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Factor analysis: early days
Bartholomew (1995)* starts his paper by saying that

Spearman invented factor analysis but his almost
exclusive concern with the notion of a general factor
prevented him from realizing its full potential.

Factor analysis, however, has flourished ever since Spearman’s
(1904) seminal paper on the American Journal of Psychology
entitled “General Inteligente objectively determined and
measured” .

Factor models are mainly applied in two major situations:
® Data reduction,
® ldentifying underlying structures.

1Spearman and the origin and development of factor analysis, British
Journal of Mathematical and Statistical Psychology,48, 211-220.
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Basic model
The Gaussian linear factor model relates a m-vector of

Basi del . .
s mose observables y; to a k-vector of latent variables f; via
e, yelfe, © ~ N(Bft, X),
Bayes
pre-MCMC - _ 2 2 lorf
Sg;/tcj\rﬂCMC where @ - (ﬁ’ Z), L= dlag(gl’ e ’Um)' and’ a priori,
:© ~ N(0, Ix).
Factor SV
S, Conditional variance: The ommon latent factors explain all the

SHFM

dependence structure among the m variables:

o2 i=j

cov(yit, yjelfe, ©) = { d i#j

Unconditional variance:

V(%:|®) =Q=p5"+ 1
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Classical literature

Lawley (1940,1941)

Anderson and Rubin (1956)
Joreskog (1969,1970)

Rubin and Thayer (1982)
Bentler and Tanaka (1983)
Rubin and Thayer (1983)
Akaike (1987)

Anderson and Amemiya (1988)
Amemiya and Anderson (1990)
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Bayes pre-MCMC

Press (1972)

Martin and McDonald (1975)
Geweke and Singleton (1980)
Bartholomew (1981)

Lee (1981)

Press and Shigemasu (1989)
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Bayes post-MCMC

Geweke and Zhou (1996)

Aguilar and West (2000)

Lopes, Aguilar and West (2000)
Lopes and Migon (2002)

West (2003)

Wang and Wall (2003)

Lopes and West (2004)

Quinn (2004)

Hogan and Tchernis (2004)

Lopes, Salazar and Gamerman (2008)
Carvalho et al. (2008)

Chib and Ergashev (2009)
Friihwirth-Schnatter and Lopes (2009)
Carvalho, Lopes and Aguilar (2011)
Bhattacharya and Dunson (2011)
Lopes et al. (2012)

Hahn and Lopes (2013)
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Invariance

The model is invariant under transformations of the form
B = BP'" and f; = Pf;, for any orthogonal matrix P:

Q=88+ =050 +%

Two standard solutions
e Classical approach: /X138 = 1.

e Bayesian approach: [ is a block lower triangular.

More general solution (Friihwirth-Schnatter and Lopes, 2009):

B is generalized block lower triangular.

This last form provides both identification and, often, useful
interpretation of the factor model.
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Number of parameters

The resulting number of parameters in Q is
m(m+1)/2 —m(k+ 1)+ k(k—1)/2>0,

which provides an upper bound on k.

For example,
e m=06 implies k < 3,
e m=12 implies kK < 7,
e m =20 implies k < 14,
e m =50 implies k < 40,

Even for small m, the bound will often not matter as relevant k

values will not be so large.
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Full-rank loading matrix

Geweke and Singleton (1980) show that, if 5 has rank r < k
there exists a matrix @ such that 5Q =0 and Q’Q = / and,
for any orthogonal matrix M,

BB +X = (B8+MQ)(B+MQ)+ (X - MM)

This translation invariance of €2 under the factor model implies
lack of identification and, in application, induces symmetries
and potential multimodalities in resulting likelihood functions.

This issue relates intimately to the question of uncertainty of
the number of factors.
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Ordering of the variables

Alternative orderings are trivially produced via Ay; for some
rotation matrix A.

ol The new rotation has the same latent factors but transformed
Bayes i .
pre-MCMC loadings matrix AS.
p g ;/ tL—SM CcMC
Basic model A_yt - Aﬁf + Et
(cont.)
This new loadings matrix does not have the lower triangular
i structure.
Sparse FA

SHFM

However, we can always find an orthonormal matrix P such
that ABP’ is lower triangular, and so simply recover the factor
model with the same probability structure for the underlying
latent factors Pf; (Lopes and West, 2004).

The order of the variables in y; is irrelevant assuming that k is

properly chosen.
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Prior specification

Loading matrix:

Bii ~ N(0, G) when i # j,
Bii ~ N(0,C)1(Bii >0) when i=1,... k

Idiosyncratic variances
0? ~ 1G(v/2,vs%/2)

where s is the prior mode of each 0’,-2 and v the prior degrees
of freedom hyperparameter.

We eschew the use of standard improper reference priors
p(a,-Z) o 1/0,-2, since such priors lead to the Bayesian analogue
of the so-called Heywood problem (Martin and McDonald,
1975, and lhara and Kano, 1995).

12 /66



Early days
Basic model

Literature
Classical
literature
Bayes
pre-MCMC
Bayes
post-MCMC

Basic model
(cont.)

More structure
Factor SV
SDFM

Sparse FA
SHFM

Final remarks

Full conditional distributions

Factor scores
fo v N(VEB'Eye, Vi)

where Vr = (I, + 8/£718)"L.
Idiosyncrasies
of ~IG((v+ T)/2,(vs* + i) /2)

where d; = (y; — £8!) (yi — fB}).
First k rows of

Bi ~ N(M;, CG)1(B;; > 0)
where
M = G (Co_lltoli +0,-_2f,-/y,‘>
o= Gli+o

Last m — k rows of 8
Bi ~ N(M;, G;)

where
_ —1 —2 1

M = G (Co Holgk +o; fyt')

C-_1

i

Co i + o 2F'F.
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Example: Lopes and West (2004)

Monthly international exchange rates.

The data span the period from 1/1975 to 12/1986 inclusive.

Time series are the exchange rates in British pounds of

US dollar (US)

Canadian dollar (CAN)

Japanese yen (JAP)

French franc (FRA)

Italian lira (ITA)

(West) German (Deutsch)mark (GER)
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Exchange rates

BT . . .
SRR Standardized first differences of monthly log exchange rates
Basic model
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1st ordering

E(Bly) =

2nd ordering

E(Bly) =

us
CAN
JAP
FRA
ITA
GER

us
JAP
CAN
FRA
ITA
GER

0.99
0.95
0.46
0.39
0.41
0.40

0.98
0.45
0.95
0.39
0.41
0.40

0.00
0.05
0.42
0.91
0.77
0.77

0.00
0.42
0.03
0.91
0.77
0.77

Posterior means

E(X|y) = diag

E(Xly) = diag

0.05
0.13
0.62
0.04
0.25
0.28

0.06
0.62
0.12
0.04
0.25
0.26
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More structure

Factor stochastic volatility models

Dynamic stock factor models

Factor-augmented vector autoregressions

Spatial dynamic factor models

Hierarchical factor models

Sparse factor models
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Factor SV

The p-vector of time series y; follows a k-order factor model:

velfe ~ N(Bf,L:)  T¢=diag(ol,...,00)
fr ~ N(0,Hy) Ht:diag(agﬂm...,ag%t)

where

nie = log(o) ~ N(aj+vimie—1,&F)
Aje = log(0%) ~ N(uj+ j\je—1,77)
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Aguilar and West (2000) introduce contemporaneous
covariation in the common factor log-volatilities.

Let \; = (Ug+17t, . ,Jﬁ+k7t)’, w=(pa,..., k) and
Glcseal ® = diag(¢1v ceey d)k)v then
A~ Nia+ §re1, U)
where U is a full covariance matrix.
Factor SV Lopes and Carvalho (2007) introduce time-varying loadings, ;.
SmFA The d = pk — k(k — 1)/2 unconstrained elements of 3,

SHFM

namely o1+, 831,t, - - - Bp.k,t. are modeled by simple first order
autoregressive models, ie.

Bijt ~ N(Cjj + ©yBijt—1, Wﬁ)

fori=2,...,pandj=1,...,min(i — 1, k).
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Example: Lopes-Carvalho (2007)

Returns on weekday closing spot prices for six currencies
relative to the US dollar.

The data span the period from 1/1/1992 to 10/31/1995.
German Mark(DEM)

British Pound(GBP)

Japanese Yen(JPY)

French Franc(FRF)

Canadian Dollar(CAD)

Spanish Peseta(ESP)

A 3-factor stochastic volatility model with time-varying
loadings was implemented with relatively vague priors for all

model parameters.
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Time-varying loadings
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Variance decomposition
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Spatial dynamic factor models

Lopes, Salazar and Gamerman (2008) introduces the following
spatio-temporal model for y; = (y1t,...,Ym7)’, measurements
on m spatial locations and over T time periods:

Dimension reduction:
ye ~ N(Bf:, X)
Time series component:
fe ~ N(Tfe—1,T)
Spatial component:
B ~ GP(uj, 77 Ry;)
where 8 = (B1,...,8«) and Ry, spatial correlation matrix.

A RJMCMC is proposed to select k.
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Spatial interpolation

x Observed

2001-1  2001-26  2002-1 ~ 2002-26  2003-1  2003-26  2004-1

\ X Observed

0,
30 40
L L

20
L

2001-1  2001-26  2002-1  2002-26  2003-1  2003-26  2004-1

Interpolated values at stations SPD and BWR.
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S0, levels

SO, levels

20

40

Forecasting

-+ SGSTM
- = SGFl
--- 95%Cl

S0; levels

S x  Observed
SSDFM
\ ©+ SGSTM

SGFM
-+ 85%Cl

-+ SGSTM
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S0; levels

\ X Observed
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2004-30
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Final ark . - .
e educational choices and adult economic and health outcomes.

?Conti, Heckman, Lopes and Piatek (2011):
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The British Cohort Study
A survey of all babies born (alive or dead) after the 24th week
of gestation from 00.01 hours on Sunday, 5th April to 24.00

hours on Saturday, 11 April, 1970 in England, Scotland, Wales
and Northern Ireland.

Follow-ups (so far): 1975, 1980, 1986, 1996, 2000, 2004, 2008.
Background characteristics:

e Cognitive, mental, physical health measurements (age 10)
e Education and adult outcomes (age 30)

Sample size: 5,105 women and 5,420 men.
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e Health outcomes
e poor health
e obesity
e daily smoking
e Labor market outcome
e log hourly wage
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Measurement system (M)

The measurement system includes more than one hundred and
thirty indicators of child

e cognitive traits,
e mental health traits,
e physical health traits

all collected at age ten.
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Cognition

Picture Language Comprehension Test (PLCT):
vocabulary, sequence, sentence comprehension.

Friendly Math Test (FMT):
arithmetic, fractions, algebra, geometry, statistics.

Shortened Edinburgh Reading Test (SERT):
vocabulary, syntax, sequencing, comprehension, retention.

British Ability Scales (BAS):
similar to IQ: two verbal and two non-verbal scales.
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Mental health

Rutter Parental ‘A’ Scale of Behavioral Disorder (19 items)
Administered to the mother.

The Conners Hyperactivity Scale (19 items)
Also administered to the mother.

The Child Developmental Scale (53 items)
Answered by a teacher with knowledge of the child.

The Locus of Control Scale (16 items)
Measures the child’s perceived achievement control.
Administered by the teacher and completed by the child.

The Self-Esteem Scale (12 items)

Measure the child’s self-esteem with reference to teachers,
peers and parents. It was administered by the teacher and
completed by the child.
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height

head circumference
weight

diastolic blood pressure

systolic blood pressure

Physical health
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Control variables (X)

mother's age at birth

mother's education at birth
father's high social class at birth
total gross family income at age 10
an indicator for broken family

the number of previous livebirths

the number of children in the family at age 10
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Exclusion variables (Z)

Gender-specific, county-level deviation from long-run average.

e unemployment rate

e gross weekly wage
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1

2

Variables
Education
Outcomes

Measurements:
Cognitive skills
Personality

British study

2K <O

Definitions

Observed: achieving A-level or higher
Observed in one state only!

Poor health, Obesity, Smoking, Wage
Observed: 126 items (binary and cont.)
Unobserved dimensions
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Education choice

Education outcome D is related to
e Latent factors # (via measurements M)
e Observed characteristics X
e Exclusion restrictions Z

via the continuous latent utility D*:

D* = op X +a'Z + Bp0 +ep

where D =1 if D* > 0, and zero otherwise.
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Potential outcome

Let (Y1, Y2,...,Ys) be health and labor market outcomes

The measured outcome Y; can thus be expressed as:

Ys = Dyls—l-(]. — D) Yos-

We assume that each potential outcome Yy is generated by a
latent outcome Y, for d = 0,1, through the following
linear-in-parameter model:

Y;s - O/dSX + 52159 + €ds
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Latent traits

We assume that each observed measurement is determined by
an underlying latent variable Mj that linearly depends on the
observed characteristics X and on the latent factors 6:

Mg = alX + By 0 + em,
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Or, more compactly,

Overall model

y=aW+p0+c¢

/
B,

Bvig
Bp
Boy
P

/
s
Bis

0+

EMy

e’fMQ
€D

€01

€11

€0s
€18

43 /66



Classical
literature

Bayes
pre-MCMC

Bayes
post-MCMC

Factor SV
SDFM
Sparse FA
SHFM

Parsimonious BFA
Frithwirth-Schnatter and Lopes (2009)

e Lay down a new and general set of identifiability
conditions that handles the ordering problem present in
most of the current literature,

e Introduce a new strategy for searching the space of
parsimonious/sparse factor loading matrices,

e Designed a highly computationally efficient MCMC
scheme for posterior inference which makes several
improvements over the existing alternatives,

for the important class of Gaussian factor models:
y=p0+¢
where € ~ N(0, X).
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B8 = (B+ MQ)(B+ M) + (L — MM).

for some orthogonal M with BQ =0 and Q'Q =/

We use this “deficiency” in our model search strategy.
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P11
P21
B31
Ba1
Bs1
Be1
B

Birth/death of loadings

0

B22
B32
Baz
P52
B62
B2

Generalized lower triangular

0
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0
0
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Other contributions

Our approach provides a principled way for inference on
the number of factors, as opposed to previous work
(Carvalho et al., 2008; Bhattacharya and Dunson, 2009).

Our prior specification on ¥ properly addresses Heywood
problems

Our fractional-like prior on 3 is more robust than the
existing ones (Lopes and West, 2004, Ghosh and Dunson,
2009)

Efficient (and correct) parameter expansion where the
prior is unchanged (as opposed to GD2009).
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Variables Definitions
Education D Observed: achieving A-level or higher
Outcomes Y  Observed in one state only!

Poor health, Obesity, Smoking, Wage

Measurements: M; Observed: 126 items (binary and cont.)
Cognitive skills 68  Unobserved dimensions
Personality
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Cognitive tests

Rutter scale

Conners scale

Self-esteem scale

Locus of Control

Child develop-
mental scale

Outcome system

/

Y i

o

Females —
Factor loadings

posterior
probabilities
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Cogpnitive tests

Rutter scale

Conners scale

Self-esteem scale

Sparse FA
Locus of Control

Child develop-
mental scale

Outcome system
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i

Females —
Factor loadings

posterior

probabilities

Factor 2
«  Significantly
loaded by
*  items from the
Rutter and
and the
Conners scales

associated with:

o ‘Anxiety
Disorders’
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Cognitive tests

Rutter scale

Conners scale

Self-esteem scale

Locus of Control

Child develop-

mental scale

Outcome system

Females —
Factor loadings

posterior
probabilities

Factor 3
«  Significantly
loaded by
* items from the
cognitive tests
and locus of
control items:
Cognitive
N factor

51/66



Vulnerability index for Uruguay
Uruguay has an area of 176,215 km? and roughly 3.3 million
inhabitants, half of which live in the capital, Montevideo.
Around 93% of the population lives in urban areas.
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Census tracts per capital

Capital Census tracts Capital Census tracts
Bella Unién 11  Durazno 35
Canelones 20 Maldonado 36
Colonia 21 Tacuarembd 38
Fray Bentos 22 Mercedes 39
Trinidad 27 Melo 43
Rocha 28 Rivera 45
Treinta y Tres 29 Paysandd 72
Florida 31 Salto 34
Minas 33 Montevideo 1031
San José 34
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Main goals

To characterize the vulnerability of the population of Uruguay
to diseases transmitted through vectors (e.g. Dengue Fever,
Malaria, etc.);

Bayes
post-MCMC

To help prioritizing the allocation of fundings;
Factor SV
SDFM
Sparse FA

SHFM We have information on p = 11 variables per census tracts of
the | = 19 Departamental Capitals of the country.

Source: Census 1996 (latest Census in Uruguay)
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Table : Description of the p = 11 variables, observed in the census
tract level of the departmental capitals, to build the vulnerability
index of the population of Uruguay to vector-borne diseases.

Classical
literature
Bayes
pre-MCMC

TR e Levels Variables
Illiteracy rate (ILL)
Personal Population with access to public health care (PHC)
characteristic | Male without formal jobs (UQW)
sy Owed houses (OWH)
Sparse FA Households headed by a woman (WHF)
St Households without sewage system (AHS)
Household Average number of persons per household (APH)
characteristic | Households with more than two persons per room (OVC)
Households without access to drinkable water (ADW)
Households with air conditioner (ACO)
Households poorly built (HOQ)
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Sample correlations

ILL PHC OVC UQW AHS ADW APH

PHC | 0.85

ovC | 0.78 0.79

UQW | 0.67 0.65 0.68

AHS | 0.64 059 067 0.60

o ADW | 0.60 0.47 049 051 0.62

v APH | 053 052 054 038 032 0.26
HOQ | 045 036 043 040 063 057 0.23

The sample correlations between OWH or WHF or ACO and
any one of the attributes are below 18% (in absolute value).
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Model structure
Observational Level:

Yik = pk + Bt + ok k=1,---,p,

where iy represents the overall grand mean.

Modeling f;: 5
fiy = 0i + fij + Vwiuy

where 6; is the common factor for capital /.

Spatial variation within capitals:
f; ~ N(0, 72P))
where P; = (In,- + ¢M;)_1, M; = D; — W;, with Wiji, the (_], /)

component of W;, given by wj; = 1/dj if j and [ are neighbors

(denoted here by j ~ /) and zero otherwise, dj = ||s; — s/|| is
the Euclidean distance between centroids of capitals j and /,

D; = diag(wi1+, . .., Win+) and wjip =7, swij.
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Model structure (cont.)

Spatial variation between capitals:
0 ~ N (1,600,6°H(N))
where 0 = (01,--- ,6)).
Although each capital i has its own vulnerability factor, the

above model allows borrowing-strength across neighboring
regions.
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Early days
Basic model

Literature
Classical
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Basic model

(cont.)

More structure
Factor SV
SDFM

Sparse FA
SHFM

Final remarks

Table :  Comparing SHFM and UHFM: Comparing the unstructured
hierarchical factor (UHFM) and spatial hierarchical factor models (SHFM)
for different values of ¢. Best models appear in italic. DIC: deviance
information criterion, EPD: expected posterior deviation, CRPS: continuous
ranked probability score, MSE: mean square error and MAE: mean absolute
error. CRPS are in tens of thousands.

UHFM SHFM
Criterion 0 =0 unknown 6 =1 ¢=5 =7
DIC -21445.4 -21493.3 | -21785.8 -21827.4 -21827.0
EPD 2557.4 2510.9 2453.1 2433.6 2432.6
CRPS 1030.7 1024.2 1014.2 1010.3 1010.3
MAE 2397.0 2381.8 2374.5 2367.9 2369.1
MSE 1222.3 1200.1 1177.2 1169.2 1168.9
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Figure : Posterior mean of 6; and standard deviations (second
column) for observed and unobserved cities under the SHFM when

¢ =5.
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Posterior mean
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Figure : Posterior means of the 6; and 95% Cl. Top row: SHFM

with ¢ = 5 (left) and UHFM (right). Bottom row: ASFM (left) and

AFM (right).

61 /66



103120134 21 33 36 31,28 27 35 30 22 29,72 43 38 45 84 11 103120}34 21 33 36 31,28 27 35 39 22 20,72 43 38 45 84 11

Focha

Tacuarembo

I
o Bolla Union

Rank
s 5 7 9 1 13 15 17 19
L
P
N,
L e
P
P
e
[
Rank
3 5 7 9 1 13 15 17 19
L
e
L e

] 1T ] ‘ [T
Classical ] ]
literature ] | ] L
Bayes
pre-MCMC ] + ] + +
Bayes -4 -1
post-MCMC
163120734 21 33 36 31128 27 35 39 22 29'72 43 38 45 84 11 (103120734 21 33 36 31128 27 35 30 22 23/72 43 38 45 84 11
fe, & 2 g gfliz f. . ¢
c§ z K [ £252
8 S = H K 2 g7 3
2 = . LR - © .
Factor SV 1 ., = .
SDFM ] ’ -] '
Sparse FA 21 T 27 T
SHFM € oA l t € 2 l t
5 "] 5 7]
T _] 1 + c _] $+
- ! - X
"] t "] t
. | d t
o] I o] 1t
] . ] .
-J. -]

Figure : Posterior rankings of the capitals. Top row: SHFM with
¢ =5 (left) and UHFM (right).Bottom row: ASFM (left) and AFM

(right).
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Figure :  Within-city posterior vulnerability index per census tract.
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Final remarks

Final remarks

Massive datasets
GWAS, high-frequency econometrics, climatology

Factor-augmented VAR
(Ahmadi and Uhlig, 2009)

Many weak instruments
(Hahn and Lopes, 2012)

Sparse loadings via regularization
(Polson and Scott, 2011,2012)

Text document modeling via independent factor topic models
Latent Dirichlet allocation and correlated topic model
Putthividhya, Attias and Nagarajan (2012)
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