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irrigation graphs

Start with a connected graph on n vertices.

An irrigation subgraph is obtained when each vertex selects c
neighbors at random (without replacement).

Here the underlying graph is a random geometric graph: vertices
are X1, . . . ,Xn i.i.d. uniform on the torus [0, 1]2 and Xi ∼ Xj iff
‖Xi − Xj‖ < r .

Also called bluetooth graphs.
They are locally sparsified random geometric graphs.

Introduced by Ferraguto, Mambrini, Panconesi, and Petrioli (2004).

Fenner and Frieze (1982) considered Kn as the underlying graph.

Question: How large does c need to be for G(n, r , c) to be
connected?
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irrigation graphs

G(n, r) needs to be connected.

Connectivity threshold is r∗ ∼
√

log n/(πn).

We only consider r ≥ γ
√

log n/n for a sufficiently large γ.
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previous results

Fenner and Frieze, 1982: For r =∞, G(n, r , 2) is connected whp.

Dubhashi, Johansson, Häggström, Panconesi, Sozio, 2007: For
constant r the graph G(n, r , 2) is connected whp.

Crescenzi, Nocentini, Pietracaprina, Pucci, 2009: ∃ α, β such that
if

r ≥ α
√

log n
n

and c ≥ β log(1/r),

then G(n, r , c) is connected whp.

This bound is sub-optimal in all ranges of r .
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previous results

Broutin, Devroye, Fraiman, and Lugosi, 2012:
There exists a constant γ∗ > 0 such that for all γ ≥ γ∗ and
ε ∈ (0, 1), if

r ∼ γ
(

log n
n

)1/2

and ct =

√
2 log n

log log n
,

then

• if c ≥ (1 + ε)ct then G(n, r , c) is connected whp.

• if c ≤ (1− ε)ct then G(n, r , c) is disconnected whp.

ct does not depend on γ or d .

We get a significantly sparser graph while preserving connectivity.

In this talk we investigate genuinely sparse graphs with c constant.
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sparse connectivity by enlarging r

The lower bound follows from a more general result:

Let ε ∈ (0, 1) and λ ∈ [1,∞] be such that r > γ∗
(

log n
n

)1/2

log nr2

log log n
→ λ and c ≤ (1− ε)

√(
λ

λ− 1/2

)
log n

log nr2
.

Then G(n, r , c) is disconnected whp.
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sparse connectivity by enlarging r

In particular, take r ∼ n−(1−δ)/2. Then for c ≤ (1− ε)/
√
δ

(constant) the graph is disconnected.

The smallest possible
components are cliques of size
c + 1. These appear whp.
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connectivity for constant c

The lower bound is not far from the truth: when r ∼ n−(1−δ)/2,
c =

√
(1 + o(1))/δ + const. is sufficient for connectivity.

The irrigation graph is connected but genuinely sparse:

Let δ ∈ (0, 1), γ > 0. Suppose that r ∼ γn−(1−δ)/2. There
exists a constant such that G(n, r , c) is connected whp. One may
take c = c1 + c2 + c3 + 1, where

c1 =
⌈√

(1 + ε)/δ
⌉
,

and c2, c3 are absolute constants.
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Supercritical r , constant c
Sketch of proof:
• First show that X1, . . . ,Xn are sufficiently regular whp. Once
the Xi are fixed, randomness comes from the edge choices only.

• Partition [0, 1]2 into congruent squares of side length 1/(2
√

2r)

• We add edges in four phases. In the first we start from X1, and
using c1 choices of each vertex, we go for δ2 logc1

n generations.
There exists a cube in the grid that contains a connected
component of size nconst.δ2

.

• Second, we add c2 new connections to each vertex in the
component. At least one of the grid cells has a positive fraction of
its points in a connected component.

• Third, using c3 new connections of each vertex, we obtain a
connected component that contains a constant fraction of the
points in every cell of the grid, whp.

• Finally, add just one more connection per vertex so that the
entire graph becomes connected.
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the giant component

Consider now r > λ
√

log n/n for a sufficiently large λ.

It is not difficult to see that for c = 1 the size of the largest
component is at most poly-logarithmic.

It is o(n) even for much larger values of r .

To study the phase transition, we generalize the model. Each
vertex xi draws a bounded independent integer-valued random
variable ξi ≥ 1 and selects ξi neighbors at random (without
replacement).

Main result: for any ε > 0, if Eξi ≥ 1 + ε, then the size of the
largest component is n(1− o(1)) whp.

Explosive percolation: the phase transition is discontinuous. We
have even more: the proportion of vertices in the giant component
jumps from 0 to 1. We have super-explosive percolation.
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explosive percolation



the giant component: formal statement

For every δ ∈ (0, 1) there exists a γ > 0 such that for every
ε > 0, if r ≥ γ

√
log n/n and Eξ > 1 + ε, then the largest

component has size at least n(1− δ) whp.



the giant component: proof

The proof is a mix of branching process and percolation arguments.

We start with discretizing the torus [0, 1]2 into cells of side length
kr/2. Each cell is further divided into boxes of side length
r/(2d). k, d are large odd (constant) integers.

m

k d



uniformity lemma

During the entire proof we fix the vertex set X .

We need that they are sufficiently regularly placed.

One can prove that if γ > 12d 2/δ2 then whp every box B is
δ-good:

(1− δ)nr2

4d 2
≤ |X ∩ B| ≤

(1 + δ)nr2

4d 2
.

This gives us a condition on r :

r ≥ γ
√

log n
n
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the web

In the first phase of the proof we prove the existence of a web:

Let ε > 0. There exist δ, k, d such that if all cells are δ-good,
then with probability at least 1− ε, G(n, r , c) has a connected

component such that 1− ε fraction of all boxes contain E[ξ]k
2/2

vertices of the component.

This is the heart of the proof. We set up an exploration process
and then couple it with a percolation model.
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node events

The cells define naturally an m ×m grid.

We call the vertices nodes and the directed edges links

A node event occurs if, starting from a vertex in the central box of
the cell, after k2 generations of edges, without exiting the cell,
each box has at least (E[ξ])k2/2 vertices.

By coupling the growth process to a branching random walk, we
show that a node event occurs with probability close to 1.



node events

The cells define naturally an m ×m grid.

We call the vertices nodes and the directed edges links

A node event occurs if, starting from a vertex in the central box of
the cell, after k2 generations of edges, without exiting the cell,
each box has at least (E[ξ])k2/2 vertices.

By coupling the growth process to a branching random walk, we
show that a node event occurs with probability close to 1.



node events

The cells define naturally an m ×m grid.

We call the vertices nodes and the directed edges links

A node event occurs if, starting from a vertex in the central box of
the cell, after k2 generations of edges, without exiting the cell,
each box has at least (E[ξ])k2/2 vertices.

By coupling the growth process to a branching random walk, we
show that a node event occurs with probability close to 1.



link events

If a node event occurs, we try to “infect” the neighboring cells
starting from the seed boxes:

Of the (E[ξ])k2/2 vertices in a seed box, at least one will connect
to a vertex in the central box of the neighboring cell via a path of
length kd that always stays on the ladder.

This happens with probability near 1.
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exploration process

Three sets of nodes: explored, active, unseen.

21 3 45
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Oriented connected components correspond to connected
components of the web.



mixed site/bond percolation

After the exploration process, all node events and some link events
are defined. (All independent!)

We assign independent Bernoulli variables to all undefined oriented
links.

We declare a bond open if both oriented links are open.

This defines a dense mixed site/bond percolation process on the
grid. Any open component is an oriented connected component.

Using results of Deuschel and Pisztora (1996) for high-density site
percolation, we conclude that there is an open component
containing 1− ε fraction of the nodes. This gives us the web.
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connecting to the web

We constructed the web by revealing the edge choices of only a
constant number ((E[ξ])k2/2) of vertices per cell.

Once the web is built, we connect almost all unseen vertices.

Take such a vertex. Build a new web starting from this point. The
two webs will “see” each other in Θ(1/r2) boxes and connect up
with probability 1/(nr2) at each point.

The probability that any vertex is connected to the web is
1− o(1).
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