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(CBPF-IMPA-PUC-UFF-UFRJ)

IME-UFF, Outubro 02, 2013



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Contents
1 What is really quantization? 4

2 Integral quantization 8

3 Weyl-Heisenberg covariant integral quantization(s) 16

4 Affine quantization 32

5 Conclusion 40

[1] H Bergeron and J.-P G Integral quantizations with two basic examples (2013), arXiv:1308.2348
[quant-ph]

[2] S.T. Ali, J.-P Antoine, and J.-P G Coherent States, Wavelets and their Generalizations (Graduate
Texts in Mathematics, Springer, New York, 2000), 2nd Edition to be published, 2013.

[3] H. Bergeron, E. M. F. Curado, J.-P.G. and Ligia M. C. S. Rodrigues, Integral quantization: Weyl-
Heisenberg versus affine group, to be published in Proceedings of the 8th Symposium on Quantum
Theory and Symmetries, El Colegio Nacional, Mexico City, 5-9 August, 2013, Ed. K.B. Wolf, J.
Phys.: Conf. Ser. (2013)

[4] H Bergeron, A Dapor, J-P G and P Małkiewicz, Wavelet Quantum Cosmology (2013);
arXiv:1305.0653 [gr-qc]

[5] H Bergeron, A Dapor, J-P G and P Małkiewicz, Towards singularity-free cosmology: coherent state
quantization submitted, (2013)



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

 1

TMP

ISBN 978-1-4614-8534-6

Theoretical and Mathematical Physics

S. T. Ali
J-P Antoine
J-P. Gazeau

Coherent States, 
Wavelets, 
and Their 
Generalizations
Second Edition

Coherent States, W
avelets, and Their 

Generalizations
Ali · Antoine · Gazeau

2nd Ed.

Theoretical and Mathematical Physics

S. T. Ali · J-P Antoine · J-P. Gazeau

Coherent States, Wavelets, and Their Generalizations
Second Edition

This second edition is fully updated, covering in particular new types of coherent states 
(the so-called Gazeau-Klauder coherent states, nonlinear coherent states, squeezed 
states, as used now routinely in quantum optics) and various generalizations of wavelets 
(wavelets on manifolds, curvelets, shearlets, etc.). In addition, it contains a new chapter 
on coherent state quantization and the related probabilistic aspects. As a survey of the 
theory of coherent states, wavelets, and some of their generalizations, it emphasizes 
mathematical principles, subsuming the theories of both wavelets and coherent states 
into a single analytic structure. The approach allows the user to take a classical-like 
view of quantum states in physics.

Starting from the standard theory of coherent states over Lie groups, the authors 
generalize the formalism by associating coherent states to group representations that are 
square integrable over a homogeneous space; a further step allows one to dispense with 
the group context altogether. In this context, wavelets can be generated from coherent 
states of the affine group of the real line, and higher-dimensional wavelets arise from 
coherent states of other groups. The unified background makes transparent an entire 
range of properties of wavelets and coherent states. Many concrete examples, such as 
coherent states from semisimple Lie groups, Gazeau-Klauder coherent states, coherent 
states for the relativity groups, and several kinds of wavelets, are discussed in detail. The 
book concludes with a palette of potential applications, from the quantum physically 
oriented, like the quantum-classical transition or the construction of adequate states in 
quantum information, to the most innovative techniques to be used in data processing.

Intended as an introduction to current research for graduate students and others 
entering the field, the mathematical discussion is self-contained. With its extensive 
references to the research literature, the first edition of the book is already a proven 
compendium for physicists and mathematicians active in the field, and with full 
coverage of the latest theory and results the revised second edition is even more valuable.

Physics
ISSN 1864-5879

9 781461 485346



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

1. What is really quantization?
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What is really ...?
• In digital signal processing: quantization maps a large set of input values to a smaller set

such as rounding values to some unit of precision. Typically, a change of scale.

• In physics or mathematics, the term has a different meaning. For instance, the perplexing
“Quantization can be any procedure that associates a quantum mechanical observable to a
given classical dynamical variable”.a

• Or even more perplexing: “ First quantization is a mystery. It is the attempt to get from a
classical description of a physical system to a quantum description of the “same” system.
Now it doesn’t seem to be true that God created a classical universe on the first day and then
quantized it on the second day...”b

• Or the following: “ We quantize things we do not really know to obtain things most of which
we are unable to measure”c

• The basic procedure, named “canonical”, starting from a phase space or symplectic manifold

R2 3 (q, p) , {q, p} = 1 7→ (Q,P ) , [Q,P ] = i~I ,
f(q, p) 7→ f(Q,P ) 7→ (Symf)(Q,P ) .

• But then what about singular f , e.g. the phase arctan(p/q)? What about barriers or other
impassable boundaries? The motion on a circle? In a bounded interval? On the half-line? ....

aJ. Kiukas, P. Lahti, and K. Ylinenc, Phase space quantization and the operator moment problem, J.
Math. Phys. 47 072104 (2006).

bJ. Baez, Categories, quantization and much more, http://math.ucr.edu/home/baez/categories.html
(2006)

cJ.P.G., Metrobus Gavea-Botafogo 04/09/2013 morning
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Quantization
MUST
be
CANONICAL !!

What about integral
quantization??

What about 
POVM??



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

More mathematically precise:

• Quantization is

(i) a linear map
Q : C(X) 7→ A(H)

C(X): vector space of complex-valued functions f (x) on a set X
A(H): vector space of linear operators

Q(f ) ≡ Af

in some complex Hilbert space H such that
(ii) to f = 1−→ identity operator I on H,

(iii) to real f there−→ (essentially) self-adjoint operator Af in H.

• Add further requirements on X and C(X) (e.g., measure, topology, mani-
fold, closure under algebraic operations...)

• Add physical interpretation about measurement of spectra of classical f ∈
C(X) or quantumA(H) to which are given the status of observables.

• Add requirement of unambiguous classical limit of the quantum physical
quantities, the limit operation being associated to a change of scale
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2. Integral quantization
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Integral quantization: general setting and POVM

• (X, ν): measure space.

• X 3 x 7→ M(x) ∈ L(H): X-labelled family of bounded operators on
Hilbert space H resolving the identity I :∫

X

M(x) dν(x) = I , in a weak sense (1)

• If the M(x)’x are positive and unit trace,

M(x) ≡ ρ(x) (density matrix)

• If X is space with suitable topology, the map

B(X) 3 ∆ 7→
∫

∆

ρ(x) dν(x)

may define a normalized positive operator-valued measure (POVM) on the
σ-algebra B(X) of Borel sets.
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Integral quantization: the map

• Quantization of complex-valued functions f (x) on X is the linear map:

f 7→ Af =

∫
X

M(x) f (x) dν(x) , (2)

• understood as the sesquilinear form,

Bf(ψ1, ψ2) =

∫
X

〈ψ1|M(x)|ψ2〉 f (x) dν(x) , (3)

defined on a dense subspace of H.

• If f is real and at least semi-bounded, the Friedrich’s extension of Bf uni-
vocally defines a self-adjoint operator.

• If f is not semi-bounded, no natural choice of a self-adjoint operator asso-
ciated with Bf , a subtle questiona. We need more information onH.

asee for instance H. Bergeron, JPG, P. Siegl, A. Youssef, Eur. Phys. Lett. 92 60003 (2010); H.
Bergeron, P. Siegl, A. Youssef, J. Phys. A: Math. Theor. 45 244028 (2012)
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Integral quantization: back to classical

• If M(x) = ρ(x) and with another (or the same) family of positive unit trace
operators X 3 x 7→ ρ̃(x) ∈ L+(H) go back to the classical

Af 7→ f̌ (x) :=

∫
X

tr(ρ̃(x)ρ(x′)) f (x′) dν(x′) , “lower symbol” (4)

provided the integral be defined.

• Then classical limit condition means: given a scale parameter ε and a dis-
tance d(f, f̌ ):

d(f, f̌ )→ 0 as ε→ 0 . (5)
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Integral quantization: comments

• Quantization issues, e.g. spectral properties of Af , may be derived from
functional properties of the lower symbol f̌ .

• Quantizing constraints: suppose that (X, ν) is a smooth n-dim. manifold
on which is defined space D′(X) of distributions as the topological dual
of compactly supported n-forms on X . Some of these distributions, e.g.
δ(u(x)), express geometrical constraints. Extending the map f 7→ Af to
these objects yields the quantum version Aδ(u(x)) of these constraints.

• Different starting point, more in Dirac’s spirita (e.g. see (Loop) Quantum
Gravity and Quantum Cosmology) would consist in determining the kernel
of the operator Au issued from integral quantization u 7→ Au.

• Both methods are obviously not mathematically equivalent, except for a few
cases. They are possibly physically equivalent.

aP.A.M. Dirac, Lectures on Quantum Mechanics, Dover, New York, 2001
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Covariant integral quantization with UIR of a group

• Let G be a Lie group with left Haar measure dµ(g), and let g 7→ U(g) be
a unitary irreducible representation (UIR) of G in a Hilbert space H.

• Let M be a bounded operator on H. Suppose that the operator

R :=

∫
G

M(g) dµ(g) , M(g) := U(g)MU †(g) , (6)

is defined in a weak sense. From the left invariance of dµ(g) we have
U(g0)RU

†(g0) =
∫
G dµ(g)M(g0g) = R and so R commutes with all

operators U(g), g ∈ G. Thus, from Schur’s Lemma, R = cMI with

cM =

∫
G

tr (ρ0 M(g)) dµ(g) , (7)

where the unit trace positive operator ρ0 is chosen in order to make the
integral convergent.

• Resolution of the identity follows:∫
G

M(g) dν(g) = I , dν(g) := dµ(g)/cM . (8)
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Covariant integral quantization: with square integrable UIR (e.g.
affine group)

• For square-integrable UIR U for which |η〉 is an admissible unit vector, i.e.
c(η) :=

∫
G dµ(g) |〈η|U(g)η〉|2 <∞.

• Resolution of the identity is obeyed by coherent states for G:

|ηg〉 = U(g)|η〉 or by |ηg〉〈ηg| = ρ(g) , ρ := |η〉〈η|

• This allows covariant integral quantization of complex-valued functions on
the group f 7→ Af =

∫
G ρ(g) f (g) dν(g) :

U(g)AfU
†(g) = AUr(g)f , (9)

With f ∈ L2(G, dµ(g)), (Ur(g)f )(g′) := f (g−1g′) is the regular repre-
sentation.

• Generalization of the Berezin or heat kernel transform on G: f̌ (g) :=∫
G tr(ρ(g) ρ(g′)) f (g′) dν(g′).
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Covariant quantization with UIR square integrable w.r.t. a subgroup
(e.g. Weyl Heisenberg group)

• In the absence of square-integrability over G, there exists a definition of
square-integrable covariant coherent states with respect to a left coset man-
ifold X = G/H , with H a closed subgroup of G, equipped with a quasi-
invariant measure ν.a

aS. T. Ali, J.-P. Antoine, and J.-P. G., Coherent States, Wavelets and their Generalizations (Graduate
Texts in Mathematics, Springer, New York, 2000). New edition in 2014



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

3. Weyl-Heisenberg covariant integral quanti-
zation(s)
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Weyl-Heisenberg algebra and its Fock or number representation

• Let H be a separable (complex) Hilbert space with orthonormal basis
e0, e1, . . . , en ≡ |en〉, . . . , (e.g the Fock space with |en〉 ≡ |n〉).
• Lowering and raising operators a and a†:

a |en〉 =
√
n|en−1〉 , a|e0〉 = 0 ,

a† |en〉 =
√
n + 1|en+1〉 .

• Operator algebra {a, a†, 1} is defined by

[a, a†] = 1 .

• Number operator: N = a†a, spectrum N, N |en〉 = n|en〉.
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Unitary Weyl-Heisenberg group representation and standard CS

• Square integrability holds with respect to center C of the Weyl-Heisenberg
group and X = GWH/C ∼ C with measure d2z/π.

• To each z ∈ C corresponds the (unitary) displacement operator D(z) :

C 3 z 7→ D(z) = eza
†−z̄a .

• Space inversion→ Unitarity:

D(−z) = (D(z))−1 = D(z)† .

• Addition formula (Quantum Mechanics in a nutshell!):

D(z)D(z′) = e
1
2(zz̄′−z̄z′)D(z + z′) = e(zz̄′−z̄z′)D(z′)D(z) ,

• Standard (i.e., Schrödinger-Klauder-Glauber-Sudarshan) CS

|z〉 = D(z)|e0〉 ,
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Quantization(s) with weight function(s) I

• Let $(z) be a function on the complex plane obeying $(0) = 1. Suppose
that it allows to define a bounded operator M on H through the operator-
valued integral

M =

∫
C
$(z)D(z)

d2z

π
.

• Then, the family of displaced M(z) := D(z)MD(z)† under the unitary
action D(z) resolves the identity∫

C
M(z)

d2z

π
= I .

• It is a direct consequence of D(z)D(z′)D(z)† = ezz
′−zz′D(z′), of∫

C e
zξ̄−z̄ξ d2ξ

π
= πδ2(z) , and of $(0) = 1 with D(0) = I .
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Quantization(s) with weight function(s) II

• The resulting quantization map is given by

f 7→ Af =

∫
C
M(z) f (z)

d2z

π
.

• Equivalently Af =
∫
C$(z)D(z) f̂ (−z) d2z

π
, where is involved the sym-

plectic Fourier transform f̂ (z) =
∫
C e

zξ̄−z̄ξf (ξ) d2ξ
π

• Covariance:
Af(z−z0) = D(z0)Af(z)D(z0)

† .

• Properties:

Af(−z) = PAf(z)P,∀ f ⇐⇒ $(z) = $(−z), ∀ z ,
Af(z) = A†f(z),∀ f ⇐⇒ $(−z) = $(z), ∀ z ,

where P =
∑∞

n=0(−1)n|en〉〈en| is the parity operator.
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CCR is (almost always) the rule!

• The quantization map f 7→ Af yields the canonical commutation rule

[a, a†] = I

for all even real weight function $.

• Indeed
Az = a , Af(z) = A†f(z) .

• Equivalently, with z = (q + ip)/
√

2,

Aq =
a + a†√

2
:= Q , Ap =

a− a†

i
√

2
:= P , [Q,P ] = iI

• Moreover, if |$(z)| = 1

tr(A†fAf) =

∫
C
|f (z)|2 d2z

π
,

which means that the map f 7→ Af is invertible through a trace formula.
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Wigner-Weyl, CS, normal, and other, quantizations

• The normal, Wigner-Weyl and anti-normal (i.e., anti-Wick or Berezin or
CS) quantizations correspond to s → 1−, s = 0, s = −1 resp. in the
specific choice a

$s(z) = es|z|
2/2 , Re s < 1.

• This yields a diagonal M ≡ Ms with

〈en|Ms|en〉 =
2

1− s

(
s + 1

s− 1

)n
,

and so

Ms =

∫
C
$s(z)D(z)

d2z

π
=

2

1− s
exp

[
ln

(
s + 1

s− 1

)
a†a

]
.

aK.E. Cahill and R. Glauber, Ordered expansion in Boson Amplitude Operators, Phys. Rev. 117 1857-
1881 (1969)
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Wigner-Weyl, CS, normal, and other, quantizations II

• The case s = −1 corresponds to the CS (anti-normal) quantization, since

M = lim
s→−1

2

1− s
exp

(
ln
s + 1

s− 1
a†a

)
= |e0〉〈e0| ,

and so

Af =

∫
C
D(z)MD(z)† f (z)

d2z

π
=

∫
C
|z〉〈z| f (z)

d2z

π
.

• The choice s = 0 implies M = 2P and corresponds to the Wigner-Weyl
quantization. Then

Af =

∫
C
D(z) 2PD(z)† f (z)

d2z

π
.

• The case s = 1 is the normal quantization in an asymptotic sense.

• The parameter s was originally introduced by Cahill and Glauber in view of discussing the
problem of expanding an arbitrary operator as an ordered power series in a and a†, a typical
question encountered in quantum field theory, specially in quantum optics. Actually, they
were not interested in the question of quantization itself.
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Canonical quantization with POVM or not

• Operator Ms is positive unit trace class for s 6 −1 (and only trace class
if Re s < 0), i.e., is density operator: quantization has a consistent proba-
bilistic content, the operator-valued measure

C ⊃ ∆ 7→
∫

∆∈B(C)

D(z)MsD(z)†
d2z

π
,

is a positive operator-valued measure.

• Given an elementary quantum energy, say ~ω and with the tempera-

ture T -dependent s = − coth
~ω

2kBT
the density operator quantization is

Boltzmann-Planck

ρs =

(
1− e−

~ω
kBT

) ∞∑
n=0

e
−n~ω
kBT |en〉〈en| .

• Interestingly, the temperature-dependent operators ρs(z) = D(z) ρsD(z)† defines a Weyl-
Heisenberg covariant family of POVM’s on the phase space C, the null temperature limit
case being the POVM built from standard CS.
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Quantum harmonic oscillator according to $

• For real even$,Aq2 = Q2− ∂z∂z̄$|z=0 + 1
2

(∂2
z$|z=0 + ∂2

z̄$|z=0),Ap2 =
P 2 − ∂z∂z̄$|z=0 − 1

2
(∂2

z$|z=0 + ∂2
z̄$|z=0) and so

A|z|2 ≡ AJ = a†a +
1

2
− ∂z∂z̄$|z=0 .

where |z|2(= J) is the energy (or action variable) for the H.O.

• The difference between the ground state energy E0 = 1/2 − ∂z∂z̄$|z=0,
and the minimum of the quantum potential energy Em = [min(Aq2) +
min(Ap2)]/2 = − ∂z∂z̄$|z=0 is independent of the particular (regular)
quantization chosen, namely E0 − Em = 1/2 (experimentally verified in
1925).

• In the exponential Cahill-Glauber case$s(z) = es|z|
2/2 the above operators

reduce to

A|z|2 = a†a +
1− s

2
, Aq2 = Q2 − s

2
Ap2 = P 2 − s

2
.

• It has been proven a that these constant shifts in energy are inaccessible to measurement.
aH. Bergeron, J.P. G., A. Youssef, Are the Weyl and coherent state descriptions physically equivalent?,

Physics Letters A 377 (2013) 598605
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Weyl-Heisenberg integral quantization with action-angle variables

• With z =
√
J eiγ in action-angle (J, γ) notations for the harmonic oscilla-

tor, quantization of f (J, γ), 2π-periodic in γ, yields formally

Af =

∫ +∞

0

dJ

∫ 2π

0

dγ

2π
f (J, γ)ρ

(√
Jeiγ

)
. (10)

• Define the unitary representation θ 7→ UT(θ) of the unit circle S1 on the
Hilbert spaceH as UT(θ)|en〉 = ei(n+ν)θ|en〉, where ν is arbitrary real. One
verifies, in the case of diagonal ρ, the angular covariance property:

UT(θ)AfUT(−θ) = AT (θ)f , T (θ)f (J, γ) = f (J, γ − θ) . (11)
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CS quantization of discontinuous functions: the quantum anglea or
phase

• As an example, let us quantize with coherent states, ρ(z) = |z〉〈z|, the
discontinuous 2π-periodic angle function (γ)ג = γ for γ ∈ [0, 2π).

• In terms of the action-angle variables standard CS read as

|z〉 ≡ |J, γ〉 =
∑
n

√
pn(J)einγ|en〉 , (12)

where n 7→ pn(J) = e−JJn/n! is the Poisson distribution.

• The action variable is precisely the Poisson average of the discrete variable
n, 〈n〉poisson = J . Note that in electromagnetism, the variables J and γ
represent the field intensity and the phase, respectively.

• Since the angle function is real and bounded, its quantum counterpart Aג is
a bounded self-adjoint operator, and it is covariant in the above sense.

aJPG, F. Szafraniec, Quantum angle operator, in progress
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Quantum phase and its classical portrait

• In the basis |en〉, quantum phase or angle operatorAג is given by the infinite
matrix:

Aג = π 1H + i
∑
n 6=n′

Γ
(
n+n′

2
+ 1
)

√
n!n′!

1

n′ − n
|en〉〈en′| . (13)

This operator has spectral measure with support [0, 2π].

• The corresponding “lower symbol” reads as the Fourier sine series:

〈J, γ|Aג|J, γ〉 = π − 2
∞∑
q=1

dq(
√
J)

sin qγ

q
,

with dq(r) = e−r
2

rq
Γ( q2+1)

Γ(q+1) 1F1(
q
2

+ 1; q + 1; r2) balances the trigonometric
Fourier coefficient 2/q of the angle function .ג It can be shown a that this
positive function is bounded by 1.

aJPG and M. del Olmo, q-coherent states quantization of the harmonic oscillator, Annals of Physics
(NY) 330 220-245 (2013); arXiv:1207.1200 [quant-ph]
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Semi-classical behavior

• At small J , the lower symbol oscillates around its average value π with
amplitude equal to

√
πJ :

〈J, γ|Aג|J, γ〉 ≈ π −
√
πJ sin γ .

• At large J , we recover the Fourier series of the 2π-periodic angle function:

〈J, γ|Aג|J, γ〉 ≈ π − 2
∞∑
q=1

1

q
sin qγ = (γ)ג for γ ∈ [0, 2π) .

• By re-injecting physical dimensions, |z|2 = J is an action and should ap-
pear in the formulas as divided by ~: the limit J →∞ is the classical limit
~→ 0.
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Lower symbol of the phase operator

Behavior of 〈J, γ|Aג|J, γ〉 as a function of θ ≡ γ for different values of J .
Observe how much it becomes close to the classical one at the largest value of
J .

1 2 3 4 5 6
Θ

1

2

3

4

5

6

0.0

0.5

1.0

r

0

2

4

6

Θ

2

3

4

Lower symbol of the angle operator for
√
J = {0.5, 1, 5} and

γ ≡ θ ∈ [0, 2π) (left) and for
(√

J, γ
)
∈ [0, 1]× [0, 2π) (right).
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Semi-classical behavior continued
• The number operator N̂ = a† a is, up to a constant shift, the quantization of the classical

action, AJ = N̂ + 1: AJ =
∑

n(n+ 1)|en〉〈en|.

• Are the commutator of action and angle operators and its lower symbol close to the canonical
value iI?

[Aג, AJ ] = i
∑
n6=n′

Γ
(
n+n′

2 + 1
)

√
n!n′!

|n〉〈n′| ,

〈J, γ|[Aג, AJ ]|J, γ〉 = 2i

∞∑
q=1

dq(
√
J) cos qγ ≡ i C(J, γ) .

• At small J , the function C(J, γ) oscillates around 0 with amplitude equal to
√
π
√
J : C(J, γ) ≈√

π
√
J cos γ. Applying the Poisson summation formula, we get at J → ∞ (or ~ → 0) the

expected “canonical” behavior for γ ∈ [0, 2π):

〈J, γ|[Aג, AJ ]|J, γ〉 ≈ −i+ 2πi
∑
n∈Z

δ(γ − 2πn) .

• At J → ∞ the commutator symbol becomes canonical for γ 6= 2πn, n ∈ Z. Dirac singular-
ities are located at the discontinuity points of the 2π periodic function .(γ)ג Actually, Pauli
theorem and its correct forms prevent the corresponding quantum commutator from being
exactly canonical.
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4. Affine quantization
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Affine or Wavelet Quantization

• Set X is the upper half-plane Π+ := {(q, p) | p ∈ R , q > 0} equipped
with measure dq dp. It is the phase space for the motion on the half-line.

• Equipped with the multiplication (q, p)(q0, p0) = (qq0, p0/q + p), q ∈
R∗+, p ∈ R, X is viewed as the affine group Aff+(R) of the real line.

• Aff+(R) has two non-equivalent UIR, U±. Both are square integrable ⇒
continuous wavelet analysis.

• U+ ≡ U carried on by Hilbert spaceH = L2(R∗+, dx):

U(q, p)ψ(x) = (eipx/
√
q)ψ(x/q) .

• unit-norm state ψ ∈ L2(R†+, dx) ∩ L2(R†+, dx/x) (“fiducial vector”) pro-
duces all wavelet⇔ CS defined as |q, p〉 = U(q, p)|ψ〉 and yielding the
crucial ∫

Π+

dq dp

2πc−1

|q, p〉〈q, p| = I , cγ :=

∫ ∞
0

dx|ψ(x)|2/x2+γ .
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Wavelet Quantization continued
• Covariant quantization from resolution of the identitya

f 7→ Af =

∫
Π+

dq dp

2πc−1
f(q, p)|q, p〉〈q, p|

• Quantization is canonical (up to a multiplicative constant) for q and p:

Ap = P = −i∂/∂x , Aqβ = (cβ−1/c−1)Qβ , Qf(x) = xf(x) ,

• Quantization of kinetic energy:

Ap2 = P 2 +KQ−2 , K = K(ψ) =

∫ ∞
0

u du(ψ′(u))2/c−1

Thus wavelet quantization forbids a quantum free particle moving on the positive line to reach
the origin.

• Operator P 2 = −d2/dx2 alone in L2(R∗+, dx) is not essentially self-adjoint whereas the above
regularized operator, defined on the domain of smooth compactly supported functions, is for
K > 3/4b. Then quantum dynamics of the free motion is possible.

aProceeding in quantum theory with an “affine” quantization instead of the Weyl-Heisenberg quantiza-
tion was already present in Klauder’s work devoted the question of dealing with singularities in quantum
gravity (see An Affinity for Affine Quantum Gravity, Proc. Steklov Inst. of Math. 272, 169-176 (2011);
gr-qc/1003.261 for recent references). The procedure rests on the representation of the affine Lie algebra.
In this sense, it remains closer to the canonical one and it is not of the integral type.

bF. Gesztesy and W. Kirsch J. Rein. Ang. Math. 362 28 (1985)
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Semi-classical aspects in phase space

• Quantum states and their dynamics have phase space representation through
wavelet symbols. For state |φ〉 :

Φ(q, p) = 〈q, p|φ〉/
√

2π

• Associated probability distribution on phase space:

ρφ(q, p) =
1

2πc−1

|〈q, p|φ〉|2

• With (energy) eigenstates of some quantum Hamiltonian H at our disposal,
we can compute the time evolution

ρφ(q, p, t) :=
1

2πc−1

|〈q, p|e−iH|φ〉|2

for any state φ.
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Wavelet Quantization for FLRW Quantum Cosmology

• FLRW models filled with barotropic fluid with equation of state p = wρ
and resolving Hamiltonian constraint leads to a model of singular universe
∼ particle moving on the half-line (0,∞) with Hamiltonian.

{q, p} = 1, h(q, p) = α(w)p2 + 6k̃qβ(w), q > 0 .

with k̃ = (
∫

dω)2/3k, α(w) = 3(1 − w)2/32 and β(w) = 2(3w +
1)/(3(1− w)). k = 0,−1 or 1 (in suitable unit of inverse area) depending
on whether the universe is flat, open or closed.

• Assume a closed universe with radiation content : w = 1/3 and k = +1.
Affine quantization with a fiducial vector like ψ(x) ∝ exp(−(α(ν)x +
β(ν)/x), whith parameter ν > 0, on R∗+ yields the quantum Hamiltonian

Ah = H =
1

24
P 2 +

a2
PK(ν)

24

1

Q2
+ 6

a2
P

σ2

c1

c−1

Q2 ,

aP is a Planck area.

• For K(ν) > 3/4 wavelet quantization removes quantum singularity and
well-defined quantum evolution exists, at the difference with canonical
quantization
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Phase space distribution of the ground state with a certain choice of ν. aP = 1.
This stationary quantum state of the universe is distributed around the equilib-
rium point qe (minimum of the potential curve involved in the Hamiltonian).
The existence of the semi-classical equilibrium point qe 6= 0 is a consequence
of the repulsive part of the potential.
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Phase space distribution ρq0,p0,t(q, p) for some selected values of time t. (Fluid
configuration variable is chosen as a clock of universe). The thick curve is the

phase trajectory obtained from the effective dynamics.
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A “semiclassical” Friedmann equation

• In general lower symbol f̌ (q, p) differs from its classical counterpart
f (q, p): it is a quantum-corrected effective observable.

• Thus, computing lower symbol of Hamiltonian leads to the semiclassical
Friedmann equation for scale factor a(t):(

ȧ

a

)2

+
kc2

a2
+ c2a2

P (1− w)2 ν

128

1

V 2
=

8πG

3c2
ρ

• Note that the repulsive potential depends explicitly on volume. This ex-
cludes non-compact universes from quantum modeling.

• Singularity resolution is confirmed: as the singular geometry is approached
(a → 0), the repulsive potential grows faster (∼ a−6) than the density of
fluid (∼ a−3(1+w)) and therefore at some point the two terms become equal
and the contraction is brought to a halt.

• The form of the repulsive potential does not depend on the state of fluid
filling the universe: the origin of singularity avoidance is quantum geo-
metrical.
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5. Conclusion
Beyond the freedom (think to analogy with Signal Analysis where different
techniques are complementary) allowed by integral quantization, the advantages
of the method with regard to other quantization procedures in use are of four
types.

(i) The minimal amount of constraints imposed to the classical objects to be
quantized.

(ii) Once a choice of (positive) operator-valued measure has been made, which
must be consistent with experiment, there is no ambiguity in the issue, con-
trarily to other method(s) in use (think in particular to the ordering problem).
To one classical object corresponds one and only one quantum object. Of
course different choices are requested to be physically equivalent

(iii) The method produces in essence a regularizing effect, at the exception of
certain choices, like the Weyl-Wigner integral quantization.

(iv) The method, through POVM choices, offers the possibility to keep a full
probabilistic content. As a matter of fact, the Weyl-Wigner integral quanti-
zation does not rest on a POVM.
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• But what is the real meaning of that freedom granted to us in the choice of
POVM or others?

• Such a freedom is governed by our degree of confidence in localizing a
pure classical state (q, p) in phase space. The latter is usually viewed as
an ideal continuous manifold where all points are physically accessible. As
everybody knows, such a view is physically untenable ...

• However, and this is the paradoxical paradigm of contemporary physics,
one needs such a leibnizian mathematical ideality (natura non saltum facit)
to build a more realistic, though more highly mathematical, representation
of the physical world.
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