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Processo estocástico

Família de variáveis aleatórias   indexadas num 
conjunto ; i.e. , assumindo valores em 
algum espaço .


Usualmente  denota “tempo”,  (tempo 
discreto) o  (tempo contínuo), mas pode 
representar outros índices (por ex. espaço  ou  )
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Processo estocástico

A descrição do modelo muitas vezes pode ser feita por 
um conjunto de parâmetros , com dimensão 
variável.


Exemplo: cadeias de Markov sobre  com memória 
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Seleção de modelos

Para cada processo, há uma dimensão mínima” (básica). 
Essa dimensão é a “ordem” do processo


Se observamos uma amostra de um processo de 
dimensão “mínima” (ordem) , como podemos identificar 
esta dimensão?


Em geral, dado um  fixo, sabemos estimar os 
parâmetros  (ex: máxima verossimilhança)
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-verossimilhança + penalidade
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Estimadores regularizados



Exemplo 1

Série temporal  com .
Xt ∈ ℝd t ∈ ℕ
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Abstract

In this work we propose a model selection criterion to estimate the points of in-
dependence of a random vector, producing a decomposition of the vector distribution
function into independent blocks. The method, based on a general estimator of the
distribution function, can be applied for discrete or continuous random vectors, and
for iid data or stationary time series. We prove the consistency of the approach under
general conditions on the estimator of the distribution function and we show that the
consistency holds for iid data and discrete time series with mixing conditions. We also
propose an e�cient algorithm to approximate the estimator and show the performance
of the method on simulated data. We apply the method in a real dataset to estimate
the distribution of the flow over several locations on a river, observed at di↵erent time
points.

Keywords: Model selection, regularized estimator, structure estimation, dimension-
ality reduction.

1 Introduction

The discharge of water flowing in a river or a channel is measured using stream gauges. Let
Xu denote the flow recorded at the uth gauging station (u = 1, . . . , d) and X the random
vector X = (X1, . . . , Xd) containing the d records. Let us suppose this random vector is
observed on di↵erent days, and denote by X(i) = (X i

1, . . . , X
i

d
) the vector observed at the ith

day. Time series are one of the most popular tools to model the process {X(i) : 1  i  n},
where X(i) 2 Rd. In general, the number of parameters to be estimated is polynomial in the
dimension d, and this could be large in comparison to the sample size n, leading to overfitting.
In examples such as the water discharge presented above, the river dynamics may generate
independence in the behavior of some points of its course. In this case, a hydroelectric dam or
a interbasin transfer can cause independence among observations taken before and after these
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Função de distribuição: 

Estrutura - Blocos independentes

Quanto maior o número de pontos de independência, menor o 
sobreajuste do modelo

F . Moreover, if U and V are sets of independence for F , U [ V is a set of independence for
F too. This suggests to define U

⇤(F ) as the biggest set of independence for F , in the sense
that any other set of independence is included in U

⇤(F ). The aim of this work is to estimate
U

⇤(F ) on the basis of {X(i) : 1  i  n}, a stationary random process with X(i) ⇠ F .
This is a model selection problem, a core topic in data science. As explained in Massart
(2007), the main objective of model selection is to construct a data-driven criterion to select
a model among a given list of candidates. Once a model is chosen, it can be used to produce
accurate estimations of some parameters of interest. In the present setting, each model MU

postulate that U is a set of independence for F . These models are nested, in the sense that
if Ũ ⇢ U , then MU ⇢ M

Ũ
. Through the estimation of U⇤(F ) we can determine which is

the smallest model that generate our data. Typically, the larger is the postulated model, the
more flexible it is to describe the data, risking to lead to overfitting. To avoid this type of
phenomena, a penalization term is added to a given empirical minimum contrast that can
be used to choose a parsimonious model. To be more precise, given F and U = {u1, . . . , uk},
define the U -product of F by

FU(x1, . . . , xd) = F1:u1(x1, . . . , xu1)
k�1Y

i=1

Fui:ui+1(xui+1, . . . xui+1) Fuk+1:d(xuk+1, . . . , xd). (1)

For instance, if U = {1, 4} and d = 5, we are considering the product of the marginal
distribution of the subvectors (X1), (X2, X3, X4) and (X5). For U = ;, define FU = F . We
can measure the discrepancy between F and its U -product considering

`(U, F ) = sup
x2Rd

|FU(x)� F (x)|. (2)

Note that U is a set of independence for F if and only if FU ⌘ F , which means that
`(U, F ) = 0. Since U⇤ = U

⇤(F ) is the maximal set of independence for F , there exists ↵ > 0
such that

`(U, F ) = 0 if U ✓ U
⇤(F ), while `(U, F ) > ↵ if U 6✓ U

⇤(F ). (3)

This characterization of U⇤ suggests that it can be estimated by looking at the biggest set
that minimizes an empirical version of `(U, F ). In this work, the empirical version will be
defined through a plug–in procedure while the penalization term will take care of choosing
the biggest set, as indicated in what follows.

Given Xn = {X(i) : 1  i  n}, let bFXn denote any estimator of F . For instance, a
distribution-free consistent estimator of F is given by the empirical distribution, defined by

bFXn(x) =
1

n

nX

i=1

I{X(i)x}. (4)

However, if a model is postulated for F , other estimators can be used; for instance, if F
is assumed to be a Gaussian distribution with parameters µ and ⌃ = {�i,j}, Fu:v is also a
normal distributions but in Rv�u, with mean µu:v = E(Xu:v) = (µu, . . . , µv�1)t and variance-
covariance matrix ⌃u:v = cov(Xu:v). In such a case, FU is also a multivariate Gaussian
distribution in Rd with parameters µ and ⌃U , where ⌃U stands for the U -block matrix
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obtained by replacing the coe�cients �i,j in ⌃ with zero whenever i  u < j, for some
u 2 U . Thus, we can use a Gaussian distribution with estimated parameters in lieu of the
empirical distribution, defined in (4).

Consider

PL(U,Xn) = `(U, bFXn) + �n (|U |+ 1)�1
, (5)

where |U | denotes the cardinal of the set U . In this way, we have combined an empirical
version of `(U, F ) with a penalization term, giving rise to the new objective function to be
minimized. Define

bUn = argmin
U✓{1,...,d�1}

PL(U,Xn). (6)

That is, bUn satisfies

PL(bUn,X
n)  PL(U,Xn) , for all U ✓ {1, . . . , d� 1}.

The following result establishes the consistency of bUn as far as the penalization term and
the convergence rate of bFXn satisfy certain conditions.

Theorem 1 Assume that

supx2Rd | bFXn(x)� F (x)|  an , eventually almost surely as n ! 1. (7)

If �n ! 0 and an/�n ! 0, then bUn = U
⇤ eventually almost surely when n ! 1.

Remark 2 The convergence of bUn to U
⇤ established in Theorem 1 does not require the pro-

cess to be in a stationary regime. It holds as far as the empirical distribution bFXn converges
uniformly to a given distribution F at a certain rate an, related to the penalization factor �n

as indicated in this theorem.

Adler and Brown (1986) studied the tail behavior of the suprema of the centered empirical
distribution in the iid case, giving rise to the following result.

Corollary 3 Assume that {X(i) : i � 1} are iid and consider the empirical distribution bFXn

defined in (4) to estimate F . Take �n = cn
�⇠, with ⇠ 2 (0, 1/2). Then, bUn = U

⇤ eventually
almost surely when n ! 1.

As discussed in Adams et al. (2010), even if the uniform consistency of the centered
empirical distribution for the non iid case can be deduced for general ergodic sampling
schemes, distribution-free probability bounds like those required in (7) cannot be obtained
without further constrains. That is to say, besides the iid case, universal rates can not
be established in general. However, specific rate can be deduced for particular cases. For
instance, assume now that X is a discrete random vector, that is X 2 A

d, with A a finite
alphabet and let {X(i) : i � 1} be a stationary and ergodic mixing process with marginal
distribution F . For i  j denote by X(i:j) the cylinder (projection) X(i:j) = {X(k) : i  k 
j}. Denote also by xk

1, with k � 1, a sequence of length k of vectors in A
d. Then the process
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⇤ eventually almost surely when n ! 1.

Remark 2 The convergence of bUn to U
⇤ established in Theorem 1 does not require the pro-

cess to be in a stationary regime. It holds as far as the empirical distribution bFXn converges
uniformly to a given distribution F at a certain rate an, related to the penalization factor �n

as indicated in this theorem.

Adler and Brown (1986) studied the tail behavior of the suprema of the centered empirical
distribution in the iid case, giving rise to the following result.

Corollary 3 Assume that {X(i) : i � 1} are iid and consider the empirical distribution bFXn

defined in (4) to estimate F . Take �n = cn
�⇠, with ⇠ 2 (0, 1/2). Then, bUn = U

⇤ eventually
almost surely when n ! 1.
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schemes, distribution-free probability bounds like those required in (7) cannot be obtained
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be established in general. However, specific rate can be deduced for particular cases. For
instance, assume now that X is a discrete random vector, that is X 2 A

d, with A a finite
alphabet and let {X(i) : i � 1} be a stationary and ergodic mixing process with marginal
distribution F . For i  j denote by X(i:j) the cylinder (projection) X(i:j) = {X(k) : i  k 
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d. Then the process
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for n � m+ `. Csiszár (2002) obtained a result on the rate of convergence for the empirical
probabilities in a stationary stochastic process with exponential mixing sequence. Based on
this approach we can prove the following result.
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ity of the exhaustive search algorithm is O(2dT ), where T is the time needed to compute
PL(U,Xn). Observe that T could also depend on d, but at most linearly. In any case, the
problem becomes computationally infeasible even for moderate values of d. To overcome
this computational problem, in this section we introduce a more e�cient divide and conquer
algorithm to approximate the estimator given by 6, with time complexity O(d2T ). At each
step, we include an independence point in the estimation of U⇤(F ), as far as it improves the
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PL(U,Xn

u:v) = `(U, bFXn
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as defined before. Consider
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{PL({i},Xn

u:v)}, (9)

where, by convention, we set PL({v},Xn

u:v) = PL(;,Xn

u:v), with v the biggest element in u :v.

The binary splitting algorithm constructs a binary tree with nodes indexed by sub-
intervals of 1 : d, such that the set of terminal nodes of the tree is a partition of 1 : d and
the end points of these intervals correspond to the estimated points of independence in bUbin

n
.

The algorithm works as follows.

1. Initialize bUbin
n

= ; and I = 1:d (the root of the tree).

2. Compute h(I,Xn

I
). If h(I,Xn

I
) < max(I) add h(I,Xn

I
) to bUbin

n
and two leaves to node

I in the tree, with labels I1 = I \ {i : i  h(I,Xn

I
)} and I2 = I \ {i : i > h(I,Xn

I
)}.

3. Repeat step 2 for the new terminal nodes in the tree, until no more leaves are added.
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(a) (b)

Figure 7: (a) Geographic border of Brazil and its states limits. The rectangle highlights the
area where the São Francisco River is located; (b) A zoom of the boxed area in (a), containing
the São Francisco River. Red circles represent the ten stream flow gauges considered in our
analysis, numbered in increasing order from bottom to top.

stations located along the course of São Francisco River registered between January 1977
and January 2016. This data form the X(i) vector described above. Therefore our aim is to
determine the set of independence among the stream gauges.

The course of the river can be divided into four sections: the high part (where stations
1 and 2 are located), from its source to Pirapora city; the upper middle part (stations 3, 4,
5, 6, and 7), from Pirapora to Sobradinho dam, the navigable part; the lower middle part
from Sobradinho dam to Itaparica dam (station 8); and the low part, from Itaparica dam
to the river mouth (stations 9 and 10). The flow of the river at di↵erent points can also be
a↵ected by the period of the year. The wet season, which holds nearly 60% of the yearly
precipitation, begins in November and goes until January, while the dry season is from June
to August.

We consider n = 358 observations consisting of monthly averages of the registered data,
in m

3
/s. Both the exact and the binary splitting algorithms with �n = n

0.25 estimated the
same set of independence bUn = bUbin

n
= {7}. It is important to note that this finding can be

explained by the fact that between stations 7 and 8 is located the Sobradinho hydroelectric
dam, the biggest along the course of the São Francisco River. Figure 8 shows boxplots of the
stream measurements at the considered gauges and the point of independence given by our
approach. We observe that at point 7 there is a qualitative change of regime in the boxplots,
and this can be due to the e↵ect of the hydroelectric in the flow of the river, showing that
the independence obtained by the algorithm can be in some sense expected at this point.

One characteristic of this dataset is that it is not stationary by nature, that means in
our context that data on each month can have a di↵erent distribution. But even in this
case, the method can still be e↵ective to detect the common points of independence, that is,
the points of independence shared by all the distributions. To investigate more about this
issue, we applied both algorithms to the subsets of the data corresponding to each month,
using the same tuning parameters. As expected, both algorithms estimated more points of
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Figure 8: Stream flows measured at the ten stations in the São Francisco River. The red
dotted line represents the point at which both the exact and the binary algorithms estimated
a point of independence for the random vector.

independence, but in general the point 7 was detected in the majority of the months. Due
to space limitations, the results for the di↵erent months are compiled in the supplementary
material to this article.

6 Discussion

In this paper we introduced a model selection approach to detect independent blocks in
multivariate time series. The method is based on a penalized criterion and on a general
estimator of the cumulative distribution function. We proved the convergence to the true
set of points of independence, in a iid scenario and in a dependent mixing setting for discrete
processes. We also introduced a more e�cient binary splitting algorithm to be used when
the computation of the exact estimator is computationally time demanding. We proved
that the approximation given by this algorithm also converges to the true set of points of
independence. These results could be extended to other scenarios, as for example the case
of dependent gaussian processes or more general continuous processes. In these cases, the
penalization factor �n should be chosen depending on the rate of convergence of the selected
estimator for the distribution function F .

From the simulations we concluded that both estimators have a very good performance,
even for relatively small sample size, and the performance is better when higher is the
correlation between the dependent variables. It is worth noticing that the simulations were
implemented with a fixed value for the penalty �n and it remains as an open problem how to
select the tuning parameter �n in an e�cient way. In the supplementary material we included
a simulation study considering di↵erent values for the penalizing constant and we can see
that, as expected, the exact algorithm seems to outperform the binary search algorithm on
a larger set of penalizing constants.

In this work we focused on the identification of a block structure, but we think our
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Abstract—In this paper we introduce an estimator for the

number of communities in the Stochastic Block Model (SBM),

based on the maximization of a penalized version of the so-

called Krichevsky-Trofimov mixture distribution. We prove its

eventual almost sure convergence to the underlying number of

communities, without assuming a known upper bound on that

quantity. Our results apply to both the dense and the sparse

regimes. To our knowledge this is the first consistency result for

the estimation of the number of communities in the SBM in

the unbounded case, that is when the number of communities is

allowed to grow with the same size.

Index Terms—Model selection, SBM, Krichevsky-Trofimov

distribution, Minimum Description Length, Bayesian Information

Criterion

I. INTRODUCTION

In this paper we address the model selection problem for
the Stochastic Block Model (SBM); that is, the estimation of
the number of communities given a sample of the adjacency
matrix. The SBM was introduced by [1] and has rapidly
popularized in the literature as a model for random networks
exhibiting blocks or communities between their nodes. In
this model, each node in the network has associated a latent
discrete random variable describing its community label, and
given two nodes, the possibility of a connection between them
depends only on the values of the nodes’ latent variables.

From a statistical point of view, some methods have been
proposed to address the problem of parameter estimation
or label recovering for the SBM. Some examples include
maximum likelihood estimation [2], [3], variational methods
[4], [5], spectral clustering [6] and Bayesian inference [7].
The asymptotic properties of these estimators have also been
considered in subsequent works such as [8] or [9]. In [10]
the reader can find an overview of recent approaches and
theoretical results concerning the problem of community de-
tection in SBMs. All these approaches assume the number of
communities is known a priori.

The model selection problem, that is the estimation of the
number of communities, has been also addressed before using
different approaches. Some examples include methods based
on the spectrum of the graph [11]–[13] or cross validation
[14], [15]. From a Bayesian perspective, in [4] the authors
propose a criterion known as Integrated Completed Likelihood
(ICL) based on the previous work [16] for clustering, where a
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penalized profile likelihood function is used as approximation
of the ICL. To our knowledge it was not until [17] that a
consistency result was obtained for a model selection criterion.
In the cited work the authors propose the maximization of the
penalized log-likelihood function and show its convergence in
probability to the true number of communities. Their proof
only applies to the case where the number of candidate values
for the estimator is finite (it is upper bounded by a known
constant) and the network average degree grows at least as
a polylog function on the number of nodes. Moreover, the
penalizing term is of order n log n, with n the number of
nodes in the network, a rate considerably bigger than the usual
penalizing term arising in the classical Bayesian Information
Criterion [18]. From a practical point of view, the computation
of the log-likelihood function and its supremum is not a simple
task due to the hidden nature of the nodes’ labels. However,
some approximate versions of the estimator can be obtained
by variational methods using the EM algorithm [4], [8], a
profile maximum likelihood criterion as in [2] or the pseudo-
likelihood algorithm in [3]. In a recent paper, the authors of
[19] study a related method to the likelihood approach in
[17], using the profiled conditional likelihood that they call
corrected Bayesian Information Criterion. The hypothesis they
assume are the same as in [17] and the penalty term is of order
n.

In this paper we take an information-theoretic perspective
and introduce the Krichevsky-Trofimov (KT) estimator in
order to determine the number of communities of a SBM
based on a sample of the adjacency matrix of the network.
The KT estimator can be seen as a particular version of the
Model Description Length (MDL) principle [20] with KT code
lengths [21] and has been previously proposed as a model
selection criteria for the memory of a Markov chain [22], [23],
the context tree of a variable length Markov chain [24] or
the number of hidden states in a Hidden Markov Model [25],
[26]. The proposed method is a penalized estimator based on
a mixture distribution of the model, known as Krichevsky-
Trofimov mixture distribution. It can be seen as a Bayesian
estimator with a particular choice for the prior distributions,
and it is somehow related to the approach proposed in [5].

The main contribution of this work is the proof of the
strong consistency of the proposed estimator to select the
number of communities in the SBM. By strong consistency
we mean that eventually, the estimator equals the true number
of communities with probability one, and the term should not
be confused with the strong recovery notion in community
detection problems [27]. We prove the strong consistency of
the estimator in the dense regime, where the probability of
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having an edge is considered to be constant, and in the sparse

regime where this probability goes to zero with n having order
⇢n. The study of the second regime is more interesting in the
sense that it is necessary to control how much information is
required to estimate the parameters of the model. We prove
the strong consistency in the sparse case provided the expected
degree of a given node grows to infinity, that is n⇢n ! 1,
weakening the assumption in [17] that proves consistency in
the regime n⇢n

logn ! 1. We also consider a penalty function of
smaller order compared to n log n used in [17] and we do not
assume a known upper bound on the true number of commu-
nities. To our knowledge, this is the first strong consistency
result for an estimator of the number of communities, even
in the bounded case, and the first one to prove consistency
when the number of communities is allowed to grow with
the sample size. We also investigate the performance of the
variational approximation introduced in [5] and compare the
performance of this algorithm with other methods on simulated
networks. The simulation results show that the performance
of the approximation to the KT estimator is comparable with
other methods for balanced networks. However, this estimator
performs better for unbalanced networks.

The paper is organized as follows. In Section II we define
the model and the notation used in the paper, in Section III
we introduce the KT estimator for the number of communities
and state the main result. The proof of the consistency of
the estimator is presented in Section IV. In section V we
investigate the performance of the variation approximation
of the estimator on simulated data. The final discussions are
provided in Section VI.

II. THE STOCHASTIC BLOCK MODEL

Consider a non-oriented random network with nodes
{1, 2, . . . , n}, specified by its adjacency matrix An⇥n 2
{0, 1}n⇥n that is symmetric and has diagonal entries equal
to zero. Each node i has associated a latent (non-observed)
variable Zi on [k] := {1, 2, . . . , k}, the community label of
node i.

The SBM with k communities is a probability model
for a random network as above, where the latent variables
Zn = (Z1, Z2, · · · , Zn) are independent and identically
distributed random variables over [k] and the law of the
adjacency matrix An⇥n, conditioned on the value of the latent
variables Zn = zn, is a product measure of Bernoulli random
variables whose parameters depend only on the nodes’ labels.
More formally, there exists a probability distribution over [k],
denoted by ⇡ = (⇡1, · · · ,⇡k), and a symmetric probability
matrix P 2 [0, 1]k⇥k such that the distribution of the pair
(Zn,An⇥n) is given by

P⇡,P (zn,an⇥n) =
Y

1ak

⇡
na
a

Y

1abk

P
oa,b

a,b (1�Pa,b)
na,b�oa,b ,

(1)

where the counters na = na(zn), na,b = na,b(zn) and oa,b =
oa,b(zn,an⇥n) are given by

na(zn) =
nX

i=1

1{zi = a} , 1  a  k ,

na,b(zn) =

(
na(zn)nb(zn) , 1  a < b  k,

1
2na(zn)(na(zn)� 1) 1  a = b  k,

and

oa,b(zn,an⇥n) =

8
><

>:

P
1i,jn

1{zi = a, zj = b}xij , a < b,

P
1i<jn

1{zi = a, zj = b}xij , a = b .

As it is usual in the definition of likelihood functions, by
convention we define 00 = 1 in (1) when some of the
parameters are 0.

We denote by ⇥k the parametric space for a model with k

communities, given by

⇥k =

⇢
(⇡, P ) : ⇡ 2 (0, 1]k,

kX

a=1

⇡a = 1, P 2 [0, 1]k⇥k
,

P is symmetric
�
.

The order of the SBM is defined as the smallest k for which
the equality (1) holds for a pair of parameters (⇡0

, P
0) 2 ⇥k

and will be denoted by k0. If a SBM has order k0 then it
cannot be reduced to a model with less communities than k0;
this specifically means that P

0 does not have two identical
columns.

When P
0 is fixed and does not depend on n, the mean

degree of a given node grows linearly in n and this regime
produces very connected, dense graphs. In this paper we also
consider the regime producing sparse graphs (with less edges),
that occurs when P

0 decreases to the zero matrix with n. In
this sparse regime we write P

0 = ⇢nS
0, where S

0 2 [0, 1]k⇥k

does not depend on n and ⇢n is a function decreasing to 0 at
a sufficiently slow rate such that n⇢n ! 1.

III. THE KT ORDER ESTIMATOR

Given a sample (zn,an⇥n) from the distribution (1) with
parameters (⇡0

, P
0), where we assume we only observed the

network an⇥n, the estimator of the number of communities is
defined by

k̂KT(an⇥n) = argmax
1kn

{ logKTk(an⇥n)� pen(k, n) } , (2)

where KTk(an⇥n) is the integrated likelihood for a SBM with
k communities and pen(k, n) is a penalizing function that will
be specified later. The integrated likelihood KTk(an⇥n) is
obtained by integrating the likelihood of the model using a
specific choice of prior distribution for the parameters (⇡, P ).
In this specific setting, we choose as a prior distribution a
product of a Dirichlet(1/2, · · · , 1/2), the prior distribution for
⇡, and a product of (k2 + k)/2 Beta(1/2, 1/2) distributions,
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the prior for the symmetric matrix P . Formally, we define the
distribution ⌫k(⇡, P ) on ⇥k as

⌫k(⇡, P ) =
�( k

2 )
�( 1

2 )
k

Y

1ak

⇡
� 1

2
a

⇥
Y

1abk

1

�( 1
2 )

2 P
� 1

2
a,b (1� Pa,b)

� 1
2

(3)

and the integrated likelihood based on ⌫k(⇡, P ) is given by

KTk(an⇥n) = E⌫k [P⇡,P (an⇥n) ]

=

Z

⇥k

P⇡,P (an⇥n)⌫k(⇡, P )d⇡dP ,
(4)

where P⇡,P (an⇥n) stands for the marginal distribution ob-
tained from (1), that is

P⇡,P (an⇥n) =
X

zn2[k]n

P⇡,P (zn,an⇥n) . (5)

The distribution given in (4) is the integrated marginal
likelihood of the model, also known as model evidence under
a Bayesian perspective, see for example the related work [5].
Because of the specifc choice of ⌫k(⇡, P ), in this paper we
will follow the information-theoretical tradition and call the
integrated likelihood given in (4) the Krichevsky-Trofimov
mixture and the derived estimator for the number of com-
munities (2) the KT estimator.

As in other model selection problems where the KT ap-
proach has proved to be very useful, see for example [24]–[26],
in the case of the SBM there is a closed relationship between
the KT mixture distribution and the maximum likelihood
function. The following proposition shows non asymptotic
uniform bounds for the log-likelihood function in terms of
the logarithm of the KT distribution. Its proof is postponed to
the Appendix.

Proposition 1. For all k, all n � max(4, k) and all an⇥n we

have that

logKTk(an⇥n)  log sup
(⇡,P )2⇥k

P⇡,P (an⇥n) (6)

 logKTk(an⇥n) +
k(k+2)�1

2 log n+ ck

where

ck = k(k + 1) + 1 . (7)

Proposition 1 is at the core of the proof of the consistency
of k̂KT defined by (2). In order to derive the strong consistency
result for the KT order estimator, we need a penalty function
in (2) with a given rate of convergence when n grows to
infinity. Although there is a range of possibilities for this
penalty function, the specific form we use in this paper is

pen(k, n) =
h
k(k�1)(2k�1)

12 + k(k�1)
2 + (1+✏)(k�1)

2

i
log n

(8)

for any ✏ > 0. The convenience of the expression above will be
make clear in the proof of the consistency result. Observe that
the penalty function defined by (8) is dominated by a term of
order k3 log n and then it is of smaller order than the function
k(k+1)

2 n log n used in [17]. For a model selection criterion,

a too strong penalty term can lead to a bigger probability of
underestimating the true number of communities, then a small
penalty term is in general desirable.

We finish this section by stating the main theoretical result
in this paper.

Theorem 2. Suppose the SBM has order k0 with parameters

(⇡0
, P

0), and suppose pen(k, n) is given by (8). Then we have

that

k̂KT(an⇥n) = k0

eventually almost surely as n ! 1.

The proof of this and other auxiliary results are given in the
next section and in the Appendix.

IV. PROOF OF THE CONSISTENCY THEOREM

The proof of Theorem 2 is divided in two main parts. The
first one, presented in Subsection IV-A, proves that k̂KT(an⇥n)
does not overestimate the true order k0, eventually almost
surely when n ! 1, even without assuming a known upper
bound on k0. The second part of the proof, presented in
Subsection IV-B, shows that k̂KT(an⇥n) does not underestimate
k0, eventually almost surely when n ! 1. By combining
these two results we prove that k̂KT(an⇥n) = k0 eventually
almost surely as n ! 1.

A. Non-overestimation

The main result in this subsection is given by the following
proposition.

Proposition 3. Let an⇥n be a sample of size n from a

SBM of order k0, with parameters ⇡
0

and P
0
. Then, the

k̂KT(an⇥n) order estimator defined in (2) does not overestimate

k0, eventually almost surely when n ! 1.

The proof of Proposition 3 follows straightforward from
Lemmas 4 and 5 presented below. These lemmas are inspired
in the work [26] which proves consistency for an order
estimator of a Hidden Markov Model (HMM). In any case,
we would like to emphasise that even if the SBM can be seen
as a “hidden variable model”, there are substantial differences
with HMM, the most important one being that in the case of
a SBM, when a new node is added there are n possible new
edges in the network, depending on the labels of all previous
nodes. In contrast, in a HMM the observable only depends on
the state at time n.

Lemma 4. Under the hypotheses of Proposition 3 we have

that

k̂KT(an⇥n) 62 (k0, log n]

eventually almost surely when n ! 1.

Proof. First observe that

P⇡0,P 0(k̂KT(an⇥n) 2 (k0, log n])

=
lognX

k=k0+1

P⇡0,P 0(k̂KT(an⇥n) = k) .
(9)
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the prior for the symmetric matrix P . Formally, we define the
distribution ⌫k(⇡, P ) on ⇥k as

⌫k(⇡, P ) =
�( k

2 )
�( 1

2 )
k

Y

1ak

⇡
� 1

2
a

⇥
Y

1abk

1

�( 1
2 )

2 P
� 1

2
a,b (1� Pa,b)

� 1
2

(3)

and the integrated likelihood based on ⌫k(⇡, P ) is given by

KTk(an⇥n) = E⌫k [P⇡,P (an⇥n) ]

=

Z

⇥k

P⇡,P (an⇥n)⌫k(⇡, P )d⇡dP ,
(4)

where P⇡,P (an⇥n) stands for the marginal distribution ob-
tained from (1), that is

P⇡,P (an⇥n) =
X

zn2[k]n

P⇡,P (zn,an⇥n) . (5)

The distribution given in (4) is the integrated marginal
likelihood of the model, also known as model evidence under
a Bayesian perspective, see for example the related work [5].
Because of the specifc choice of ⌫k(⇡, P ), in this paper we
will follow the information-theoretical tradition and call the
integrated likelihood given in (4) the Krichevsky-Trofimov
mixture and the derived estimator for the number of com-
munities (2) the KT estimator.

As in other model selection problems where the KT ap-
proach has proved to be very useful, see for example [24]–[26],
in the case of the SBM there is a closed relationship between
the KT mixture distribution and the maximum likelihood
function. The following proposition shows non asymptotic
uniform bounds for the log-likelihood function in terms of
the logarithm of the KT distribution. Its proof is postponed to
the Appendix.

Proposition 1. For all k, all n � max(4, k) and all an⇥n we

have that

logKTk(an⇥n)  log sup
(⇡,P )2⇥k

P⇡,P (an⇥n) (6)

 logKTk(an⇥n) +
k(k+2)�1

2 log n+ ck

where

ck = k(k + 1) + 1 . (7)

Proposition 1 is at the core of the proof of the consistency
of k̂KT defined by (2). In order to derive the strong consistency
result for the KT order estimator, we need a penalty function
in (2) with a given rate of convergence when n grows to
infinity. Although there is a range of possibilities for this
penalty function, the specific form we use in this paper is

pen(k, n) =
h
k(k�1)(2k�1)

12 + k(k�1)
2 + (1+✏)(k�1)

2

i
log n

(8)

for any ✏ > 0. The convenience of the expression above will be
make clear in the proof of the consistency result. Observe that
the penalty function defined by (8) is dominated by a term of
order k3 log n and then it is of smaller order than the function
k(k+1)

2 n log n used in [17]. For a model selection criterion,

a too strong penalty term can lead to a bigger probability of
underestimating the true number of communities, then a small
penalty term is in general desirable.

We finish this section by stating the main theoretical result
in this paper.

Theorem 2. Suppose the SBM has order k0 with parameters

(⇡0
, P

0), and suppose pen(k, n) is given by (8). Then we have

that

k̂KT(an⇥n) = k0

eventually almost surely as n ! 1.

The proof of this and other auxiliary results are given in the
next section and in the Appendix.

IV. PROOF OF THE CONSISTENCY THEOREM

The proof of Theorem 2 is divided in two main parts. The
first one, presented in Subsection IV-A, proves that k̂KT(an⇥n)
does not overestimate the true order k0, eventually almost
surely when n ! 1, even without assuming a known upper
bound on k0. The second part of the proof, presented in
Subsection IV-B, shows that k̂KT(an⇥n) does not underestimate
k0, eventually almost surely when n ! 1. By combining
these two results we prove that k̂KT(an⇥n) = k0 eventually
almost surely as n ! 1.

A. Non-overestimation

The main result in this subsection is given by the following
proposition.

Proposition 3. Let an⇥n be a sample of size n from a

SBM of order k0, with parameters ⇡
0

and P
0
. Then, the

k̂KT(an⇥n) order estimator defined in (2) does not overestimate

k0, eventually almost surely when n ! 1.

The proof of Proposition 3 follows straightforward from
Lemmas 4 and 5 presented below. These lemmas are inspired
in the work [26] which proves consistency for an order
estimator of a Hidden Markov Model (HMM). In any case,
we would like to emphasise that even if the SBM can be seen
as a “hidden variable model”, there are substantial differences
with HMM, the most important one being that in the case of
a SBM, when a new node is added there are n possible new
edges in the network, depending on the labels of all previous
nodes. In contrast, in a HMM the observable only depends on
the state at time n.

Lemma 4. Under the hypotheses of Proposition 3 we have

that

k̂KT(an⇥n) 62 (k0, log n]

eventually almost surely when n ! 1.

Proof. First observe that

P⇡0,P 0(k̂KT(an⇥n) 2 (k0, log n])

=
lognX

k=k0+1

P⇡0,P 0(k̂KT(an⇥n) = k) .
(9)
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having an edge is considered to be constant, and in the sparse

regime where this probability goes to zero with n having order
⇢n. The study of the second regime is more interesting in the
sense that it is necessary to control how much information is
required to estimate the parameters of the model. We prove
the strong consistency in the sparse case provided the expected
degree of a given node grows to infinity, that is n⇢n ! 1,
weakening the assumption in [17] that proves consistency in
the regime n⇢n

logn ! 1. We also consider a penalty function of
smaller order compared to n log n used in [17] and we do not
assume a known upper bound on the true number of commu-
nities. To our knowledge, this is the first strong consistency
result for an estimator of the number of communities, even
in the bounded case, and the first one to prove consistency
when the number of communities is allowed to grow with
the sample size. We also investigate the performance of the
variational approximation introduced in [5] and compare the
performance of this algorithm with other methods on simulated
networks. The simulation results show that the performance
of the approximation to the KT estimator is comparable with
other methods for balanced networks. However, this estimator
performs better for unbalanced networks.

The paper is organized as follows. In Section II we define
the model and the notation used in the paper, in Section III
we introduce the KT estimator for the number of communities
and state the main result. The proof of the consistency of
the estimator is presented in Section IV. In section V we
investigate the performance of the variation approximation
of the estimator on simulated data. The final discussions are
provided in Section VI.

II. THE STOCHASTIC BLOCK MODEL

Consider a non-oriented random network with nodes
{1, 2, . . . , n}, specified by its adjacency matrix An⇥n 2
{0, 1}n⇥n that is symmetric and has diagonal entries equal
to zero. Each node i has associated a latent (non-observed)
variable Zi on [k] := {1, 2, . . . , k}, the community label of
node i.

The SBM with k communities is a probability model
for a random network as above, where the latent variables
Zn = (Z1, Z2, · · · , Zn) are independent and identically
distributed random variables over [k] and the law of the
adjacency matrix An⇥n, conditioned on the value of the latent
variables Zn = zn, is a product measure of Bernoulli random
variables whose parameters depend only on the nodes’ labels.
More formally, there exists a probability distribution over [k],
denoted by ⇡ = (⇡1, · · · ,⇡k), and a symmetric probability
matrix P 2 [0, 1]k⇥k such that the distribution of the pair
(Zn,An⇥n) is given by

P⇡,P (zn,an⇥n) =
Y

1ak

⇡
na
a

Y

1abk

P
oa,b

a,b (1�Pa,b)
na,b�oa,b ,

(1)

where the counters na = na(zn), na,b = na,b(zn) and oa,b =
oa,b(zn,an⇥n) are given by

na(zn) =
nX

i=1

1{zi = a} , 1  a  k ,

na,b(zn) =

(
na(zn)nb(zn) , 1  a < b  k,

1
2na(zn)(na(zn)� 1) 1  a = b  k,

and

oa,b(zn,an⇥n) =

8
><

>:

P
1i,jn

1{zi = a, zj = b}xij , a < b,

P
1i<jn

1{zi = a, zj = b}xij , a = b .

As it is usual in the definition of likelihood functions, by
convention we define 00 = 1 in (1) when some of the
parameters are 0.

We denote by ⇥k the parametric space for a model with k

communities, given by

⇥k =

⇢
(⇡, P ) : ⇡ 2 (0, 1]k,

kX

a=1

⇡a = 1, P 2 [0, 1]k⇥k
,

P is symmetric
�
.

The order of the SBM is defined as the smallest k for which
the equality (1) holds for a pair of parameters (⇡0

, P
0) 2 ⇥k

and will be denoted by k0. If a SBM has order k0 then it
cannot be reduced to a model with less communities than k0;
this specifically means that P

0 does not have two identical
columns.

When P
0 is fixed and does not depend on n, the mean

degree of a given node grows linearly in n and this regime
produces very connected, dense graphs. In this paper we also
consider the regime producing sparse graphs (with less edges),
that occurs when P

0 decreases to the zero matrix with n. In
this sparse regime we write P

0 = ⇢nS
0, where S

0 2 [0, 1]k⇥k

does not depend on n and ⇢n is a function decreasing to 0 at
a sufficiently slow rate such that n⇢n ! 1.

III. THE KT ORDER ESTIMATOR

Given a sample (zn,an⇥n) from the distribution (1) with
parameters (⇡0

, P
0), where we assume we only observed the

network an⇥n, the estimator of the number of communities is
defined by

k̂KT(an⇥n) = argmax
1kn

{ logKTk(an⇥n)� pen(k, n) } , (2)

where KTk(an⇥n) is the integrated likelihood for a SBM with
k communities and pen(k, n) is a penalizing function that will
be specified later. The integrated likelihood KTk(an⇥n) is
obtained by integrating the likelihood of the model using a
specific choice of prior distribution for the parameters (⇡, P ).
In this specific setting, we choose as a prior distribution a
product of a Dirichlet(1/2, · · · , 1/2), the prior distribution for
⇡, and a product of (k2 + k)/2 Beta(1/2, 1/2) distributions,
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the prior for the symmetric matrix P . Formally, we define the
distribution ⌫k(⇡, P ) on ⇥k as

⌫k(⇡, P ) =
�( k

2 )
�( 1

2 )
k

Y

1ak

⇡
� 1

2
a

⇥
Y

1abk

1

�( 1
2 )

2 P
� 1

2
a,b (1� Pa,b)

� 1
2

(3)

and the integrated likelihood based on ⌫k(⇡, P ) is given by

KTk(an⇥n) = E⌫k [P⇡,P (an⇥n) ]

=

Z

⇥k

P⇡,P (an⇥n)⌫k(⇡, P )d⇡dP ,
(4)

where P⇡,P (an⇥n) stands for the marginal distribution ob-
tained from (1), that is

P⇡,P (an⇥n) =
X

zn2[k]n

P⇡,P (zn,an⇥n) . (5)

The distribution given in (4) is the integrated marginal
likelihood of the model, also known as model evidence under
a Bayesian perspective, see for example the related work [5].
Because of the specifc choice of ⌫k(⇡, P ), in this paper we
will follow the information-theoretical tradition and call the
integrated likelihood given in (4) the Krichevsky-Trofimov
mixture and the derived estimator for the number of com-
munities (2) the KT estimator.

As in other model selection problems where the KT ap-
proach has proved to be very useful, see for example [24]–[26],
in the case of the SBM there is a closed relationship between
the KT mixture distribution and the maximum likelihood
function. The following proposition shows non asymptotic
uniform bounds for the log-likelihood function in terms of
the logarithm of the KT distribution. Its proof is postponed to
the Appendix.

Proposition 1. For all k, all n � max(4, k) and all an⇥n we

have that

logKTk(an⇥n)  log sup
(⇡,P )2⇥k

P⇡,P (an⇥n) (6)

 logKTk(an⇥n) +
k(k+2)�1

2 log n+ ck

where

ck = k(k + 1) + 1 . (7)

Proposition 1 is at the core of the proof of the consistency
of k̂KT defined by (2). In order to derive the strong consistency
result for the KT order estimator, we need a penalty function
in (2) with a given rate of convergence when n grows to
infinity. Although there is a range of possibilities for this
penalty function, the specific form we use in this paper is

pen(k, n) =
h
k(k�1)(2k�1)

12 + k(k�1)
2 + (1+✏)(k�1)

2

i
log n

(8)

for any ✏ > 0. The convenience of the expression above will be
make clear in the proof of the consistency result. Observe that
the penalty function defined by (8) is dominated by a term of
order k3 log n and then it is of smaller order than the function
k(k+1)

2 n log n used in [17]. For a model selection criterion,

a too strong penalty term can lead to a bigger probability of
underestimating the true number of communities, then a small
penalty term is in general desirable.

We finish this section by stating the main theoretical result
in this paper.

Theorem 2. Suppose the SBM has order k0 with parameters

(⇡0
, P

0), and suppose pen(k, n) is given by (8). Then we have

that

k̂KT(an⇥n) = k0

eventually almost surely as n ! 1.

The proof of this and other auxiliary results are given in the
next section and in the Appendix.

IV. PROOF OF THE CONSISTENCY THEOREM

The proof of Theorem 2 is divided in two main parts. The
first one, presented in Subsection IV-A, proves that k̂KT(an⇥n)
does not overestimate the true order k0, eventually almost
surely when n ! 1, even without assuming a known upper
bound on k0. The second part of the proof, presented in
Subsection IV-B, shows that k̂KT(an⇥n) does not underestimate
k0, eventually almost surely when n ! 1. By combining
these two results we prove that k̂KT(an⇥n) = k0 eventually
almost surely as n ! 1.

A. Non-overestimation

The main result in this subsection is given by the following
proposition.

Proposition 3. Let an⇥n be a sample of size n from a

SBM of order k0, with parameters ⇡
0

and P
0
. Then, the

k̂KT(an⇥n) order estimator defined in (2) does not overestimate

k0, eventually almost surely when n ! 1.

The proof of Proposition 3 follows straightforward from
Lemmas 4 and 5 presented below. These lemmas are inspired
in the work [26] which proves consistency for an order
estimator of a Hidden Markov Model (HMM). In any case,
we would like to emphasise that even if the SBM can be seen
as a “hidden variable model”, there are substantial differences
with HMM, the most important one being that in the case of
a SBM, when a new node is added there are n possible new
edges in the network, depending on the labels of all previous
nodes. In contrast, in a HMM the observable only depends on
the state at time n.

Lemma 4. Under the hypotheses of Proposition 3 we have

that

k̂KT(an⇥n) 62 (k0, log n]

eventually almost surely when n ! 1.

Proof. First observe that

P⇡0,P 0(k̂KT(an⇥n) 2 (k0, log n])

=
lognX

k=k0+1

P⇡0,P 0(k̂KT(an⇥n) = k) .
(9)
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the prior for the symmetric matrix P . Formally, we define the
distribution ⌫k(⇡, P ) on ⇥k as

⌫k(⇡, P ) =
�( k

2 )
�( 1

2 )
k

Y

1ak

⇡
� 1

2
a

⇥
Y

1abk

1

�( 1
2 )

2 P
� 1

2
a,b (1� Pa,b)

� 1
2

(3)

and the integrated likelihood based on ⌫k(⇡, P ) is given by

KTk(an⇥n) = E⌫k [P⇡,P (an⇥n) ]

=

Z

⇥k

P⇡,P (an⇥n)⌫k(⇡, P )d⇡dP ,
(4)

where P⇡,P (an⇥n) stands for the marginal distribution ob-
tained from (1), that is

P⇡,P (an⇥n) =
X

zn2[k]n

P⇡,P (zn,an⇥n) . (5)

The distribution given in (4) is the integrated marginal
likelihood of the model, also known as model evidence under
a Bayesian perspective, see for example the related work [5].
Because of the specifc choice of ⌫k(⇡, P ), in this paper we
will follow the information-theoretical tradition and call the
integrated likelihood given in (4) the Krichevsky-Trofimov
mixture and the derived estimator for the number of com-
munities (2) the KT estimator.

As in other model selection problems where the KT ap-
proach has proved to be very useful, see for example [24]–[26],
in the case of the SBM there is a closed relationship between
the KT mixture distribution and the maximum likelihood
function. The following proposition shows non asymptotic
uniform bounds for the log-likelihood function in terms of
the logarithm of the KT distribution. Its proof is postponed to
the Appendix.

Proposition 1. For all k, all n � max(4, k) and all an⇥n we

have that

logKTk(an⇥n)  log sup
(⇡,P )2⇥k

P⇡,P (an⇥n) (6)

 logKTk(an⇥n) +
k(k+2)�1

2 log n+ ck

where

ck = k(k + 1) + 1 . (7)

Proposition 1 is at the core of the proof of the consistency
of k̂KT defined by (2). In order to derive the strong consistency
result for the KT order estimator, we need a penalty function
in (2) with a given rate of convergence when n grows to
infinity. Although there is a range of possibilities for this
penalty function, the specific form we use in this paper is

pen(k, n) =
h
k(k�1)(2k�1)

12 + k(k�1)
2 + (1+✏)(k�1)

2

i
log n

(8)

for any ✏ > 0. The convenience of the expression above will be
make clear in the proof of the consistency result. Observe that
the penalty function defined by (8) is dominated by a term of
order k3 log n and then it is of smaller order than the function
k(k+1)

2 n log n used in [17]. For a model selection criterion,

a too strong penalty term can lead to a bigger probability of
underestimating the true number of communities, then a small
penalty term is in general desirable.

We finish this section by stating the main theoretical result
in this paper.

Theorem 2. Suppose the SBM has order k0 with parameters

(⇡0
, P

0), and suppose pen(k, n) is given by (8). Then we have

that

k̂KT(an⇥n) = k0

eventually almost surely as n ! 1.

The proof of this and other auxiliary results are given in the
next section and in the Appendix.

IV. PROOF OF THE CONSISTENCY THEOREM

The proof of Theorem 2 is divided in two main parts. The
first one, presented in Subsection IV-A, proves that k̂KT(an⇥n)
does not overestimate the true order k0, eventually almost
surely when n ! 1, even without assuming a known upper
bound on k0. The second part of the proof, presented in
Subsection IV-B, shows that k̂KT(an⇥n) does not underestimate
k0, eventually almost surely when n ! 1. By combining
these two results we prove that k̂KT(an⇥n) = k0 eventually
almost surely as n ! 1.

A. Non-overestimation

The main result in this subsection is given by the following
proposition.

Proposition 3. Let an⇥n be a sample of size n from a

SBM of order k0, with parameters ⇡
0

and P
0
. Then, the

k̂KT(an⇥n) order estimator defined in (2) does not overestimate

k0, eventually almost surely when n ! 1.

The proof of Proposition 3 follows straightforward from
Lemmas 4 and 5 presented below. These lemmas are inspired
in the work [26] which proves consistency for an order
estimator of a Hidden Markov Model (HMM). In any case,
we would like to emphasise that even if the SBM can be seen
as a “hidden variable model”, there are substantial differences
with HMM, the most important one being that in the case of
a SBM, when a new node is added there are n possible new
edges in the network, depending on the labels of all previous
nodes. In contrast, in a HMM the observable only depends on
the state at time n.

Lemma 4. Under the hypotheses of Proposition 3 we have

that

k̂KT(an⇥n) 62 (k0, log n]

eventually almost surely when n ! 1.

Proof. First observe that

P⇡0,P 0(k̂KT(an⇥n) 2 (k0, log n])

=
lognX

k=k0+1

P⇡0,P 0(k̂KT(an⇥n) = k) .
(9)

Consistência
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(a) n = 300 and ⇡ = (1/3, 1/3, 1/3) (b) n = 300 and ⇡ = (0.2, 0.5, 0.3)

(c) n = 500 and ⇡ = (1/3, 1/3, 1/3) (d) n = 500 and ⇡ = (0.2, 0.5, 0.3)

Fig. 1: Proportion of correct estimates for k0 using the methods: Krichevsky-Trofimov (KT), Beth-Hessian matrix with moment
correction (BHMC), network cross-validation (NCV) and penalized maximum likelihood (PML). We consider the model with
k0 = 3, P0 = ⇢S0, where S0 has diagonal entries equal to 2 and off-diagonal entries equal to 1. The tuning parameter in PML
was chosen as � = 0.1 and in KT as ✏ = 1.

The second inequality is based on [26, Appendix I] and [25,
Lemma 3.4]. For (⇡, P ) 2 ⇥k we have that

P⇡,P (zn) =
Y

1ak

⇡
na
a (34)

and

P⇡,P (an⇥n|zn) =
Y

1abk

P
oa,b

a,b (1� Pa,b)
na,b�oa,b . (35)

Using that the maximum likelihood estimators for ⇡a and Pa,b

are given by
na

n
and

oa,b

na,b
respectively, we can bound above

(34) and (35) by

P⇡,P (zn)  sup
(⇡,P )2⇥k

P⇡,P (zn) =
Y

1ak

⇣
na

n

⌘na

(36)

and

P⇡,P (an⇥n|zn)  sup
(⇡,P )2⇥k

P⇡,P (an⇥n|zn)

=
Y

1abk

✓
oa,b

na,b

◆oa,b
✓
1� oa,b

na,b

◆na,b�oa,b

.

(37)

Observe that the Krichevsky-Trofimov mixture distribution
defined in (4) can be written as

KTk(an⇥n)

=
X

zn2[k]n

✓R
⇥k

1
P⇡,P (zn)⌫1k(⇡)d⇡

◆✓R
⇥k

2
P⇡,P (an⇥n|zn)⌫2k(P )dP

◆

=
X

zn2[k]n

KTk(zn)KTk(an⇥n|zn) , (38)

where

⌫
1
k(⇡) =

�(k2 )

�( 12 )
k

Y

1ak

⇡
�1/2
a ,

⌫
2
k(P ) =

Y

1abk

1

�( 12 )
2
P

�1/2
a,b (1� Pa,b)

�1/2
,

⇥k
1 = {⇡ |⇡ 2 (0, 1]k,

kX

a=1

⇡a = 1} ,

and

⇥k
2 = {P |P 2 [0, 1]k⇥k

, P is symmetric }.



Perguntas em aberto (trabalhos futuros)

• Modelos com “alta dimensão”  ( )


• Desigualdades de grandes desvios (velocidade de 
convergência de estimadores)


• Outras estruturas de dependência (modelos gráficos)


• Desigualdades de tipo “oráculo” (quando não 
assumimos um modelo “correto” ) 

d, k → ∞



 Obrigada !!


