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SUMMARY.

It is well known that any process with right continuous paths has at most a finite

number of jumps greater than ϵ (> 0). Based on this fact, it is proved that any non

negative independent increment processes without gaussian component (Lévy Process)

can be almost everywhere approximated by a sequence of compound Poisson process,

aside from fixed points of discontinuity. An algorithm to generate a sample path of a

Lévy process is developed and the proposed algorithm is applied in the simulation of

the Beta and Gamma processes. Furthermore, an algorithm for the survival analysis

is developed based on the proposed algorithm.

KEYWORDS: Poisson Measure, Point Process, Compensator, Beta Process, Gamma

Process, Survival analysis.

1 Introduction

The class of independent increment processes without gaussian component (here-

after, Lévy Processes) plays a fundamental role in Bayesian nonparametric and semi-
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parametric theories. This class of stochastic processes is important to construct prior

distributions and to derive Bayesian decision rules in nonparametric and semiparamet-

ric statistical analysis.

One of the most common Bayesian nonparametric approach has been extensively

discussed by Ferguson and Klass (1972) and Ferguson (1973). They used their rep-

resentation to define and to construct Dirichlet process, a continuous time stochastic

process whose finite dimensional increments have a Dirichlet distribution. An alter-

native definition, where the Dirichlet process is considered as a limit of Polya urn

schemes, may be found in Blackwell and MacQueen (1973). The class of Gamma pro-

cesses [Ferguson (1973)] and more generally, the class of extended Gamma processes

[Dykstra and Laud (1981)] are also Lévy processes. Dykstra and Laud (1981) used

extended Gamma process to construct prior distributions over the collection of hazard

rates. Considering these prior distributions, they derived posterior distributions for

the hazard rates. Later, Hjort (1990) used the class of Beta processes, which includes

the class of Dirichlet process [Ferguson (1973)], as the class of prior processes for the

cumulative hazard rate. The beta process models the cumulative hazard rate directly

and it is a conjugate prior class with right censored data. In this context, Kim and

Lee (2001) considered right censored data to prove that the posterior distribution is

consistent.

In order to implement a full Bayesian nonparametric and semiparametric analysis,

some authors have derived representations of the Lévy process with a view to simulation

[see for example, Ferguson and Klass (1972), Damien, Laud and Smith (1995) and

Walker and Damien (2000)]. With the methods proposed by these authors, it is only

possible to simulate the increments of the Lévy process. Wolpert and Ickstadt (1998)

developed an algorithm to simulate sample paths of a Lévy process approximately,
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via the Lévy measure. Although the fact that they can simulate sample paths rather

than increments, their algorithm needs to invert the Lévy measure which could be

computationally intensive [see, Lee and Kim (2004)]. Furthermore, their algorithm

also needs the assumption that the Lévy measure has total infinity mass [Walker and

Damien (2000)]. Recently, Lee and Kim (2004) proposed an algorithm to simulate

paths of the beta process based on the convergence in distribution of a sequence of

compound Poisson process to the beta process.

On the other hand, we prove that there exists a sequence of compound Poisson

process that converge almost everywhere to the Lévy process. With this representation,

we derive an approximated sampling algorithm to generate sample paths of the Lévy

process. In particular, we apply this algorithm to simulate the Beta process and the

extended Gamma process. Finally, we apply our representation of Lévy process to

develop an algorithm for the Bayesian survival model.

2 Lévy Process

It is well known that the Dirichlet, Gamma and Beta processes defined on an

arbitrary probability space give probability one to sums of point masses [Ferguson

(1974)]. In this section, we shall derive a representation form for a class of stochastic

processes which paths are continuous from the right and have limits from the left (rcll)

and also are piecewise constants. In order to simplify the notation, we shall define,

without loss of generality, all stochastic processes on the interval [0, 1] (all the results

that will be established in this article are valid for any interval [0, τ ], with τ > 0).

Consider (Ω,F , P ) a complete probability space and A : [0, 1]×Ω → R a stochastic

process defined on (Ω,F , P ). We assume that A has piecewise constant and rcll paths

with A(0, w) = 0 for all w ∈ Ω. Since A has rcll paths, each path has at most a finite
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number of jumps greater than ϵ (> 0) [Billingsley(1968), Lemma 1, pg. 110]. Then,

each path A(·, w) has an enumerable number of jumps (for each w ∈ Ω). The natural

filtration associated with A is defined by At = σ{A(s, ·) : s ≤ t}, for any t ∈ [0, 1].

It is well known that the completed filtration {Ft = σ(At ∪ N )} is right continuous

[Brémaud (1981, T26, pp. 304 and T35, pp. 309)], where N is the set of P-negligible

sets of F .

Since the stochastic process A has piecewise constant and rcll paths, it follows from

Dellacherie (1972, T30, pp. 88), that there exists a sequence of stopping times {Tn}

with respect to the filtration {Ft}, such that

A(t, w) =
∞∑
i=1

∆A(Ti(w), w)11{Ti(w)≤t}(w). (1)

The process A was extensively studied in the literature, see for example Jacod

(1979), Brémaud (1981, Chapter VIII), Jacod and Shiryayev (1987) and references

therein. Finally, we say that the stochastic process A is a Lévy process if it has

independent increments, satisfies Equation (1) and E[A(t, ·)] < ∞ for all t ∈ [0, 1].

We can associate with A an integer valued random measure µ : Ω × β([0, 1]) ×

β(BbbR) → [0,∞] satisfying

µ(ω; [0, t], B) =
∞∑
i=1

11B[∆A(Ti(w), w)]11{Ti(w)≤t}(ω), (2)

for all w ∈ Ω, t ∈ [0, 1] and B ∈ β(R). The random measure µ characterize the process

A, since

A(t, w) =
∫ t

0

∫ ∞

0
xµ(w, ds, dx)

for any t ∈ [0, 1] and w ∈ Ω. Consider ϵ > 0 and Bϵ = (−ϵ, ϵ)c. Since A(·;w) has at

most a finite number of jumps in Bϵ, we conclude that
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µ(w, [0, t], Bϵ) < ∞ ; w ∈ Ω, t ∈ [0, 1], ϵ > 0.

Then µ is a σ-finite integer-valued random measure. It is well known, that the property

of independent increments of A implies that, for any 0 ≤ t1 < t2 < t3 < t4 ≤ 1 and for

any Borel sets B1 and B2, the random variables µ(·, [t1, t2], B1) and µ(·, [t3, t4], B2) are

independent. Hence, we conclude that µ is an extended Poisson measure in the sense

of Jacod and Shiryayev (1987, pp 70), with compensator given by the σ-finite measure

ν on ([0, 1] × R; β([0, 1] × R)) [Jacod and Shiryayev (1987, Proposition 1.21, pp 71)],

such that

ν([0, t], B) = E[µ(.; [0, t]×B)].

Hence, ν is a σ-finite measure such that

ν([0, 1], Bϵ) < ∞ and
∫ ∞

0
xν([0, t], dx) < ∞, (3)

for each ϵ > 0. Conversely, let ν be a positive σ-finite measure on ([0, 1]×R; β([0, 1]×R))

satisfying (3) Then, there exists an unique extended Poisson measure µ such that the

compensator of µ is ν and the stochastic process A defined by

A(t, w) =
∫ t

0

∫ ∞

0
xµ(w, ds, dx)

is a Lévy process [Jacod (1979), Theorem 3.11, pp. 70]. These facts imply that

we can characterize a Lévy process by choosing a σ-finite measure satisfying (3). If

ν({t} × (0,∞)) = 0 for all t ∈ [0, 1], we say that µ is a Poisson measure.

It follows from Jacod and Shiryayev ((1987), 4.10, pp. 105) that, we can associate

to the extended Poisson measure µ two independent new random measures, such that

for any w ∈ Ω and B ∈ β(R),
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µ1(w, [0, t], B) =
∫ t

0

∫ ∞

0
11{Jc×B}(s, x)µ(w, ds, dx)

and

µ2(w, [0, t], B) =
∫ t

0

∫ ∞

0
11{J×B}(s, x)µ(w, ds, dx) =

∞∑
i=1

11B[∆A(si, w)]11{si≤t},

with

J = {t ∈ [0, 1] : ν ({t}, (0,∞)) > 0} = {s1, s2, · · ·},

and J c denoting the complement of J . Thus, we obtain that

A(t, ·) = A1(t, ·) + A2(t, ·) =
∫ t

0

∫ ∞

0
xµ1(·, ds, dx) +

∫ t

0

∫ ∞

0
xµ2(·, ds, dx),

where the Lévy processes A1 and A2 are independent. We denote νj the compensator

of µj for j = 1, 2. Hence, we obtain that the compensator ν1 is continuous on [0, 1]

and, the compensator of ν2 is given by

ν2([0, t], B) =
∞∑
j=1

P [∆A2(sj, ·) ∈ B]11{sj≤t} =
∞∑
j=1

ν({sj}, B)11{sj≤t}.

Thus, the compensator of µ can be decomposed in the following form,

ν([0, t], B) = ν1([0, t], B) +
∞∑
j=1

∫
B
dGj(x)11{sj≤t}, (4)

for all t ∈ [0, 1] and B ∈ β(R) where Gj(x) is the distribution function of ∆A2(sj, ·)

and ν1(·, ·) is the Lévy measure. Finally, it follows from Jacod and Shiryayev (1987)

that, for each ϵ ≥ 0, the random measure µ1(·, ·, · ∩ Bϵ) is a Poisson measure with

compensator ν1(·, · ∩ Bϵ) and, there exists a sequence of totally inaccessible stopping

times {UBϵ
i }, such that
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µ1(·, [0, t], B ∩Bϵ) =
∞∑
i=1

11B[∆A1(U
Bϵ
i , ·)]11{UBϵ

i ≤t}(·) ; P − a.s. (5)

for any B ∈ β(R). If we denote U
(0,∞)
i = Ui, we obtain that

µ1(·, [0, t], B ∩Bϵ) =
∞∑
i=1

11B∩Bϵ [∆A1(Ui, ·)]11{Ui≤t}(·) ; P − a.s.

for any B ∈ β(R).

3 Sampling Lévy Process

In this section, we shall establish an approximated method to simulate a Lévy pro-

cess. The main difficulty to simulate A is the fact that, in general, the associated point

process µ(·, ·, (0,∞)) is explosive. Hence, the compensator ν([0, t], (0,∞)) has infinite

mass for any t ∈ [0, 1]. In order to by pass this difficulty, we propose approximate

the Lévy process A as follows. Considering ϵ > 0 and Bϵ = (ϵ,∞), we define a Lévy

process such that

Aϵ(t, w) =
∞∑
i=1

∆A[Ui(w), w]11{Bϵ}[∆A(Ui(w), w)]11{Ui(w)≤t}(w) +

∞∑
i=1

∆A(si, w)11{Bϵ}[∆A(si, w)]11{si≤t}(w)

for any t ∈ [0, 1] and w ∈ Ω. Since A has a finite number of jumps in Bϵ, we conclude

that Aϵ also has a finite number of jumps. Furthermore, it follows from the definition

of Stieltjes integral that

Aϵ(t, ·) =
∫ t

0

∫ ∞

ϵ
xµ(·, ds, dx) ; P − a.s. (6)

Thus, we obtain the following theorem.
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Theorem 3.1 The Lévy process Aϵ converge almost everywhere to the Lévy process A,

i. e.,

P
[
lim
ϵ↓0

Aϵ(t, ·) = A(t, ·) ; ∀ t ∈ [0, 1]
]

= 1

Proof: It follows from Equation (6) that,

lim
ϵ↓0

Aϵ(t, ·) = lim
ϵ↓0

∫ t

0

∫ ∞

ϵ
xµ(·, ds, dx) = A(t, ·) ; P − q.c.,

for any t ∈ [0, 1]. Since A and Aϵ have rcll paths, we obtain from Protter (1990,

Theorem 2, pp. 4), that

P
[
w ∈ Ω : lim

ϵ↓0
Aϵ(t, ·) = A(t, ·) ; ∀ t ∈ [0, 1]

]
= 1

2

If, we denote by

Aϵ
1(t, w) =

∫ t

0

∫ ∞

ϵ
xµ1(w, ds, dx) =

∞∑
i=1

∆A[UBϵ
i (w), w]11{UBϵ

i (w)≤t}(w)

and

Aϵ
2(t, w) =

∫ t

0

∫ ∞

ϵ
xµ2(w, ds, dx) =

∞∑
i=1

∆A(si, w)11{Bϵ}[∆A(si, w)]11{si≤t}(w)

for any w ∈ Ω and t ∈ [0, 1]. We conclude that for each j = 1, 2,

P
[
lim
ϵ↓0

Aϵ
j(t, ·) = Aj(t, ·) ; ∀ t ∈ [0, 1]

]
= 1.

3.1 Sampling the Lévy Process A1

Let A1 be a Lévy process with correspondent Poisson measure µ1 and Lévy measure

ν1. Since ν1 is a σ-finite measure on ([0, 1] × (0,∞), β([0, 1] × (0,∞))), it can be
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disintegrated [Leão, Fragoso and Ruffino (2004, Theorem 3.1 and Corollary 3.1)]. Then,

for any ϵ > 0, t ∈ [0, 1] and B ∈ β(Bϵ), we obtain that

ν1([0, t], B) =
∫ t

0
ηϵ(B | s)ν1(ds,Bϵ),

where ηϵ is a (universally measurable) transition probability from ([0, 1], β([0, 1])) into

(Bϵ, β(Bϵ)) satisfying,

ηϵ(Bϵ | s) = 1 ; s ∈ (0, 1).

Hence, for any s ∈ (0, 1), we can extend ηϵ(· | s) to ((0,∞), β((0,∞))) by ηϵ(G |

s) = ηϵ(G ∩ Bϵ | s), with G ∈ β((0,∞)). The pair (ν1(·, · ∩ Bϵ), ηϵ) is called local

characteristic of the random measure µ1(·, ·, ·∩Bϵ) (Brémaud (1981), pp. 246, 247 and

248). Next, we shall show how the local characteristics can be used to determine the

random measure µ1(·, ·, · ∩Bϵ).

Theorem 3.2 For each ϵ > 0, the stochastic process µ1(·, ·, Bϵ) is a nonhomogeneous

Poisson process with intensity function ν1(·, Bϵ). Furthermore,

P
[
w′ ∈ Ω : ∆A1(U

Bϵ
i (w′), w′) ∈ G | UBϵ

1 , · · · , UBϵ
i ; ∆A1(U

Bϵ
1 ), · · · ,∆A1(U

Bϵ
i−1)

]
=

ηϵ
(
G | UBϵ

i

)
=

ν1
(
(UBϵ

i−1, U
Bϵ
i ], G ∩Bϵ

)
ν1

(
(UBϵ

i−1, U
Bϵ
i ], Bϵ

) ; P − a.s.. (7)

Then, a version of the regular conditional probability ηϵ is given by

ηϵ (G | un) = lim
un−1↑un

ν1 ((un−1, un], G ∩Bϵ)

ν1 ((un−1, un], Bϵ)
(8)

for any G ∈ β((0,∞)) and un ∈ C, such that C ∈ β((0, 1)) and P [(UBϵ
n )−1(C)] = 1.
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Proof: It follows from the definition that the random measure µ1(·, ·, Bϵ) has a finite

number of jumps, then, it is a nonhomogeneuous Poisson process with intensity function

ν1(·, Bϵ). Furthermore, it follows from Brémaud (1981, Theorem 16, pp. 247) and

Skorohod (1991, Theorem 19, pp. 153) that Equation (7) is valid .

Consider the random vector (UBϵ
n−1, U

Bϵ
n ) with values in E = {(x, y) ∈ R : x < y}

endowed with the Borel σ-algebra β(E), we denote the image probability by λ(D) =

P [(UBϵ
n−1, U

Bϵ
n )−1(D)] , for any D ∈ β(E). Then, there exist a Borel set N ∈ β(E) with

λ(E) = 0, such that

ηϵ (B | un) =
ν1 ((un−1, un], B)

ν1 ((un−1, un], Bϵ)

for any (un−1, un) ̸∈ N . Hence, we can take a sequence {uk
n−1} such that (uk

n−1, un) ̸∈ N

and uk
n−1 ↑ un. Thus, we obtain that

ηϵ (B | un) = lim
k↑∞

ν1
(
(uk

n−1, un], B
)

ν1
(
(uk

n−1, un], Bϵ

)
for any un ∈ C = Projy(E −N), where Projy[(x, y)] = y for any (x, y) ∈ E. Finally,

we obtain that P [(UBϵ
n )−1(C)] = λ[Proj−1

y (C)] = λ(E −N) = 1. 2

Suppose that the Lévy measure ν1 is absolutely continuous with respect to the

σ-finite measure δ, i.e., for any G ∈ β((0,∞)) there exists a measurable function

λ(G, ·) : [0, 1] → [0,∞] such that

ν1([0, t], G) =
∫ t

0
λ(G, s)δ(ds).

We denote the image probability with respect to the stopping time UBϵ
n by (UBϵ

n ⋆

P )(D) = P [(UBϵ
n )−1(D)], for any D ∈ β((0, 1)). Since the stochastic process µ1(·, ·, Bϵ)

is a nonhomogeneous Poisson process with Lévy measure ν1(·, Bϵ), we conclude that

(UBϵ
n ⋆ P ) is absolutely continuous with respect to the σ-finite measure δ. Then, it

follows from Theorem 3.2 that
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ηϵ(G | ui) = lim
ui−1↑ui

∫ ui
ui−1

λ(G ∩Bϵ, s)δ(ds)∫ ui
ui−1

λ(Bϵ, s)δ(ds)
=

λ(G ∩Bϵ, ui)

λ(Bϵ, ui)
; δ − a.s., (9)

Next, with the results established in this section, we shall describe an algorithm to

simulate the Lévy process A1:

1) If ν1([0, t], (0,∞)) < ∞, then

1.1) Generate a nonhomogeneous Poisson process with intensity function ν1(·, (0,∞)):

u1, u2, · · · , uk.

1.2) Given the jump times u1 < · · · < uk < 1 and the jump sizes x0 =

0, x1, · · · , xi−1, generate the jump size ∆A1(ui) from Equation (8) wih ϵ = 0:

x1, · · · , xk

1.3) Then, a path of the Lévy process is

A1(t) =
k∑

i=1

xi11{ui≤t}.

2) If ν1([0, t], (0,∞)) = ∞, given ϵ > 0, we generate Aϵ
1 following the steps (1.1) and

(1.2)) with Lévy measure ν1(·, · ∩Bϵ) and (1.3).

Next, we describe the algorithm for the particular cases, considering the Beta pro-

cess and the Extended Gamma process.

3.2 Sampling Beta Processes

It follows from Hjort (1990) and Kim (1999) that a beta process with parameters

(A0(t), c(t)), denoted by BP (A0, c), is a Lévy process with Lévy measure

ν1([0, t], B) =
∫ t

0

∫
B

c(s)

x
(1− x)c(s)−1dxdA0(s)
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for any B ∈ β((0, 1]) and t ∈ [0, 1], where A0 is a nondecreasing, continuous and

nonnegative function and c(t) is a piecewise continuous and nonnegative function. Since

ν1 has infinite total mass, we shall approximate the beta process A by a compound

Poisson process Aϵ with Lévy measure ν1([0, t], Bϵ), for any ϵ > 0 [Theorem (3.1)].

Moreover, for any G ∈ β((0, 1]), it follows from Theorem (3.2) that

ηϵ(G | ui) = lim
ui−1↑ui

∫ ui
ui−1

∫
G∩Bϵ

c(s)
x
(1− x)c(s)−1dxdA0(s)∫ ui

ui−1

∫
Bϵ

c(s)
x
(1− x)c(s)−1dxdA0(s)

=

∫
G∩Bϵ

c(ui)
x

(1− x)c(ui)−1dx∫
Bϵ

c(ui)
x

(1− x)c(ui)−1dx
; dA0(s)− a.s., (10)

for any G ∈ β((0, 1]). Then, the algorithm to simulate the Beta processes can be as

follows:

1) Given ϵ > 0, we generate a nonhomogeneous Poisson process with intensity function

ν1(·, Bϵ). In order to generate the nonhomogeneous Poisson process the following

steps may be followed:

1.1) First, generate the number of jump points k of Aϵ as Poisson (ν1([0, 1], Bϵ));

1.2) Given the number of jump points k, generate the jump times u1 < · · · <

uk < 1 as the order statistics of k independent identically distributed random

variables with the common probability distribution given by

ν1([0, t], Bϵ)

ν1([0, 1], Bϵ)
11{0<t≤1} =

∫ t
0

∫
Bϵ

c(s)
x
(1− x)c(s)−1dxdA0(s)∫ 1

0

∫
Bϵ

c(s)
x
(1− x)c(s)−1dxdA0(s)

11{0<t≤1};

2) Given the jump times u1 < · · · < uk < 1 and the jump sizes x0 = 0, x1, · · · , xi−1,

generate the jump size ∆Aϵ(ui) from Equation (10).
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3) Finally, the sample path of the Beta process may be approximated by

Aϵ(t) =
∞∑
i=1

xi11{ui≤t}.

In order to illustrate the proposed algorithm, we apply it to generate sample paths

from homogeneous and nonhomogeneous beta processes. First, we consider the homo-

geneous beta process BP (A0(t) = t, c(t) = 1) in the unit interval. For the beta process

with parameters A0(t) = t and c(t) = 1, we have that

ν1([0, t], B) =
∫ t

0

∫
B

1

x
dxds

for any B ∈ β((0, 1]) and t ∈ [0, 1]. The sample mean and the sample variance of the

generated processes at t = 0, 9 are compared with the true mean

E[A(t)] =
∫ t

0

∫ 1

0
xν1(ds, dx) =

∫ t

0

∫ 1

0
dxds = t,

and the true variance

V ar[A(t)] =
∫ t

0

∫ 1

0
x2ν1(ds, dx) =

∫ t

0

∫ 1

0
xdxds =

t

2
,

of the beta process BP (t, 1), respectively. The results of the simulation are presented in

Table 1 and a graphic with the paths may be found in Figure 1. Since E[Aϵ] = t(1− ϵ)

and V ar[Aϵ] = t(1− ϵ)2/2, when the value of the ϵ decreases the sample mean and the

sample variance approximate to the true value.

ϵ=0.1 ϵ=0.01 ϵ=0.001 ϵ=0.0001 ϵ=0.00001
Mean 0.8180 0.9116 0.9008 0.8926 0.9025

Variance 0.3495 0.4395 0.4593 0.4556 0.4414

Table 1: Means and variances obtained from 10000 samples at point t=0.9
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Figure 1: 30 samples from the Beta Process with A0(t) = t, c(t) = 1 and ϵ = 0.001.

Next, we apply the proposed algorithm to generate the sample paths of nonhomo-

geneous beta process with parameters A0(t) = t and c(t) = (t+2) in the unit interval.

In this case,

ν1([0, t], B) =
∫ t

0

∫
B

(s+ 2)

x
(1 + x)s+1dxds

for any B ∈ β((0, 1]) and t ∈ [0, 1]. The sample mean and the sample variance of the

generated processes at t = 0.9 are compared with the true mean

E[A(0.9)] =
∫ 0.9

0

∫ 1

0
xν1(ds, dx) =

∫ 0.9

0

∫ 1

0
(s+ 2)(1 + x)s+1dxds = 0.9

and the true variance

V ar[A(0.9)] =
∫ 0.9

0

∫ 1

0
x2ν1(ds, dx) =

∫ 0.9

0

∫ 1

0
x(s+ 2)(1 + x)s+1dxds = 0.2623
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of the beta process BP (t, t+2), respectively. The results of the simulation are presented

in Table 2 and a graphic with the paths may be found in Figure 2.

ϵ=0.1 ϵ=0.01 ϵ=0.001 ϵ=0.0001 ϵ=0.00001
Mean 0.7628 0.8586 0.9026 0.90012 0.8992

Variance 0.2314 0.2675 0.2688 0.2655 0.2618

Table 2: Means and variances obtained from 10000 samples at point t=0.9

Figure 2: 30 samples from the Beta Process with A0(t) = t, c(t) = (t+2) and ϵ = 0.001.

3.3 Sampling Extended Gamma Processes

The class of Extended Gamma processes was defined by Dykstra and Laud (1981).

They used this class of stochastic processes as a priori to the hazard rate of the prob-
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ability distribution in a reliability context. It follows from Laud, Smith and Damien

(1996, Theorem 2.1) that the Extended Gamma process with parameters (A0(t), c(t)),

denoted by EG(A0, c), is a Lévy process with Lévy measure

ν1([0, t], B) =
∫ t

0

∫
B

1

x
e−c(s)xdxdA0(s)

for any B ∈ β((0,∞)) and t ∈ [0, 1], where A0 is a nondecreasing, left continuous and

positive function and c(t) is a positive and right continuous function with left hand

limits existing.

Since ν1 has infinite total mass, we shall approximate the Extended Gamma process

A by a compound Poisson process Aϵ with Lévy measure ν1(·, · ∩ Bϵ), for any ϵ > 0

[Theorem (3.1)]. Moreover, for any G ∈ β((0,∞))

ηϵ(G | ui) = lim
ui−1→ui

∫ ui
ui−1

∫
G∩Bϵ

1
x
e−c(s)xdxdA0(t)∫ ui

ui−1

∫
Bϵ

1
x
e−c(s)xdxdA0(t)

=

∫
G∩Bϵ

1
x
e−c(ui)xdx∫

Bϵ

1
x
e−c(ui)xdx

; dA0 − a.s..

(11)

Then, the algorithm to simulate the Extended Gamma processes is as described in

Section 3.2 to simulate the Beta process. In order to illustrate the proposed algorithm,

we apply this algorithm to generate the sample paths of EG(A0(t) = t, c(t) = 1) on

the unit interval. For the Extended Gamma process with parameters A0(t) = t and

c(t) = 1, we have that

ν1([0, t], B) =
∫ t

0

∫
B

1

x
e−xdxds

for any B ∈ β((0, 1]) and t ∈ [0, 1]. The sample mean and the sample variance of the

generated processes at t = 0.9 are compared with the true mean

E[A(t)] =
∫ t

0

∫ ∞

0
xν1(ds, dx) =

∫ t

0

∫ ∞

0
e−xdxds = t,
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and the true variance

V ar[A(t)] =
∫ t

0

∫ ∞

0
x2ν1(ds, dx) =

∫ t

0

∫ ∞

0
xe−xdxds = t,

of the extended gamma process, respectively. As can be noticed in Table 3, when the

ϵ decrease the sample mean and the sample variance approximate to the true value.

The results of the simulation are presented in Table 3 and a graphic with the paths

may be found in Figure 3.

ϵ=0.1 ϵ=0.01 ϵ=0.001 ϵ=0.0001 ϵ=0.00001
Mean 0.8209 0.9128 0.8987 0.8903 0.9020

Variance 0.9397 0.8745 0.8830 0.8850 0.9089

Table 3: Means and variances obtained from 10000 samples at point t=0.9 .
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Figure 3: 30 samples from the Gamma Process with A0(t) = t, c(t) = 1 and ϵ = 0.001.
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