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Introduction

Motivation

Statistical models for point pattern data are widely used in a variety of areas.

Most popular model: Poisson process (PP). Important subclass: Cox processes.
Our approach: Cox processes with piecewise constant IF with flexible space partition.

Efficient inference methodologies have been proposed for the unidimensional case using
continuous time Markov chains to model the IF.

Existing methodologies for the multidimensional case still rely on discrete approximations
leading to systematic bias and potential model decharacterisation.

Model: Level-set spatiotemporal Cox process.
Main contribution: methodology to perform exact Bayesian inference - no discrete approx-
imation is used and Monte Carlo error is the only source of inaccuracy.
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Introduction

Motivational examples

Figure: White oaks in Lansing Woods, USA. Estimated IF via kernel smoothing.
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Introduction

Figure: Particles in a bronze filter section profile. Estimated IF via kernel
smoothing.
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Introduction

Figure: Fires in a region of New Brunswick, Canada. Estimated IF via kernel
smoothing.
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Introduction

Literature review

Heikkinen and Arjas [1998] and Møller and Rasmussen [2015] use Voronoi tessellation to
specify a piecewise constant and Kernel-based structure for the IF, respectively.

Myllymäki and Penttinen [2010] propose the level-set Cox process with 2 levels.

Hildeman et al. [2018] generalises the model for more levels and non-constant IF.

Level set models define a partition of some compact region (in R2) by means of the levels
of a latent Gaussian process.

Because of the difficulties to perform inference due to the intractability of the actual
(infinite-dimensional) model, the two aforementioned papers consider a discrete version
of this.

A regular lattice that models the number of points in each cell as a Poisson distribution.
The latent GP is replaced by a multivariate normal with one coordinate per cell.

”The information on the fine scale behavior of the point pattern is lost”.
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Introduction

Our aims

Exact methodology to perform Bayesian inference for level-set Cox process models in which
the IF is piecewise constant [Gonçalves and Dias, 2022].

Difficulties:

1 intractability of the likelihood function of the proposed model;

2 infinite dimensionality of the model’s parameter space due to the latent GP.

Solution: pseudo-marginal MCMC with retrospective sampling.

Dealing with high computational cost associated to GPs: nearest neighbor Gaussian process
(NNGP) [Datta et al., 2016]. Key property: defines a valid GP measure - Bayesian paradigm
is preserved.

This is, to the best of our knowledge, the first work to consider a latent NNGP within a
complicated likelihood structure that does not allow for directly sampling from the posterior
or full conditional distribution of the NNGP component.
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Background methodologies

Pseudo Marginal Metropolis-Hastings

Suppose that the likelihood is intractable and cannot be evaluated pointwise.

Andrieu and Roberts [2009]: replace the likelihood by an a.s. positive and unbiased esti-
mator of this in the expression of the a.p. of a MH algorithm - preserves the posterior as
the marginal invariant distribution of the chain (integrating out w.r.t. the extra r.v.).

Define U ∼ qU and L̂ such that E[L̂(y, θ, U)] = L(θ, y) and L̂
a.s.
> 0, ∀θ ∈ Θ, ∀y ∈ Y.

Algorithm 1 Pseudo Marginal Metropolis-Hastings

1 Propose θ′ ∼ q(.|θ) and U ′ ∼ qU ;

2 Accept w.p. α(θ, U ; θ′, U ′) = 1 ∧ L̂(y, θ′, U ′)π(θ′)q(θ|θ′)
L̂(y, θ, U)π(θ)q(θ′|θ)

.
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Background methodologies

Retrospective sampling and infinite-dimensional MCMC

Retrospective sampling is a simulation technique that changes the natural order of steps
to make the algorithm more efficient or even feasible. It is particularly useful to simulate
infinite-dimensional r.v.’s.

The idea is to be able to perform the algorithm (typically accept-reject type) by unveiling
only a finite-dimensional representation of the r.v. of interest and to have an efficient
recovery algorithm to simulate the remainder of the r.v.

In our context, we propose an infinite-dimensional retrospective MCMC algorithm. The GP
component is sampled retrospectively via PMMH.
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Spatial Model

Proposed model

(Y |λS) ∼ PP (λS),

λ(s) =

K∑
k=1

λkIk(s),

Sk = {s ∈ S : ck−1 < β(s) < ck}, ∀k
β ∼ GP (µ,Σ),

π(c) = 1(c1 < . . . < cK−1),

λ ∼ prior

β, c and λ’s are assumed to be independent a priori.

Other option: λ(s) =
∑K
k=1 κ(s)λkIk(s), where κ(s) is an offset term.
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Spatial Model

The likelihood function of the level-set Cox process model is not identifiable. For each
point in the (infinite-dimensional) parameter space, there is an uncountable number of
other points that return the same likelihood value.

This is caused by the non-identification of the scale of the GP. Write β = µ+ σβ∗, where
β∗ ∼ N(0,Σ(1, τ2)). Any µ∗ = aµ + b, σ∗ = aσ and c∗k = b + ack, b ∈ R, a ∈ R+, ∀k,
defines the same partition and, consequently, the same likelihood.

Solution: fix either c or (µ, σ2). We shall adopt the latter.

Label-switching of the coordinates of λ is unlikely, given the complexity of the sample space.

The number of levels is fixed based on prior information, the type of structure the researcher
expects, or even an empirical analysis of the data.
Trade-off: model fitting and parsimony.

The piecewise constant structure allows for a cluster analysis perspective.
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Spatial Model

NNGP prior for β

The computational bottleneck of the methodology is sampling the GP. Cost to simulate a
d-dimensional normal is O(d3).

Solution: NNGP. Exact in the sense of defining a valid probability measure and, therefore,
preserving the Bayesian paradigm.

Originally designed to approximate a parent GP in classical geostatistical problems in which
the (discretely) observed process is either the GP itself or the GP + i.i.d. noise.

In our context, the GP is latent in a more complex way. But it only determines the partition
and not the actual values of the IF. It is reasonable to see the NGPP simply as the GP prior
for β and not an approximation for some desirable traditional GP.

The NNGP is devised from a parent GP (µ,Σ(σ2, τ2)) by imposing some conditional inde-
pendence structure that leads to a sparsity.
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Spatial Model

For a reference set S = {s1, . . . , sr} and a maximum number m of neighbors,

π(β) = π(βS)π(βS\S |βS),

π(βS) = πGP (βs1 )πGP (βs2 |βs1 )πGP (βs3 |βs1 , βs2 ) . . . πGP (βsm+1 |βs1 , . . . , βsm )

πGP (βsm+2 |βN (sm+2)
) . . . πGP (βsr |βN (sr)),

πGP (βS0
|βS) =

I∏
i=1

πGP (βsi|βN (si)
), for any finite set S0 = {s1, . . . , sI} ⊂ S \ S,

where N (si) is the set of the m closest neighbors of si in {s1, . . . , si−1}, for i ≥ m + 2, and
N (si) is the set of the m closest neighbors of si in S.

In traditional geostatistical models the reference set is conveniently defined to be the loca-
tions of the observations. Not reasonable in our case. We set S to be a regular lattice on
S with r = 2500 and m = 16.

The conditional independence among the locations in S0 allows the parallelisation of the
algorithm to sample from this. Our MCMC needs to sample from the NNGP prior in a large
set S0 on every iteration of the algorithm.
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Spatial Model

Covariance function

The covariance function Σ(σ2, τ2) plays an important role in the methodology. We use
the powered exponential with exponent γ = 1.95.

Cov(β(s), β(s′)) = exp

{
−

1

2τ2
|s− s′|γ

}
.

The Poisson process likelihood is ill-posed. It increases indefinitely as the IF increases in
(infinitesimal) balls centred around the observations and approaches zero outside them.

The Cox process formulation is a way to regularise the likelihood function by assigning a
prior to the IF.

This prior has great impact on the posterior. The posterior of β is absolutely continuous
w.r.t. its prior.

The likelihood favors the pattern described above which, in turn, favors smaller values of
τ2 (less smooth). So, fixing τ2 is a reasonable strategy.

This determines the smoothness of the IF. Typically, partitions with very small regions
should be avoided.
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Spatial Model

Prior on λ

The prior information GP may not be enough to avoid model identifiability problems. A
reasonable solution is to add coherent prior information through the prior of λ.

Model parsimony: fit models with fewer levels and clearly distinct rates. This is favored by
adopting a repulsive prior for λ.

Prior based on the Rep distribution proposed in Quinlan et al. [2021]. We penalise a scaled
version of the differences between the λk’s.

π(λ) ∝
[
K∏
i=1

πG(λk)

]
R(λ; ρ, ν),

πG(λk) ∝ λ
αk−1
k e−etakλk , αk > 0, ηk > 0, k = 1, . . . ,K,

R(λ; ρ, ν) =
∏

1≤k1<k2≤K

(
1− exp

{
−ρ
(
|λk1 − λk2 |√
λk1 + λk2

)ν})
.

Repulsive gamma prior - RG(α, η, ρ, ν). Suggestion: ρ ∈ [1, 5] and ν = 3.

The RG prior is proper and can be useful to identify K.
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Bayesian inference

Bayesian inference

Likelihood function and posterior density:

L(θ, Y ) ∝ exp

{
−

K∑
k=1

λkµk

}
K∏
k=1

(λk)|Yk| ,

µk and |Yk| are the area and number of observations in region Sk.

π(θ, Y ) ∝ exp

{
−

K∑
k=1

λkµk

}[
K∏
k=1

(λk)|Yk| π(λk)

][
K−1∏
k=1

π(ck)

]
πGP (β).
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Bayesian inference

Intractability of π(θ, Y ):

The Gaussian process β is infinite-dimensional. Solution: retrospective sampling.

The density πGP (β) is intractable. Solution: use as proposal distribution that cancels out
with the prior density in the expression of the acceptance probability.

µk is intractable. Solution: pseudo-marginal with unbiased estimation of the likelihood -

M = exp

{
−

K∑
k=1

λkµk

}
- via Poisson Estimator .

unbiased estimators for the µk’s can be easily obtained using uniform r.v.’s on S, for M
nonetheless...

The pseudo-marginal estimator ought to be devised in a way that the auxiliary r.v. has
a θ-free distribution so that we can block the algorithm in a Gibbs sampling [Murray and
Graham, 2016].
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Bayesian inference

Poisson Estimator

Proposition 1

Define N∗ ∼ PP (1) in the cylinder with base S and height in [0,+∞) and let N = g(N∗, λ∗)
be the projection on S of the points from N∗ that are below λ∗ = (δλM − λm), for
λM = max

k
{λk} and λm = min

k
{λk}. Then, for any δ > 1, an unbiased and a.s. positive

estimator for M is given by

M̂ = e−µ(S)λm

K∏
k=1

(
δλM − λk
δλM − λm

)|Nk|
,

where µ(S) is the area of S and |Nk| is the number of points from N in Sk.

Proposition 2

Estimator M̂ has a finite variance which is a decreasing function of δ.
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Bayesian inference

E|N|,I [M̂ ] = E|N|,I

[
e−µ(S)λm

K∏
k=1

(
δλM − λk
δλM − λm

)|Nk|
]

= E|N|,I

e−µ(S)λm

|N|∏
n=1

(
δλM −

∑K
k=1 Inkλk

δλM − λm

)
= e−µ(S)λmE|N|

(µ(S)δλM −
∑K
k=1 µkλk

µ(S)(δλM − λm)

)|N|
= e−µ(S)(λm+δλM−λm)

∞∑
j=0

(
µ(S)δλM −

∑K
k=1 µkλk

)j
j!

= e−
∑K

k=1 µkλk = M.
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Bayesian inference

In a retrospective sampling context, it is N that determines the locations at which β is to
be simulated, besides the locations from Y (and S).

The mean number of locations from N is (δλM − λm)µ(S).

Trade-off in the choice of δ: if it increases, the variance of M̂ decreases (improves the mixing
of the PSMH chain - in principle) but the computational cost per iteration increases.

An increase in δ also increases the (expected) dimension of N , which may have a negative
impact in the mixing of the MCMC, specially in a Gibbs sampling that samples N and β
separately.
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Bayesian inference

Conceptual and practical pseudo-marginal MCMCs

1 Propose a move (θ,N∗) → (θ̈, N̈∗) from a density q(θ̈, N̈∗|θ,N∗) = q(θ̈|θ)q(N̈∗), where
q(N̈∗) ∼ PP (1).

2 Accept a move with probability

1 ∧
(
π̂(θ̈; N̈∗)

π̂(θ;N∗)

q(θ|θ̈)
q(θ̈|θ)

)
.

Bound to be inefficient given the complexity of the coordinates. Simple solution though.

Block the coordinates - Gibbs sampling with PMMH steps - same a.p.

N∗ can be a block because its distribution does not depend on θ. N∗ in infinite, but we
only need N to compute the a.p.

Blocks∗: N∗, β, λ, c, with retrospective sampling for β and N∗.
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Bayesian inference

Sampling N ∗

Sampling N∗ from q(N∗) is bound to lead to low acceptance rate.

Update N∗ below and above λ∗, separately. Latter: sampled retrospectively (if needed)
from q(N∗) w.p. 1.

Former: split S into L (regular) cells and update N∗ in each cylinder separately. Under
q(N∗), N∗ (N) is independent among the L cylinders and follows a PP (1) (PP (λ∗)) in
each of them.

Optimal scaling problem w.r.t. L. Empirical analyses suggest L so that the average a.r. is
around 0.8.
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Bayesian inference

Sampling β

Retrospective sampling: sampled at a finite collection of locations which are enough to
perform all the steps of the MCMC algorithm - S, Y and N .

1. Impossible to sample β directly from its full conditional. 2. the proposal has to imply in
a tractable expression for the a.p. - requires term πGP (β) to be canceled out.

The conditional independence structure of the NNGP demands extra care to specify this
proposal. An independent proposal (πGP (β)) would be inefficient.

The preconditioned Crank–Nicolson (pCN) proposal [Cotter et al., 2013]:

β̈(s) =
√

1− ς2β(s) + ςε(s), s ∈ S, (1)

ε ∼ NNGP (0, Σ̃).

In a finite-dimensional context, the pCN proposal differs slightly from the traditional centred
random walk, but cancels out with the prior MN density.
The pCN proposal is valid in the infinite-dimensional context whereas the centred random
walk is not. ς2 is tuned to get a.r. approx. 0.234.
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Bayesian inference

Sampling λ and c

The proposal for λ is a Gaussian random walk with a properly tuned covariance matrix, based
on the respective empirical covariance matrix of the chain, to have the desired acceptance
rate - varying from 0.4 to 0.234 according to the dimension of λ.

Parameter c is jointly sampled from a uniform random walk proposal with a common (and
properly tuned) length for each of its components.
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Bayesian inference

Important computational aspects

Despite the NNGP prior, the computational cost may still be compromised by a large
accumulation of points from β resulting from the simulation of extra points to update λ
and N∗ and successive rejections of β.

Solution: virtual update steps to update β in S \ {S, Y,N} (prior proposal and a.p. 1). In
practice, simply delete all the values of β at S \ {S, Y,N}. This strategy also allows us to
retrospectively sample β from its GP prior, instead of the pCN proposal (which would be
impractical), on the update steps of λ and N∗. A virtual update is performed every time
S \ {S, Y,N} is non-empty after an update step.

Choosing δ: mean number of points from N under the pseudo-marginal distribution. Sug-
gestion: ≈ 6000.

The step to update N is parallelised among the L cells. Sampling β in S \ S is also
parallelised.
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Simulations and Applications

Simulated examples
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Simulations and Applications
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Simulations and Applications

Comparison to discrete method
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Simulations and Applications

Applications
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Conclusions

Final remarks

Novel methodology to perform exact Bayesian inference for level-set Cox processes with
piecewise constant IF - flexible model and exact inference.

Infinite-dimensional pseudo-marginal MCMC algorithm with retrospective sampling. Effi-
cient proposal distribution for the latent GP. Computational cost issues dealt by a NNGP
and virtual update steps.

A variety of issues related to the efficiency of the proposed MCMC algorithm are discussed
and empirically explored through simulations.

Spatiotemporal extension - temporal dependency on the GP (β) and on the levels (λ).

Directions for future work: more complex covariance structures such as non-stationarity;
LSCP with non-constant IF [Gonçalves and Gamerman, 2018].
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M. Myllymäki and A. Penttinen. Bayesian inference for gaussian excursion set generated cox
processes with set-marking. Statistics and Computing, 20:305–315, 2010.

J. J. Quinlan, F. A. Quintana, and G. L. Page. On a class of repulsive mixture models. Test, 30:
445–461, 2021.
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