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network archaeology

Dynamically growing networks appear in social networks,
epidemiology, rumor spreading, computer networks, protein
networks, etc.

Often one only observes a present-day snapshot of the network.

What can one say about the past?

Possible questions:

• Who is patient zero?
• Who started a rumor?
• Have influential/central nodes always been central?
• What was the original configuration?



uniform and preferential attachment models

Complex networks can often be accurately modeled by simple
random growth dynamics.

Nodes arrive one by one.

The new vertex attaches to one (or more) already present node at
random.

The simplest model is uniform attachment: the vertex to attach to
is chosen uniformly at random.

Often large networks have very uneven degree distribution—
“Power-law networks.”

These may be accurately modeled by preferential attachment
models: the vertex to attach to is chosen at random, with
probability proportional to (a function of) the degree of the vertex.



uniform and preferential attachment trees

We consider the simplest possible network models—trees.

The arriving vertex selects one vertex to attach to.

The uniform attachment tree is sometimes called Uniform Random
Recursive Tree.

The simplest preferential attachment tree is also known as the
Plane-Oriented Random Recursive Tree.



finding adam

Upon observing a large unlabelled tree of size n, we wish to
identify the root of the tree.

Is this possible? In what sense? Vertex 1 and vertex 2 are
indistinguishable.

We are allowed to select a set of vertices. The root should be
among them with high probability.

Formal setup. Given ε > 0, select a set S(ε) of K = K (n, ε)
vertices such that

P{root ∈ S(ε)} ≥ 1− ε .

How large does K (n, ε) have to be?



uniform attachment tree UA(50000)
Picture by Igor Kortchemski.



results

In both models K (n, ε) is independent of n.

We obtain lower and upper bounds for K = K (ε) in both models.

Finding the root of a preferential attachment tree is harder than of
a uniform attachment tree.

S. Bubeck, L. Devroye, and G. Lugosi.
Finding Adam in random growing trees.
Random Structures and Algorithms, 2017.



sorting by degrees

A simple idea is to include in S(ε) vertices with highest degree.

In a uniform attachment tree, the expected degree of the root is
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≈ ln n .

However, the maximum degree is much larger: ≈ log2 n.

The index of the root in the ordering by degrees goes to infinity as
n →∞.
Laura Eslava (2020) proves a central limit theorem for the
distances of high-degree vertices from the root. For example, the
vertices of the K highest degree all have depth ∼ c log n for
c ≈ 0.278652...



a simple method

Select K vertices with smallest
maximal subtree size.

Theorem. (Bubeck, Devroye,
Lugosi (2017).) If
K ≥ 11 log(1/ε)/ε, then
P{root ∈ S(ε)} ≥ 1− ε .

The winning vertex is a centroid
of the tree.

”Jordan centrality.”

The proof uses simple Pólya urn
arguments.



minimum largest subtree size

The function ψ is monotone along paths towards the minimum.

Computation is easy (linear time). The algorithm outputs a tree.

The analysis above is essentially tight.

In a uniform attachment tree of size 3K , the root is a leaf with
probability
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Also, whp, there are about 3K/2 leaves, so the simple method errs
with probability > ε if K < 1/(3ε).

Can we do better?



maximum likelihood

A recursive tree is a rooted labeled tree. The root has label 1.
Labels increase along paths away from the root.

By counting the number of recursive labelings of an unlabelled
rooted tree, we may determine the maximum likelihood estimator
of the root.

It minimizes the function

ζT (u) =
∏

v∈V (T )

|(T , u)v↓| · Aut(v , (T , u)).

Where (T , u)v↓ is the subtree of the tree T rooted at u, starting
at v .

Aut(v , (T , u)) involves automorphisms of subtrees.



general lower bound

We may use this to derive lower bounds for any method.

Theorem. If K < exp(
√

(1/30) log(1/2ε)), then for any method
outputting a set S of size K ,

P{root ∈ S} < 1− ε .





a relaxation of maximum likelihood

Maximum likelihood is difficult to analyze.

The set of K vertices with largest likelihood does not form a tree.

We relax the likelihood criterion: instead of minimizing

ζT (u) =
∏

v∈V (T )

|(T , u)v↓| · Aut(v , (T , u)),

we minimize

φT (u) =
∏

v∈V (T )

|(T , u)v↓|

Shah and Zaman (2011) call φT (u) rumor centrality.

Crane and Xu (2020) prove that φT (u) induces the same order of
vertices as ζT (u).



sub-polynomial performance

For this method a sub-polynomial value of K is sufficient:

Theorem. (Bubeck, Devroye, Lugosi (2017).) If

K ≥ c exp
(

log(1/ε)
log log(1/ε)

)
, then

P{root ∈ S(ε)} ≥ 1− ε .



preferential attachment

Selecting K vertices with smallest maximal subtree size works
again:

Theorem. Banerjee and Bhamidi (2020) improving Bubeck,
Devroye, Lugosi (2017).) If K ≥ Cε−(2+o(1)), then

P{root ∈ S(ε)} ≥ 1− ε .

The bound is worse than for uniform attachment.

It cannot be improved by much: the probability that the root is a
leaf in a tree of size 4K is
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≈

1
√

4K

The number of leaves is about 8K/3 so the method errs with
probability > ε if K < 1/(4ε2).



preferential attachment is harder
No sub-polynomial bounds are possible for preferential attachment.

Theorem. If K < c/ε, then for any method outputting a set S of
size K , P{root ∈ S(ε)} < 1− ε .
Proof: In a PA tree of size n ∼ 1/ε2 the root is a leaf with
probability ε and vertex 2 has

√
n neighbors that are leaves.

The root is indistinguishable from 2K other vertices.



summary

The optimal value of K (ε) is between

exp

(√
1

30
log

1

2ε

)
and c exp

(
log(1/ε)

log log(1/ε)

)
for uniform attachment and between

c
ε

and
C

ε2+o(1)

for linear preferential attachment.

Recently, Alice Contat, Nicolas Curien, Perrine Lacroix, Etienne
Lasalle, and Vincent Rivoirard (2023) closed the gap.
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related work

Rumor spreading model of Shah and Zaman (2011). In a fixed
graph–for example in an infinite d -regular tree–a rumor spreads
according to a diffusion model. See also Khim and Loh (2017).

Jog and Loh (2016) show that the central node eventually remains
the same forever: “persistence of centrality”.

Extensions of root finding to general nonlinear attachment:
Banerjee and Bhamidi (2020).

Two papers of Banerjee and Bhamidi (2020) study persistence of
centrality and persistence of vertices of highest degree in general
nonlinear attachment trees.



seeded trees

Suppose that the tree is grown from a small initial “seed” tree.
Bubeck, Eldan, Mossel, and Rácz (2015) and Curien, Duquesne,
Kortchemski, and Manolescu (2015) show that the process “never
forgets” the initial (seed) tree.

Finding the seed tree: Devroye and Reddad (2019); Lugosi and
Pereira (2019).



broadcasting problem

In a uniform or preferential attachment tree, vertices are colored
red or blue.

The root has a random (unknown) color.

When a new vertex attaches to a parent, it takes the same color
with probability 1− q and the opposite color with probability q.

Classification problem: Upon observing an (unlabeled) tree of size
n together with the vertex colors, guess the color of the root.

Question: What is the optimal probability of error R∗(q, n)? How
does it depend on n and q?





a more difficult variant
Sometimes only the colors of the leaves can be observed.
This is the problem of broadcasting on trees.



colored trees

L. Addario-Berry, L. Devroye, G. Lugosi, V. Velona.
Broadcasting on random recursive trees.
Annals of Applied Probability, 2022.

Obviously, R∗(q, n) ≥ q/2 for all n.



colored trees

Optimal classifier: We say blue if∑
blue vertices u

ζT (u) >
∑

red vertices u

ζT (u)

where
ζT (u) =

∏
v∈V (T )

|(T , u)v↓| · Aut(v , (T , u)),

is the number of recursive labelings of the tree with u as root.
Difficult to analyze. We need simple classifiers.



root-finding

One may use root-finding algorithms.

Let S(ε) be a subtree of K (ε) vertices that contains the root with
probability 1− ε,

Take a majority vote over the vertex colors of S(ε).

The probability of error is at most

ε + P{S(ε) is not monochromatic}≤ ε +
(

1− (1− q)K(ε)−1
)

≤ ε + qK (ε)

Optimizing in ε, we obtain that

R∗(q, n) ≤ Cq1/ log log(1/q) for uniform attachment and

R∗(q, n) ≤ Cq1/4 log(1/q) for preferential attachment.



small distance to the root helps

The analysis above cannot be improved if S(ε) is a path.

Suppose that by observing the uncolored tree, we choose vertex v .
Denote D = distance(v , root).
Choose the color of v .

Then the probability that the chosen color is different from the
root is

E1{Bin(D,q) is odd} =
1− E(−1)Bin(D,q)

2

=
1− E(1− 2q)D

2
≤ qED

Can we find a vertex close to the root? Only expected distance
matters!



root-finding with proximity

Theorem. (Moon (2002).)
Let v∗ be the centroid of a uniform attachment tree. Then

E distance(v∗, root) = 1 + on(1) .

For preferential attachment trees Wagner and Durant (2019) prove
analogous results.



centroid rule
For vertex vt to be more central than the root, in a Pólya urn
initialized with 1 white ball and t − 1 black balls, after time n,
there must be more than n/2 white balls.

The probability of this is at most t2−(t−2).

So the probability that the central vertex has index > C log(1/ε)
is at most ε.



root-finding with small diameter

It follows that in the uniform attachment model

q
2
≤ R∗(q, n) ≤ q .

Moreover,

R∗(q, n) <
1

2

whenever q ≤ 1/2.

Similar bounds hold for preferential attachment.



when only leaf-colors are observed

In the more difficult model when only the colors of the leaves are
observed,

R∗(q, n) ≤ 13q

and

R∗(q, n) <
1

2

whenever q < 1/2.

We only need the fact that there is at least one leaf close to v∗.
But this holds since there are leaves close to the root.



majority

The simplest classifier takes the majority of the observed colors.
One may prove that the probability of error satisfies

R(q, n) ≤ cq .

Moreover,

lim
n→∞

R(q, n)

{
< 1/2 if q < 1/4
= 1/2 if q ≥ 1/4

}



when can we do better than random guessing?

The optimal probability of error R∗(q, n) satisfies

lim
n→∞

R∗(q, n)
< 1/2 if q < 1
= 1/2 if q = 1

when the colors of all vertices are observed.
When only leaf colors are available,

lim
n→∞

R∗(q, n)
< 1/2 if q ∈ [0, 1/2) ∪ (1/2, 1)
= 1/2 if q ∈ {1/2, 1} .



beyond trees: random uniform k-dags

A uniform random k-dag is the union of k independent uniform
random recursive trees on the same vertex set [n].

A uniform random k-dag may be generated recursively; each vertex
i ∈ {2, 3, . . . , n} is attached by an edge to a k vertices chosen
uniformly at random (with replacement) among the vertices
{1, . . . , i − 1}.

Multiple edges are collapsed so that the resulting graph is simple.

Can one find the root vertex?

Challenge: centrality-based methods the worked for trees do not
have an obvious extension.



beyond trees: random uniform k-dags

S. Briend, F. Calvillo, G. Lugosi.
Archaeology of random recursive dags and Cooper-Frieze random
networks.
Combinatorics, Probability, and Computing, 2023.



double cycles and their anchors
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adam is an anchor of a short double cycle

For a positive integer M , let SM ⊂ [n] be the set of vertices i
such that i is an anchor of a double cycle of size (K , L) for some
K ≤ M and L ≤ M .
For any ε, one may take M = Mε = 42

k log(1/ε) such that

P
{

1 ∈ SM and |SM | ≤
4

ε
k2M(2M)!

}
≥ 1− ε .

When ε ≤ e−ck we may take

K (ε) =
1

ε

(
c log

1

ε

)c log(1/ε)/k
.

This is probably far from the optimal dependence.



adam is an anchor of a short double cycle
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cooper-frieze networks

The same method works in “uniform Cooper-Frieze random
graphs.”

At each step of the growth process, a coin is flipped.

Either a new vertex is added and attached to a random vertex or a
random edge is added.

One may take

K (ε) =

(
c log

1

ε

)c log(1/ε)

.



broadcasting on k-dags

We may extend the broadcasting problem from trees to k-dags.

• Initially, there are k“roots”, each colored red or blue (where k is
odd).

• For n > k , when vertex n arrives, it chooses k parents uniformly
at random (with replacement) and attaches to them.

• The color of each one of the k parents is flipped with probability
p.

• The color of the new vertex is assigned according to the majority.

Upon observing a large random uniform k-dag with its vertex
colors, we would like to infer the majority color of the k roots.



majority rule

We studied the simple majority rule: count red and blue vertices
and decide according to the majority vote.

This rule disregards the graph structure.

S. Briend, L. Devroye, G. Lugosi.
Broadcasting in random recursive dags, 2023.



a randomized nonlinear urn model

The proportion of red and blue vertices (Rn, 1− Rn) evolves
according to a generalized Pólya urn:

• Initially, there are kRk red and k(1− Rk) blue balls.

• For n > k , k balls are drawn at random (with replacement).

• The color of each ball is independently flipped with probability p.

• A new ball is added to the urn, whose color is the majority of the
flipped colors.



probability of error

Denote by bmaj
n the majority color at time n. (In case of ties,

randomize.)

The probability of error is

Rmaj (n, p) = P
{
bmaj

n 6= bmaj
k

}
.

For what values of p do we have

lim sup
n→∞

Rmaj (n, p) <
1

2
?



proportion of red vertices

The first step us to understand the asymptotic behavior of Rn.
Note that

Rn+1 = Rn +
1{cn+1=red} − Rn

n + 1

where

P {cn+1 = red|Rn} = P {Bin (k, f (Rn)) ≥ k/2|Rn}

with f (t) = (1− p)t + p(1− t).
The expected increase is

g(t) = P {Bin(k, f (t)) > k/2} − t .

The behavior of Rn depends on the nature of zeroes of g(t).

Such reinforced random processes have been extensively studied,
see Pemantle (2007).



the function g

The function g for low-, and high-mutation probabilities.



the function g

Define

αk =
1

2k−2

k∑
i>k/2

(
k
i

)
(i − k/2) .

Note that α1 = 1, α3 = 3/2, and αk ∼
√

k/(2π) for large k .

Three regimes:

0 ≤ p <
1

2
−

1

2αk
: low rate of mutation;

1

2
−

1

2αk
≤ p <

1

2
−

1

2αk
: medium rate of mutation;

1

2
−

1

4αk
≤ p ≤

1

2
: low rate of mutation;

For k = 3, the thresholds are at 1/6 and 1/3.



low rate of mutation

There exist constants 0 < β1 < 1/2 < β2 < 1 such that, almost
surely, either Rn → β1 or Rn → β2.

Moreover, if Rk < 1/2, then

P {Rn → β1|Rk} < P {Rn → β2|Rk}

and therefore

lim sup
n→∞

Rmaj (n, p) <
1

2
.

(This regime does not exist when k = 1.)

Note: β1 ≤ e−2k(1/2−p)2 and β2 = 1− β1.



medium rate of mutation

Rn converges to 1/2 almost surely.

However, if Rk < 1/2, then with positive probability, Rn < 1/2
for all n and therefore

lim sup
n→∞

Rmaj (n, p) <
1

2
.



high rate of mutation

Rn converges to 1/2 almost surely.

Also, with probability one Rn crosses 1/2 infinitely often and

lim sup
n→∞

Rmaj (n, p) =
1

2
.



further questions

• estimates of the asymptotic probability of error;

• methods that take the graph structure into account; what is the
best possible probability of error?

• extensions to other models such as preferential attachment or
geometric variants.






