/b|^{\beta} \right\}^{-\lambda_{0}} \left\{ 1 + ||s/a||^{\alpha} \right\}^{-\lambda_{1}} \left\{ 1 + |t/b|^{\beta} \right\}^{-\lambda_{2}}$$



## DEGREE OF SEPARABILITY

It is defined by the correlation between (U, V).

MEASURE OF SEPARABILITY

$$c = corr(U, V) = \frac{Var(X_0)}{\sqrt{(Var(X_0) + Var(X_1))(Var(X_0) + Var(X_2))}}, \quad (4)$$
  
$$0 \le c \le 1.$$

• 0 means separability and 1 means strong nonseparability.

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | 000          | 000             | <b>0</b> 00     | 0                   |             |
| 000                     |              | 000000          |                 | 000                 |             |
|                         |              | 0               |                 | 000000000           |             |
|                         |              |                 |                 | 0000000000000       |             |

## IRISH WIND DATA: MODEL COMPARISON

TABLE: Natural logarithm of the Bayes factor in favour of the nonseparable Model 1 using Newton-Raftery (d = 0.01), Bridge-sampling and Shifted-Gamma ( $\lambda = 0.98$ ) estimators for the marginal likelihood. log(BF) > 5 suggests strong evidence.

|                      | Newton-Raftery | Bridge-Sampling | Shifted-Gamma |
|----------------------|----------------|-----------------|---------------|
| Separable Model 1    | 49             | 46              | 50            |
| Nonseparable Model 2 | 57             | 68              | 42            |
| Nonseparable Model 3 | 6              | 9               | 7             |

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL                     | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|-----------------------------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                                       |             |
| 000                     |              | 000000          |                 | 000                                     |             |
|                         |              | 0               |                 | 000000000000000000000000000000000000000 |             |

## POSTERIOR DISTRIBUTION OF C



FIGURE: Nonseparable model 1: Posterior (solid line) and prior (dashed line) densities for c in (4).

Image: Image:

**ABRIL**, 2011

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                   |             |
| 000                     |              | 000000          |                 | 000                 |             |
|                         |              | 0               |                 | 000000000           |             |
|                         |              |                 |                 |                     |             |

### **EMPIRICAL FIT**



(a) Separable model

(b) Nonseparable model

**ABRIL**, 2011

24/

Plot: Posterior median of the correlation function against empirical correlation at temporal lags zero until five, with black

corresponding to lag 0, red to lag 1, green to lag 2, dark blue to lag 3, light blue to lag 4 and pink to lag 5.

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | 000          | 000             | 000             | •                   |             |
| 000                     |              | 000000          |                 | 000                 |             |
|                         |              | 0               |                 | 000000000           |             |
|                         |              |                 |                 |                     |             |

## **REALISTIC MODELS**

• The model just presented can be easily extended to accommodate realistic features of space-time data as decisions regarding time and space can be taken separately;

$$Z(s,t;U,V) = Z_1(s;U)Z_2(t;V)$$

• • • • • • • • •

ABRIL, 2011

- The following extensions were considered:
  - Nongaussianity;
  - Nonstationarity;
  - Asymmetry.

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                   |             |
| 000                     |              | 000000          |                 | ● <b>○</b> ○        |             |
|                         |              | 0               |                 | 000000000           |             |
|                         |              |                 |                 | 00000000000000      |             |

## ASYMMETRIC MODEL

- Notice the clear lack of fit at lag one.
- This is due to asymmetry of the covariance function at lag one.

• Simple way to address this problem:

$$C^*(s,t)=C(s-\epsilon tw,t),$$

where  $\epsilon$  is a parameter to be estimated and *w* is a unit vector.

- As the asymmetries in this example are mainly functions of differences in longitude, we take w = (0, 1) as suggested by [Stein, 2005].
- In our framework, this is equivalent to replacing the variogram  $\gamma_1(s)$  by  $\gamma_1(s \epsilon tw)$ .

< □ < < □ < < □ < < □ < </li>
 ABRIL, 2011

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                   |             |
| 000                     |              | 000000          |                 | ●OO                 |             |
|                         |              | 0               |                 | 000000000           |             |
|                         |              |                 |                 | 00000000000000      |             |

## ASYMMETRIC MODEL

- Notice the clear lack of fit at lag one.
- This is due to asymmetry of the covariance function at lag one.
- Simple way to address this problem:

$$C^*(s,t)=C(s-\epsilon tw,t),$$

where  $\epsilon$  is a parameter to be estimated and *w* is a unit vector.

- As the asymmetries in this example are mainly functions of differences in longitude, we take w = (0, 1) as suggested by [Stein, 2005].
- In our framework, this is equivalent to replacing the variogram  $\gamma_1(s)$  by  $\gamma_1(s \epsilon t w)$ .

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                   |             |
| 000                     |              | 000000          |                 | ●OO                 |             |
|                         |              | 0               |                 | 000000000           |             |
|                         |              |                 |                 | 00000000000000      |             |

## ASYMMETRIC MODEL

- Notice the clear lack of fit at lag one.
- This is due to asymmetry of the covariance function at lag one.
- Simple way to address this problem:

$$C^*(s,t)=C(s-\epsilon tw,t),$$

where  $\epsilon$  is a parameter to be estimated and *w* is a unit vector.

- As the asymmetries in this example are mainly functions of differences in longitude, we take w = (0, 1) as suggested by [Stein, 2005].
- In our framework, this is equivalent to replacing the variogram  $\gamma_1(s)$  by  $\gamma_1(s \epsilon t w)$ .

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                   |             |
| 000                     |              | 000000          |                 | 000                 |             |
|                         |              | 0               |                 | 000000000           |             |
|                         |              |                 |                 | 0000000000000       |             |

## MODEL COMPARISON

TABLE: Natural logarithm of the Bayes factor in favour of the asymmetric Model 1 with free  $\lambda_0$ . Bayes factors were calculated using Newton-Raftery (d = 0.01), Bridge-sampling and Shifted gamma ( $\lambda = 0.98$ ) estimators for the marginal likelihood. log(BF) > 5 suggests strong evidence.

|                               | Newton-Raftery | Bridge sampling | Shifted gamma |
|-------------------------------|----------------|-----------------|---------------|
| Asym. Model 1 $\lambda_0 = 0$ | 149            | 153             | 148           |
| Nonseparable Model 1          | 166            | 159             | 162           |
| Separable Model 1             | 215            | 205             | 212           |
| Nonseparable Model 2          | 223            | 227             | 205           |
| Nonseparable Model 3          | 172            | 168             | 169           |
| Model of Gneiting et al.      | 206            | 212             | 204           |

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                   |             |
| 000                     |              | 000000          |                 | 000                 |             |
|                         |              | 0               |                 | 0000000000          |             |

### EMPIRICAL FIT



Image: Image:

**ABRIL**, 2011

28/

Plot: Posterior median of the correlation function against empirical correlation at temporal lags zero until five, with black corresponding to lag 0, red to lag 1, green to lag 2, dark blue to lag 3, light blue to lag 4 and pink to lag 5.

53

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                   |             |
| 000                     |              | 000000          |                 | 000                 |             |
|                         |              | 0               |                 | 000000000           |             |
|                         |              |                 |                 | 0000000000000       |             |

## NONGAUSSIANITY

- Now I exemplify how to extend the proposed nonseparable models to accommodate nongaussianity;
- This is a problem of interest in many fields of science such as geology, hydrology and meteorology where extreme events and heterogeneity is often observed;
- I consider the approach of Palacios and Steel [2006] used in spatial data in order to account for nongaussian tail behaviour;

< □ > < @ > <

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                   |             |
| 000                     |              | 000000          |                 | 000                 |             |
|                         |              | 0               |                 | 000000000           |             |
|                         |              |                 |                 | 0000000000000       |             |

## OUTLIERS

- The models will account for individual outliers and regions in space with larger observational variance.
- The latter is quite common in meteorological applications where outliers are often associated with severe weather events such as tornados and hurricanes.
- These events do not usually happen in a single location but cover an extended region.

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                   |             |
| 000                     |              | 000000          |                 | 000                 |             |
|                         |              | 0               |                 | 000000000           |             |

# SPATIOTEMPORAL DATA - EXAMPLE

• Maximum temperature data - Spanish Basque Country (67 stations)





## EXAMPLE

Maximum temperature data - Spanish Basque Country



| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                   |             |
| 000                     |              | 000000          |                 | 000                 |             |
|                         |              | 0               |                 | 000000000           |             |
|                         |              |                 |                 |                     |             |

## MIXING IN SPACE AND TIME

We consider the process

$$\tilde{Z}(\boldsymbol{s},t;\boldsymbol{U},\boldsymbol{V}) = \tilde{Z}_{1}(\boldsymbol{s};\boldsymbol{U})\tilde{Z}_{2}(t;\boldsymbol{V}), \qquad (5)$$

MIXING IN SPACE

$$\tilde{Z}_1(s; U) = \sqrt{1 - \tau^2} \frac{Z_1(s; U)}{\sqrt{\lambda_1(s)}} + \tau \frac{\epsilon(s)}{\sqrt{h(s)}}$$
(6)

MIXING IN TIME

$$\tilde{Z}_2(t; V) = \frac{Z_2(t; V)}{\sqrt{\lambda_2(t)}}$$

<<br/>
<br/>
<br/

ABRIL, 2011

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                   |             |
| 000                     |              | 000000          |                 | 000                 |             |
|                         |              | 0               |                 | 000000000           |             |
|                         |              |                 |                 |                     |             |

## MIXING IN SPACE AND TIME

We consider the process

$$\tilde{Z}(\boldsymbol{s},t;\boldsymbol{U},\boldsymbol{V}) = \tilde{Z}_1(\boldsymbol{s};\boldsymbol{U})\tilde{Z}_2(t;\boldsymbol{V}), \qquad (5)$$

#### MIXING IN SPACE

$$\tilde{Z}_1(\boldsymbol{s}; \boldsymbol{U}) = \sqrt{1 - \tau^2} \frac{Z_1(\boldsymbol{s}; \boldsymbol{U})}{\sqrt{\lambda_1(\boldsymbol{s})}} + \tau \frac{\epsilon(\boldsymbol{s})}{\sqrt{h(\boldsymbol{s})}}$$
(6)

MIXING IN TIME

$$\tilde{Z}_2(t;V) = \frac{Z_2(t;V)}{\sqrt{\lambda_2(t)}} \tag{6}$$

Image: Image:

**ABRIL**, 2011

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                   |             |
| 000                     |              | 000000          |                 | 000                 |             |
|                         |              | 0               |                 | 000000000           |             |
|                         |              |                 |                 |                     |             |

## MIXING IN SPACE AND TIME

We consider the process

$$\tilde{Z}(\boldsymbol{s},t;\boldsymbol{U},\boldsymbol{V}) = \tilde{Z}_1(\boldsymbol{s};\boldsymbol{U})\tilde{Z}_2(t;\boldsymbol{V}), \qquad (5)$$

#### MIXING IN SPACE

$$\tilde{Z}_{1}(s; U) = \sqrt{1 - \tau^{2}} \frac{Z_{1}(s; U)}{\sqrt{\lambda_{1}(s)}} + \tau \frac{\epsilon(s)}{\sqrt{h(s)}}$$
(6)

#### MIXING IN TIME

$$\tilde{Z}_2(t; V) = \frac{Z_2(t; V)}{\sqrt{\lambda_2(t)}}$$
(7)

< □ > < 同 >

ABRIL, 2011

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                   |             |
| 000                     |              | 000000          |                 | 000                 |             |
|                         |              | 0               |                 | 000000000           |             |

MIXING IN SPACE

$$ilde{Z}_1(s; U) = \sqrt{1 - au^2} rac{Z_1(s; U)}{\sqrt{\lambda_1(s)}} + au rac{\epsilon(s)}{\sqrt{h(s)}}$$

- $\lambda_1(s)$  accounts for regions in space with larger observational variance.
- $ilde{Z}$  is multivariate Gaussian with covariance matrix

$$\operatorname{Cov}(\tilde{Z}_{ij}, \tilde{Z}_{i'j'}) = \sigma^2 M_0(-\gamma_1 - \gamma_2) \left[ (1 - \tau^2) \frac{M_1(-\gamma_1)}{\sqrt{\lambda_{1i}\lambda_{1i'}}} + \tau^2 \frac{I(s_i = s_{i'})}{\sqrt{h_i h_{i'}}} \right] M_2(-\gamma_2),$$
(8)
where  $\lambda_{1i} = \lambda_1(s_i).$ 

ABRIL, 2011

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                   |             |
| 000                     |              | 000000          |                 | 000                 |             |
|                         |              | 0               |                 | 000000000           |             |

MIXING IN SPACE

$$ilde{Z}_1(s; U) = \sqrt{1 - au^2} rac{Z_1(s; U)}{\sqrt{\lambda_1(s)}} + au rac{\epsilon(s)}{\sqrt{h(s)}}$$

•  $\lambda_1(s)$  accounts for regions in space with larger observational variance.

Z is multivariate Gaussian with covariance matrix

$$\operatorname{Cov}(\tilde{Z}_{ij}, \tilde{Z}_{i'j'}) = \sigma^2 M_0(-\gamma_1 - \gamma_2) \left[ (1 - \tau^2) \frac{M_1(-\gamma_1)}{\sqrt{\lambda_{1i}\lambda_{1i'}}} + \tau^2 \frac{I(s_i = s_{i'})}{\sqrt{h_i h_{i'}}} \right] M_2(-\gamma_2),$$
(8)
where  $\lambda_{1i} = \lambda_1(s_i).$ 

□ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → </li>
 ABRIL, 2011

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                   |             |
| 000                     |              | 000000          |                 | 000                 |             |
|                         |              | 0               |                 | 000000000           |             |

MIXING IN SPACE

$$\tilde{Z}_1(s; U) = \sqrt{1 - \tau^2} \frac{Z_1(s; U)}{\sqrt{\lambda_1(s)}} + \tau \frac{\epsilon(s)}{\sqrt{h(s)}}$$

- $\lambda_1(s)$  accounts for regions in space with larger observational variance.
- $\tilde{Z}$  is multivariate Gaussian with covariance matrix

$$\operatorname{Cov}(\tilde{Z}_{ij}, \tilde{Z}_{i'j'}) = \sigma^2 M_0(-\gamma_1 - \gamma_2) \left[ (1 - \tau^2) \frac{M_1(-\gamma_1)}{\sqrt{\lambda_{1i}\lambda_{1i'}}} + \tau^2 \frac{I(\boldsymbol{s}_i = \boldsymbol{s}_{i'})}{\sqrt{h_i h_{i'}}} \right] M_2(-\gamma_2),$$
(8)
where  $\lambda_{1i} = \lambda_1(\boldsymbol{s}_i).$ 

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                   |             |
| 000                     |              | 000000          |                 | 000                 |             |
|                         |              | 0               |                 | 000000000           |             |

MIXING IN SPACE

$$ilde{Z}_1(s; U) = \sqrt{1 - au^2} rac{Z_1(s; U)}{\sqrt{\lambda_1(s)}} + au rac{\epsilon(s)}{\sqrt{h(s)}}$$

- $\lambda_1(s)$  accounts for regions in space with larger observational variance.
- $\tilde{Z}$  is multivariate Gaussian with covariance matrix

$$\operatorname{Cov}(\tilde{Z}_{ij}, \tilde{Z}_{i'j'}) = \sigma^2 M_0(-\gamma_1 - \gamma_2) \left[ (1 - \tau^2) \frac{M_1(-\gamma_1)}{\sqrt{\lambda_{1i}\lambda_{1i'}}} + \tau^2 \frac{I(\boldsymbol{s}_i = \boldsymbol{s}_{i'})}{\sqrt{h_i h_{i'}}} \right] M_2(-\gamma_2),$$
(8)
where  $\lambda_{1i} = \lambda_1(\boldsymbol{s}_i).$ 

ABRIL, 2011

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY    | IRISH WIND DATA | EXTENDING THE MODEL    | CONCLUSIONS |
|-------------------------|--------------|--------------------|-----------------|------------------------|-------------|
| 00<br>000               | 000          | 000<br>000000<br>0 | 000             | 0<br>000<br>0000000000 |             |

- Scale mixing introduces a potential problem with the continuity of the resulting random function Z.
- Thus  $\lambda_1(s)$  needs to be correlated to induce m.s. continuity of  $\tilde{Z}_1(s; U)$ , this is equivalent to  $E[\lambda_1^{-1/2}(s_i)\lambda_1^{-1/2}(s_{i'})] \rightarrow E[\lambda_1^{-1}(s_i)]$  as  $s_i \rightarrow s_{i'}$ .
- Example:  $\lambda_1(s) = \lambda, \forall s \Rightarrow$  Student-t process.
- But this does not account for regions with larger variance.
- We want to account for different variances in different regions.
- Solution: glg process where {ln(λ<sub>1</sub>(s)); s ∈ D} is a gaussian process with mean -<sup>ν</sup>/<sub>2</sub> and covariance structure νC<sub>1</sub>(.).
   [Palacios and Steel, 2006]

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY    | IRISH WIND DATA | EXTENDING THE MODEL                        | CONCLUSIONS |
|-------------------------|--------------|--------------------|-----------------|--------------------------------------------|-------------|
| 00<br>000               | 000          | 000<br>000000<br>0 | 000             | 0<br>000<br>0000000000<br>0000000000000000 |             |

- Scale mixing introduces a potential problem with the continuity of the resulting random function Z.
- Thus  $\lambda_1(s)$  needs to be correlated to induce m.s. continuity of  $\tilde{Z}_1(s; U)$ , this is equivalent to  $E[\lambda_1^{-1/2}(s_i)\lambda_1^{-1/2}(s_{i'})] \rightarrow E[\lambda_1^{-1}(s_i)]$  as  $s_i \rightarrow s_{i'}$ .
- Example:  $\lambda_1(s) = \lambda, \forall s \Rightarrow$  Student-t process.
- But this does not account for regions with larger variance.
- We want to account for different variances in different regions.
- Solution: glg process where {ln(λ<sub>1</sub>(s)); s ∈ D} is a gaussian process with mean -<sup>ν</sup>/<sub>2</sub> and covariance structure νC<sub>1</sub>(.). [Palacios and Steel, 2006]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >



- Scale mixing introduces a potential problem with the continuity of the resulting random function Z.
- Thus  $\lambda_1(s)$  needs to be correlated to induce m.s. continuity of  $\tilde{Z}_1(s; U)$ , this is equivalent to  $E[\lambda_1^{-1/2}(s_i)\lambda_1^{-1/2}(s_{i'})] \to E[\lambda_1^{-1}(s_i)]$  as  $s_i \to s_{i'}$ .
- Example:  $\lambda_1(s) = \lambda, \forall s \Rightarrow$  Student-t process.
- But this does not account for regions with larger variance.
- We want to account for different variances in different regions.
- Solution: glg process where {ln(λ<sub>1</sub>(s)); s ∈ D} is a gaussian process with mean -<sup>ν</sup>/<sub>2</sub> and covariance structure νC<sub>1</sub>(.). [Palacios and Steel, 2006]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >



- Scale mixing introduces a potential problem with the continuity of the resulting random function Z.
- Thus  $\lambda_1(s)$  needs to be correlated to induce m.s. continuity of  $\tilde{Z}_1(s; U)$ , this is equivalent to  $E[\lambda_1^{-1/2}(s_i)\lambda_1^{-1/2}(s_{i'})] \to E[\lambda_1^{-1}(s_i)]$  as  $s_i \to s_{i'}$ .
- Example:  $\lambda_1(s) = \lambda, \forall s \Rightarrow$  Student-t process.
- But this does not account for regions with larger variance.
- We want to account for different variances in different regions.
- Solution: glg process where {*ln*(λ<sub>1</sub>(s)); s ∈ D} is a gaussian process with mean -<sup>ν</sup>/<sub>2</sub> and covariance structure νC<sub>1</sub>(.). [Palacios and Steel, 2006]

 $\langle \Box \rangle \langle \Box$ 



MIXING IN SPACE

$$ilde{Z}_1(m{s};m{U}) = \sqrt{1- au^2} rac{Z_1(m{s};m{U})}{\sqrt{\lambda_1(m{s})}} + aurac{\epsilon(m{s})}{\sqrt{h(m{s})}}$$

#### • h(s) accounts for traditional outliers (different nugget effects).

- We consider the detection of outliers jointly in the estimation procedure and the variable  $h_i = h(s_i), i = 1, ..., l$  are considered latent variables
- Their posterior distribution indicate outlying observations (*h<sub>i</sub>* close to 0).
- We consider



MIXING IN SPACE

$$ilde{Z}_1(m{s};m{U}) = \sqrt{1- au^2} rac{Z_1(m{s};m{U})}{\sqrt{\lambda_1(m{s})}} + aurac{\epsilon(m{s})}{\sqrt{h(m{s})}}$$

- h(s) accounts for traditional outliers (different nugget effects).
- We consider the detection of outliers jointly in the estimation procedure and the variable  $h_i = h(s_i), i = 1, ..., I$  are considered latent variables
- Their posterior distribution indicate outlying observations (*h<sub>i</sub>* close to 0).
- We consider

•  $log(h_i) \sim N(-\nu_h/2, \nu_h)$ •  $h_i \sim Ga(1/\nu_h, 1/\nu_h)$ .



MIXING IN SPACE

$$ilde{Z}_1(m{s};m{U}) = \sqrt{1- au^2} rac{Z_1(m{s};m{U})}{\sqrt{\lambda_1(m{s})}} + aurac{\epsilon(m{s})}{\sqrt{h(m{s})}}$$

- h(s) accounts for traditional outliers (different nugget effects).
- We consider the detection of outliers jointly in the estimation procedure and the variable  $h_i = h(s_i), i = 1, ..., I$  are considered latent variables
- Their posterior distribution indicate outlying observations (*h<sub>i</sub>* close to 0).
- We consider

•  $\log(h_l) \sim N(-\nu_h/2, \nu_h)$ •  $h_l \sim Ga(1/\nu_h, 1/\nu_h).$ 

MIXING IN SPACE

$$ilde{Z}_1(m{s};m{U}) = \sqrt{1- au^2} rac{Z_1(m{s};m{U})}{\sqrt{\lambda_1(m{s})}} + aurac{\epsilon(m{s})}{\sqrt{h(m{s})}}$$

- h(s) accounts for traditional outliers (different nugget effects).
- We consider the detection of outliers jointly in the estimation procedure and the variable  $h_i = h(s_i), i = 1, ..., I$  are considered latent variables
- Their posterior distribution indicate outlying observations (*h<sub>i</sub>* close to 0).
- We consider

• 
$$log(h_i) \sim N(-\nu_h/2,\nu_h)$$
  
•  $h \sim Ga(1/\nu_h, 1/\nu_h)$ 

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                   |             |
| 000                     |              | 000000          |                 | 000                 |             |
|                         |              | 0               |                 | 0000000000          |             |

# PROCESS $\lambda_2(t)$

MIXING IN TIME

$$ilde{Z}_2(t;V) = rac{Z_2(t;V)}{\sqrt{\lambda_2(t)}}$$

- $\lambda_2(t)$  accounts for sections in time with larger observational variance.
- This can be seen as a way to address the issue of volatility clustering, which is common in finantial time series data.
- We consider the log gaussian process where {*ln*(λ<sub>2</sub>(*t*)); *t* ∈ *T*} is a gaussian process with mean -<sup>ν<sub>2</sub></sup>/<sub>2</sub> and covariance structure ν<sub>2</sub>C<sub>2</sub>(.).

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                   |             |
| 000                     |              | 000000          |                 | 000                 |             |
|                         |              | 0               |                 | 0000000000          |             |

PROCESS  $\lambda_2(t)$ 

MIXING IN TIME

$$ilde{Z}_2(t;V) = rac{Z_2(t;V)}{\sqrt{\lambda_2(t)}}$$

- $\lambda_2(t)$  accounts for sections in time with larger observational variance.
- This can be seen as a way to address the issue of volatility clustering, which is common in finantial time series data.
- We consider the log gaussian process where {*ln*(λ<sub>2</sub>(*t*)); *t* ∈ *T*} is a gaussian process with mean -<sup>ν<sub>2</sub></sup>/<sub>2</sub> and covariance structure ν<sub>2</sub>C<sub>2</sub>(.).

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                   |             |
| 000                     |              | 000000          |                 | 000                 |             |
|                         |              | 0               |                 | 0000000000          |             |

PROCESS  $\lambda_2(t)$ 

#### MIXING IN TIME

$$ilde{Z}_2(t;V) = rac{Z_2(t;V)}{\sqrt{\lambda_2(t)}}$$

- $\lambda_2(t)$  accounts for sections in time with larger observational variance.
- This can be seen as a way to address the issue of volatility clustering, which is common in finantial time series data.
- We consider the log gaussian process where {*ln*(λ<sub>2</sub>(*t*)); *t* ∈ *T*} is a gaussian process with mean -<sup>ν<sub>2</sub></sup>/<sub>2</sub> and covariance structure ν<sub>2</sub>C<sub>2</sub>(.).

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                   |             |
| 000                     |              | 000000          |                 | 000                 |             |
|                         |              | 0               |                 | 000000000           |             |
|                         |              |                 |                 |                     |             |

# PREDICTIONS

- (λ<sub>1i</sub>, h<sub>i</sub>, λ<sub>2j</sub>) are considered latent variables and sampled in our MCMC sampler.
- Given (λ<sub>1i</sub>, h<sub>i</sub>, λ<sub>2j</sub>) the process is gaussian and we can predict at unobserved locations and time points.
- We compare the predictive performance using proper scoring rules [Gneiting and Raftery, 2008]:
  - $LPS(\rho, x) = -log(\rho(x))$
  - $= IS(q_1, q_2, x) = (q_2 q_1) + \frac{1}{2}(q_1 x)I(x < q_1) + \frac{1}{2}(x q_2)I(x > q_2). We use \xi = 0.05 resulting in a 95% (x q_2). We use \xi = 0.05 resulting in a 95% (x q_2). We use \xi = 0.05 resulting in a 95% (x q_2). We use \xi = 0.05 resulting in a 95% (x q_2). We use \xi = 0.05 resulting in a 95% (x q_2). We use \xi = 0.05 resulting in a 95% (x q_2). We use \xi = 0.05 resulting in a 95% (x q_2). We use \xi = 0.05 resulting in a 95% (x q_2). We use \xi = 0.05 resulting in a 95% (x q_2). We use \xi = 0.05 resulting in a 95% (x q_2). We use \xi = 0.05 resulting in a 95% (x q_2). We use \xi = 0.05 resulting in a 95% (x q_2). We use \xi = 0.05 resulting in a 95% (x q_2). We use \xi = 0.05 resulting in a 95% (x q_2). We use \xi = 0.05 resulting in a 95% (x q_2). We use \xi = 0.05 resulting in a 95% (x q_2). We use \xi = 0.05 resulting in a 95% (x q_2). We use \xi = 0.05 resulting in a 95% (x q_2). We use \xi = 0.05 resulting in a 95% (x q_2). We use \xi = 0.05 resulting in a 95% (x q_2). We use \xi = 0.05 resulting in a 95% (x q_2). We use \xi = 0.05 resulting in a 95% (x q_2). We use \xi = 0.05 resulting in a 95% (x q_2). We use \xi = 0.05 resulting in a 95\% (x q_2). We use \xi = 0.05 resulting in a 95\% (x q_2). We use \xi = 0.05 resulting in a 95\% (x q_2). We use \xi = 0.05 resulting in a 95\% (x q_2). We use \xi = 0.05 resulting in a 95\% (x q_2). We use \xi = 0.05 resulting in a 95\% (x q_2). We use \xi = 0.05 resulting in a 95\% (x q_2). We use \xi = 0.05 resulting in a 95\% (x q_2). We use \xi = 0.05 resulting in a 95\% (x q_2). We use \xi = 0.05 resulting in a 95\% (x q_2). We use \xi = 0.05 resulting in a 95\% (x q_2). We use \xi = 0.05 resulting in a 95\% (x q_2). We use \xi = 0.05 resulting in a 95\% (x q_2). We use \xi = 0.05 resulting in a 95\% (x q_2). We use \xi = 0.05 resulting in a 95\% (x q_2). We use \xi = 0.05 resulting in a 95\% (x q_2). We use \xi = 0.05 resulting in a 95\% (x q_2). We use \xi = 0.05 resulting in a 95\% (x q_2). We use \xi = 0.05 resulting in a 95\% (x q_2). We use \xi = 0.05 resu$



| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                   |             |
| 000                     |              | 000000          |                 | 000                 |             |
|                         |              | 0               |                 | 000000000           |             |
|                         |              |                 |                 | 0000000000000       |             |

# PREDICTIONS

- (λ<sub>1i</sub>, h<sub>i</sub>, λ<sub>2j</sub>) are considered latent variables and sampled in our MCMC sampler.
- Given (λ<sub>1i</sub>, h<sub>i</sub>, λ<sub>2j</sub>) the process is gaussian and we can predict at unobserved locations and time points.
- We compare the predictive performance using proper scoring rules [Gneiting and Raftery, 2008]:
  - LPS(p, x) = −log(p(x))
  - $IS(q_1, q_2; x) = (q_2 q_1) + \frac{2}{\ell}(q_1 x)I(x <$ 
    - $(q_1) + \frac{2}{\xi}(x q_2)I(x > q_2)$ . We use  $\xi = 0.05$  resulting in a 95% credible interval.
| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL                     | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|-----------------------------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                                       |             |
| 000                     |              | 000000          |                 | 000                                     |             |
|                         |              | 0               |                 | 000000000                               |             |
|                         |              |                 |                 | 000000000000000000000000000000000000000 |             |

# PREDICTIONS

- (λ<sub>1i</sub>, h<sub>i</sub>, λ<sub>2j</sub>) are considered latent variables and sampled in our MCMC sampler.
- Given (λ<sub>1i</sub>, h<sub>i</sub>, λ<sub>2j</sub>) the process is gaussian and we can predict at unobserved locations and time points.
- We compare the predictive performance using proper scoring rules [Gneiting and Raftery, 2008]:
  - LPS(p, x) = -log(p(x))
  - $IS(q_1, q_2; x) = (q_2 q_1) + \frac{2}{\xi}(q_1 x)I(x < q_1) + \frac{2}{\xi}(x q_2)I(x > q_2)$ . We use  $\xi = 0.05$  resulting in a 95% credible interval.

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                   |             |
| 000                     |              | 000000          |                 | 000                 |             |
|                         |              | 0               |                 | 000000000           |             |
|                         |              |                 |                 | 0000000000000       |             |

# PREDICTIONS

- $(\lambda_{1i}, h_i, \lambda_{2j})$  are considered latent variables and sampled in our MCMC sampler.
- Given (λ<sub>1i</sub>, h<sub>i</sub>, λ<sub>2j</sub>) the process is gaussian and we can predict at unobserved locations and time points.
- We compare the predictive performance using proper scoring rules [Gneiting and Raftery, 2008]:

• 
$$LPS(p, x) = -log(p(x))$$

•  $IS(q_1, q_2; x) = (q_2 - q_1) + \frac{2}{\xi}(q_1 - x)I(x < q_1) + \frac{2}{\xi}(x - q_2)I(x > q_2)$ . We use  $\xi = 0.05$  resulting in a 95% credible interval.

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                   |             |
| 000                     |              | 000000          |                 | 000                 |             |
|                         |              | 0               |                 | 000000000           |             |
|                         |              |                 |                 | ●000000000000       |             |

#### SIMULATED EXAMPLE: DATA CONTAMINATION

- This data set has I = 30 locations and J = 30 time points generated from a Gaussian model with no nugget effect ( $\tau^2 = 0$ ).
- The covariance model is nonseparable Cauchy ( $X_i \sim Ga(\lambda_i, 1)$ , i = 0, 1, 2) in space and time with c = 0.5.
- We contaminated this data set with different kinds of "outliers" in order to see the performance of the proposed models in each situation.

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                   |             |
| 000                     |              | 000000          |                 | 000                 |             |
|                         |              | 0               |                 | 000000000           |             |
|                         |              |                 |                 | •000000000000       |             |

#### SIMULATED EXAMPLE: DATA CONTAMINATION

- This data set has I = 30 locations and J = 30 time points generated from a Gaussian model with no nugget effect ( $\tau^2 = 0$ ).
- The covariance model is nonseparable Cauchy ( $X_i \sim \text{Ga}(\lambda_i, 1)$ , i = 0, 1, 2) in space and time with c = 0.5.
- We contaminated this data set with different kinds of "outliers" in order to see the performance of the proposed models in each situation.

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                   |             |
| 000                     |              | 000000          |                 | 000                 |             |
|                         |              | 0               |                 | 000000000           |             |
|                         |              |                 |                 | •000000000000       |             |

#### SIMULATED EXAMPLE: DATA CONTAMINATION

- This data set has I = 30 locations and J = 30 time points generated from a Gaussian model with no nugget effect ( $\tau^2 = 0$ ).
- The covariance model is nonseparable Cauchy ( $X_i \sim \text{Ga}(\lambda_i, 1)$ , i = 0, 1, 2) in space and time with c = 0.5.
- We contaminated this data set with different kinds of "outliers" in order to see the performance of the proposed models in each situation.

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                   |             |
| 000                     |              | 000000          |                 | 000                 |             |
|                         |              | 0               |                 | 000000000           |             |
|                         |              |                 |                 | 000000000000        |             |

#### SPATIAL DOMAIN



• The proposal for  $\lambda_{1i}$ ,  $h_i$ , i = 1, ..., l in the MCMC sampler is constructed by dividing the observations in blocks defined by position in the spatial domain.

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                   |             |
| 000                     |              | 000000          |                 | 000                 |             |
|                         |              | 0               |                 | 000000000           |             |
|                         |              |                 |                 |                     |             |

# DATA 1 (TRADITIONAL OUTLIER) - DESCRIPTION

One location was selected at random (location 7) and a random increment from Unif(1.0, 1.5) times the standard deviation was added to each observation for this location for the first 20 time points.



## ESTIMATED CORRELATION FUNCTION - $t_0 = 1$



(c) Nongaussian with *h* and  $\lambda_1$  (d) Gaussian (Uncontaminated data)

42/



## Nongaussian model with $\lambda_1$



(a) Variance for each location.

(b) Median of  $\sigma_i^2$  vs. distance from obs. 7.



# Nongaussian model with h (lognormal)



**ABRIL**, 2011

147

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                   |             |
| 000                     |              | 000000          |                 | 000                 |             |
|                         |              | 0               |                 | 000000000           |             |
|                         |              |                 |                 | 0000000000000       |             |

# Nongaussian model with $\lambda_1$ and h



(a) Variance for each location.



(c) 
$$\lambda_{1i}, i = 1, \dots, 30.$$



(b) Nugget for each location.



45/

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL                     | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|-----------------------------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                                       |             |
| 000                     |              | 000000          |                 | 000                                     |             |
|                         |              | 0               |                 | 000000000                               |             |
|                         |              |                 |                 | 000000000000000000000000000000000000000 |             |

### TEMPERATURE DATA - MODEL

Mean function:

$$\mu(\boldsymbol{s},t) = \delta_0 + \delta_1 \boldsymbol{s}_1 + \delta_2 \boldsymbol{s}_2 + \delta_3 \boldsymbol{h} + \delta_4 t + \delta_5 t^2$$

•  $\tilde{Z}$  is multivariate Gaussian with covariance matrix

$$\operatorname{Cov}(\tilde{Z}_{ij}, \tilde{Z}_{i'j'}) = \sigma^2 M_0(-\gamma_1 - \gamma_2) \left[ (1 - \tau^2) \frac{M_1(-\gamma_1)}{\sqrt{\lambda_{1i}\lambda_{1i'}}} + \tau^2 \frac{I(s_i = s_{i'})}{\sqrt{h_i h_{i'}}} \right] M_2(-\gamma_2),$$
(9)

where  $\lambda_{1i} = \lambda_1(s_i)$ .

•  $M_0$ ,  $M_1$  and  $M_2$  are Cauchy covariance functions.

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL                     | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|-----------------------------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                                       |             |
| 000                     |              | 000000          |                 | 000                                     |             |
|                         |              | 0               |                 | 000000000000000000000000000000000000000 |             |

### TEMPERATURE DATA - MODEL

• Mean function:

$$\mu(\boldsymbol{s},t) = \delta_0 + \delta_1 \boldsymbol{s}_1 + \delta_2 \boldsymbol{s}_2 + \delta_3 \boldsymbol{h} + \delta_4 t + \delta_5 t^2$$

•  $\tilde{Z}$  is multivariate Gaussian with covariance matrix

$$\operatorname{Cov}(\tilde{Z}_{ij},\tilde{Z}_{i'j'}) = \sigma^2 M_0(-\gamma_1 - \gamma_2) \left[ (1 - \tau^2) \frac{M_1(-\gamma_1)}{\sqrt{\lambda_{1i}\lambda_{1i'}}} + \tau^2 \frac{I(s_i = s_{i'})}{\sqrt{h_i h_{i'}}} \right] M_2(-\gamma_2),$$
(9)

ABRIL, 2011

where  $\lambda_{1i} = \lambda_1(\mathbf{s}_i)$ .

•  $M_0$ ,  $M_1$  and  $M_2$  are Cauchy covariance functions.

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY    | IRISH WIND DATA | EXTENDING THE MODEL                             | CONCLUSIONS |
|-------------------------|--------------|--------------------|-----------------|-------------------------------------------------|-------------|
| 00                      | 000          | 000<br>000000<br>0 | 000             | 0<br>000<br>000000000<br>0000000000000000000000 |             |

## LIKELIHOOD

- In order to calculate the likelihood function we need to invert a matrix with dimension  $2077 \times 2077$ .
- We approximate the likelihood by using conditional distributions.
- We consider a partition of Z into subvectors  $Z_1, ..., Z_{31}$  where  $Z_j = (Z(s_1, t_j), ..., Z(s_{67}, t_j))'$  and we define  $Z_{(j)} = (Z_{j-L+1}, ..., Z_j)$ . Then

$$p(z|\phi) \approx p(z_1|\phi) \prod_{j=2}^{31} p(z_j|z_{(j-1)},\phi).$$
 (10)

< □ → < □ → < □ → < □ → ABRIL, 2011

- This means the distribution of  $Z_j$  will only depend on the observations in space for the previous *L* time points.
- In this application we used L = 5 to make the MCMC feasible.

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL                     | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|-----------------------------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                                       |             |
| 000                     |              | 000000          |                 | 000                                     |             |
|                         |              | 0               |                 | 000000000000000000000000000000000000000 |             |

# BAYES FACTOR

TABLE: The natural logarithm of the Bayes factor in favor of the model in the column versus Gaussian model using Shifted-Gamma ( $\lambda = 0.98$ ) estimator for the predictive density of *z*.

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                   |             |
| 000                     |              | 000000          |                 | 000                 |             |
|                         |              | 0               |                 | 000000000           |             |
|                         |              |                 |                 | 000000000000000     |             |

## MODEL COMPARISON

| model                       | Average width | ĪŜ   | LPS    |
|-----------------------------|---------------|------|--------|
| Gaussian                    | 3.78          | 4.35 | 97.25  |
| h                           | 3.83          | 4.34 | 112.56 |
| $\lambda_1$                 | 3.74          | 4.36 | 107.43 |
| $\lambda_1 \& h$            | 3.75          | 4.48 | 117.20 |
| $\lambda_2$                 | 3.73          | 3.94 | 76.73  |
| $\lambda_2 \& h$            | 3.73          | 3.87 | 77.60  |
| $\lambda_1 \& \lambda_2$    | 4.51          | 4.65 | 96.35  |
| $\lambda_1, h \& \lambda_2$ | 3.84          | 4.02 | 90.30  |

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                   |             |
| 000                     |              | 000000          |                 | 000                 |             |
|                         |              | 0               |                 | 0000000000          |             |
|                         |              |                 |                 | 0000000000000       |             |

# Model with h and $\lambda_2$





## PREDICTED TEMPERATURE AT THE OUT-OF-SAMPLE STATIONS



(d) Model with  $\lambda_2 \& h$ .

(e) Model with  $\lambda_2 \& h$ . (f) Model with  $\lambda_{21} \& h$ .

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                   |             |
| 000                     |              | 000000          |                 | 000                 |             |
|                         |              | 0               |                 | 000000000           |             |
| 000                     |              | 000000          |                 | 000                 |             |

- The resulting model has very useful theoretical properties [Fonseca and Steel, 2011];
- For practical modelling purposes, I suggest a number of different parameterisations, leading to a variety of special cases;
- The examples clearly show the overwhelming data support for our proposed covariance functions.

< □ > < ☐ > < ĀRRIL, 2011

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                   |             |
| 000                     |              | 000000          |                 | 000                 |             |
|                         |              | 0               |                 | 000000000           |             |
|                         |              |                 |                 |                     |             |

- The resulting model has very useful theoretical properties [Fonseca and Steel, 2011];
- For practical modelling purposes, I suggest a number of different parameterisations, leading to a variety of special cases;
- The examples clearly show the overwhelming data support for our proposed covariance functions.

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                   |             |
| 000                     |              | 000000          |                 | 000                 |             |
|                         |              | 0               |                 | 000000000           |             |
|                         |              |                 |                 |                     |             |

- The resulting model has very useful theoretical properties [Fonseca and Steel, 2011];
- For practical modelling purposes, I suggest a number of different parameterisations, leading to a variety of special cases;
- The examples clearly show the overwhelming data support for our proposed covariance functions.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

| SPATIOTEMPORAL MODELING | SEPARABILITY | NONSEPARABILITY | IRISH WIND DATA | EXTENDING THE MODEL | CONCLUSIONS |
|-------------------------|--------------|-----------------|-----------------|---------------------|-------------|
| 00                      | 000          | 000             | 000             | 0                   |             |
| 000                     |              | 000000          |                 | 000                 |             |
|                         |              | 0               |                 | 000000000           |             |

- The resulting model has very useful theoretical properties [Fonseca and Steel, 2011];
- For practical modelling purposes, I suggest a number of different parameterisations, leading to a variety of special cases;
- The examples clearly show the overwhelming data support for our proposed covariance functions.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 Spatiotemporal modeling
 Separability
 Nonseparability
 Irish wind data
 Extending the model
 conclusions

 00
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

#### REFERENCES

<<br/>
<<br/>
<br/>
<br

ABRIL, 2011

3

53/

|   | N Cressie and H-C Huang                                                                                                                                                                  |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Classes of Nonseparable, Spatio-Temporal Stationary Covariance<br>Functions                                                                                                              |
|   | Journal of the American Statistical Association. (94) 1330–1340, 1999.                                                                                                                   |
|   | T Fonseca and M F J Steel<br>A General Class of Nonseparable Space-time Covariance Models<br><i>Environmetrics</i> , (22) 224–242, 2011.                                                 |
|   | M Fuentes and J M Davis and G M Lackmann<br>Modeling and predicting complex space-time structures and patterns of<br>coastal wind fields.<br><i>Environmetrics</i> . (16):449–464, 2005. |
| E | T Gneiting<br>Nonseparable, Stationary Covariance Functions for Space-Time Data<br>Journal of the American Statistical Association. (97) 590-600, 2002.                                  |
| P | T Gneiting and A E Raftery<br>Strictly proper scoring rules, prediction and estimation<br>JASA. (102) 360–378, 2007.                                                                     |
| P | J Haslett and A E Raftery<br>Space-Time Modeling With Long-Memory Dependence: Assessing<br>Ireland's Wind-Power Resource                                                                 |
| _ | Applied Statistics. (38) 1–50, 1989.                                                                                                                                                     |
|   | C Ma<br>Spatio-temporal covariance functions generated by mixtures<br>Mathematical geology. (34) 965–975, 2002.                                                                          |
|   | M B Palacios and M F J Steel<br>Non-Gaussian Bayesian Geostatistical Modeling<br>Journal of the American Statistical Association (101) 604–618, 2006                                     |
| R | M L Stein                                                                                                                                                                                |

Space-Time Covariance Functions Journal of the American Statistical Association, (100) 310–321, 2005.