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Overview of the Methods and Motivation

Observe aggregated time series data, say y, from t = 1 to T .
Examples: inflation or output growth of a country or state; returns of a firm.
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Overview of the Methods and Motivation

Intervention (treatment, event, ...) occurs at t = T0.
Examples: a new policy/law, outbreak of a war, new government, etc.
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Overview of the Methods and Motivation

What are the causal effects of the intervention on y?
Examples: a new policy/law, outbreak of a war, new government, etc.

0 10 20 30 40 50 60 70 80

time
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

T0



Overview of the Methods and Motivation

Large set of observed variables from untreated “peers”, x.
Frequently, the dimension of x is comparable or even larger than T0.
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Overview of the Methods and Motivation

Counterfactual estimation “in-sample” (before intervention).
Different methods to estimate the model (synthetic control, ArCo, panel, ...).
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Overview of the Methods and Motivation

Counterfactual extrapolation (after the intervention).
Extrapolation is done based on observables from the peers after T0.
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Overview of the Methods and Motivation

One possible estimator.
Average effect of the intervention.

 𝑦𝑡=  𝑀(𝑥𝑡)

𝑦𝑡

 Δ𝑇

Estimation sample



Overview of the Methods and Motivation
Challenges

I The dimension of x is large comparable to T0.

Either
because there are a large numbers of covariates from
the peers and/or because T0 is small.

– Some sort of shrinkage (model restrictions or LASSO)
or factor model is needed.

– Example: In Abadie and Gardeazabal (2003,AER) - 16
parameters and 13 observations.

I The variables of interest may display trends , either
deterministic or stochastic (unit-roots).

– With few exceptions, unit-roots have been ignored in
this framework.

I Inference on counterfactual dynamics.

– Either permutation tests or inference on average
effects over the post-intervention period (based on
T0,T −→ ∞).
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One-page Summary
I General framework to measure the impact of an

intervention in aggregate data when a control
group is not readily available, which nests:

1. Synthetic Control (SC) method of Abadie and Gardeazabal
(2003, AER) and Abadie, Diamond and Hainmueller (2010,
JASA)

2. Artificial Counterfactual (ArCo) of Carvalho, Masini and
Medeiros (2018, JoE)

3. Panel Approach of Hsiao, Ching and Wan (2012, JAE).

I Contributions:

1. Investigate the consequences of estimating counterfactuals
when the data are potentially non-stationary, displaying
either deterministic or stochastic trends.

2. Theoretical results are derived in a high-dimensional
setting: Weighted LASSO which is proved to deliver
consistent estimates of the parameters of interest.

3. Inferential procedures based on resampling.
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The road map
1. The setup

2. The counterfactual estimation

3. Estimator properties and inference

4. Monte Carlo simulation

5. Empirical example: Demand Estimation and Optimal
Pricing



Setup
I Observe i = 1, . . .n units for t = 1, . . .T periods (Panel

structure): zit

I First unit is treated at known T0.
I The remanning n − 1 units z0t ≡ (z2t , . . . , znt )

′ are an
untreated potential control group (donor pool).

I Potential Outcome notation:

z1t = dtz
(1)
1t + (1− dt )z

(0)
1t ; dt =

{
1 if t ≥ T0

0 otherwise

z0t = z(0)
0t

where z(1)
it is potential outcome under the

intervention and z(0)
it the potential outcome with no

intervention.



Setup
I Observe i = 1, . . .n units for t = 1, . . .T periods (Panel

structure): zit

I First unit is treated at known T0.

I The remanning n − 1 units z0t ≡ (z2t , . . . , znt )
′ are an

untreated potential control group (donor pool).
I Potential Outcome notation:

z1t = dtz
(1)
1t + (1− dt )z

(0)
1t ; dt =

{
1 if t ≥ T0

0 otherwise

z0t = z(0)
0t

where z(1)
it is potential outcome under the

intervention and z(0)
it the potential outcome with no

intervention.



Setup
I Observe i = 1, . . .n units for t = 1, . . .T periods (Panel

structure): zit

I First unit is treated at known T0.
I The remanning n − 1 units z0t ≡ (z2t , . . . , znt )

′ are an
untreated potential control group (donor pool).

I Potential Outcome notation:

z1t = dtz
(1)
1t + (1− dt )z

(0)
1t ; dt =

{
1 if t ≥ T0

0 otherwise

z0t = z(0)
0t

where z(1)
it is potential outcome under the

intervention and z(0)
it the potential outcome with no

intervention.



Setup
I Observe i = 1, . . .n units for t = 1, . . .T periods (Panel

structure): zit

I First unit is treated at known T0.
I The remanning n − 1 units z0t ≡ (z2t , . . . , znt )

′ are an
untreated potential control group (donor pool).

I Potential Outcome notation:

z1t = dtz
(1)
1t + (1− dt )z

(0)
1t ; dt =

{
1 if t ≥ T0

0 otherwise

z0t = z(0)
0t

where z(1)
it is potential outcome under the

intervention and z(0)
it the potential outcome with no

intervention.



Setup
I Simplify notation: yt = z1t .

I Hypotheses of interest: y(1)
t = δt + y(0)

t , t = T0 . . . ,T ,

H0 : ∆T =
1

T − T0 + 1

T∑
t=T0

[
y(1)

t − y(0)
t

]
︸ ︷︷ ︸

≡δt

= 0 or

H0 : δt = 0, ∀ t ≥ T0 or
H0 : g(δT0 , . . . , δT ) = 0.

I We do not observe the counterfactual y(0)
t .

Therefore, we construct an estimate ŷ(0)
t such that:

δ̂t ≡ y(1)
t − ŷ(0)

t for t = T0, . . . ,T
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Counterfactual Estimation
I How should we construct ŷ(0)

t ?

I We choose a (parametric) specification.

I Let xt = (z′
0t ,z′

0t−1, . . . , z′
0t−p)

′ and

y(0)
t = M(xt ) + νt ,

such that E(νt ) = 0 and

ŷ(0)
t = M̂(xt ).
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Counterfactual Estimation
I The average estimator is then simply given by

∆̂T =
1

T − T0 + 1

T∑
t=T0

δ̂t ,

where δ̂t ≡ yt − ŷ(0)
t , for t = T0, . . . ,T .

I The estimator is computed in two-steps:

1. First step: estimation of M with the
pre-intervention sample;

2. Second step: extrapolate M with actual data for
xt and compute {δt}t≥T0 and ∆̂T .
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A Brief Review of the Literature
I Hsiao, Ching and Wan (2012, JAE)

– Two-step method where M(xt ) is a linear and scalar
function of a small and stationary set of variables from the
peers.

– Correct specification (M is the conditional expectation).
– Selection of peers by information criteria.

I Differences-in-Differences (DiD)
– Number of treated units must grow.
– Parallel trends hypothesis.
– Similar control group.

I Gobillon and Magnac (2016, REStat)
– Generalize the above authors by explicitly considering a

factor model.
– Interactive fixed effects with strictly exogenous regressors.
– Asymptotics both on the cross-section and time dimensions.
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A Brief Review of the Literature
I Abadie and Gardeazabal (2003, AER)

– Convex combination of peers.
– The weights are estimated using time averages of the

observed variables. No time-series dynamics. Stationarity
imposed.

– Generalizations in Doudchenko and Imbens (2016) and
Athey and Imbens (2017, JEP):

I Bai, Li and Ouyang (2014, JoE):
– Unit-roots in the framework of Hsiao, Ching and Wan

(2012, JAE).
– Only consistency results in a low-dimensional setting.

I Chernozhukov, Wuthrich and Zhu (2018a,b):
– Stationarity imposed.
– “Different” class of estimators: full-sample to estimate the

model.

I Carvalho, Masini and Medeiros (2017) and Masini and
Medeiros (2019):

– Low-dimensional nonstationary set-up.
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Counterfactual Estimation
Key Assumption

Independence

Let z0t = (z′
2t , . . . , z′

nt )
′ denotes the vector of all the

observable variables for the untreated units. Then,
z0t |= ds, for all t , s.

I The independence condition ⇒ donors are untreated.
I Examples of interventions (treatments):

– Natural disasters: Belasen and Polachek (2008, AER P&P),
Cavallo, Galiani, Noy, and Pantano (2013, ReStat), Fujiki and Hsiao
(2015, JoE), ...

– Region specific policies (laws): Hsiao, Ching, and Wan (2012,
JAE), Abadie, Diamond, and Hainmueller (AJPS, 2015), Gobillon
and Magnac (ReStat, 2016), Carvalho, Masini and Medeiros (2018,
JoE), ...

– New government or political regime: Grier and Maynard (2013,
JEBO), Masini and Medeiros (2020, JBES), ...
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Counterfactual estimation
Weighted Least Absolute Shrinkage and Selection Operator (wLASSO)

I Set z0t ≡ (z2t , . . . , znt )
′ and xt = (z0t , . . . , z0t−p)

′.

I Set X t = (1,xt )
′ ∈ Rd :

y(0)
t = α+ β′xt + νt

= θ′X t + νt .

I Estimation:

θ̂ = arg min
[T0−1∑

t=1

(
y(0)

t − θ′X t

)2
+ ς

d∑
k=1

ωk |βk |

]
.

I ωk can be either |xkT0−1|, 1 or
√

T0 − 1. The choice
will depend on the DGP.
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Where does the model come from?
A factor model example

I Suppose that:

z(0)
it = ci + µi ft + uz

it ,

where ci ∈ R, uz
it is an idiosyncratic shock and µi ∈ R

is the factor loadings for unit i .

I The factor follows either a unit root process with
drift

ft = µf
t + ft−1 + u f

t , t ≥ 1

for some initial condition f0 = OP (1);

or a
trend-stationary process

ft = µf
t + u f

t ,

where in both cases {µf
t }∞t=1 is a deterministic

sequence.
I (uz

1t , . . . ,uz
nt ,u

f
t ) is a zero-mean, independent and

identically distributed Gaussian random vector.
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Where does the model come from?
A factor model example

I Common trend (at least for those units with
non-zero loadings, µi ̸= 0) and a correlation among
the stochastic components of the vector z(0)

t due to
the presence of u f

t .

I The pseudo-true model:

yt = θ′
0X t + νt ,

where yt := z(0)
1t and X t :=

[
1,z(0)

0t
′]′

.

I Suppose there are 1 < r + 1 ≤ n units with non-zero
loadings (µi ̸= 0) including unit 1.

I Without loss of generality, make those the first r + 1
units.
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Where does the model come from?
A factor model example

I r independent linear relations yielding stationary
processes: setting Γ̃

′
z(0)

t , where

Γ̃
′
=

1 −µ1

µ2
0 0

... 0
. . . 0 0r×(n−r−1)

1 0 0 − µ1

µr+1

 ,

and 0r×(n−r−1) is a r × (n − r − 1) matrix of zero
elements.



Where does the model come from?
A factor model example

I After normalizing to obtain the representation
Γ̃
′
= (Ir : −Γ′), we are left with:

Γ′ =

µ̃1... 0r×(n−r−1)

µ̃r

 ,

where µ̃i :=
µi

µr+1
for i ∈ {1, . . . , r}.

I Then, J t = Γ̃
′
z(0)

t is stationary with a typical element
given by

Ji ,t = ci − µ̃icr+1 + uz
it − µ̃iuz

r+1,t = c̃i + ũit ,

where c̃i := ci − µ̃icr+1 and ũit := uz
it − µ̃iuz

r+1,t .
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Where does the model come from?
A factor model example

I When r = 1:

θ0 =

(
c1 −

µ1
µ2

c2,
µ1
µ2
, 0, . . . , 0

)′
,

I The covariance of
(

u f
t ,uz

1t , . . . ,uz
nt

)′
plays no role in

determining the coefficients of the model.
I When r ≥ 2:

θ0 =
(
c̃1 − ζ′c̃0, ζ

′, µ̃1 − ζ′µ̃0, 0, . . . , 0
)′
,

where c̃0 := (c̃2, . . . , c̃r )
′, µ̃0 := (µ̃2, . . . , µ̃r )

′ and ζ
denote the linear projection of ũ1t onto (ũ2t , . . . , ũrt )

′.
I The covariance of

(
uz
1t , . . . ,uz

r+1,t
)′ affects the

coefficients of the model through ζ.
I Finally:

νt = uz
1t −

r+1∑
i=2

θ0,iuz
it .
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′.
I The covariance of

(
uz
1t , . . . ,uz

r+1,t
)′ affects the

coefficients of the model through ζ.
I Finally:

νt = uz
1t −

r+1∑
i=2

θ0,iuz
it .



Data Generating Process (DGP)

Data Generating Process (1/3)

{z(0)
it : 1 ≤ i ≤ n, t ≥ 1} is either generated by:

1. Stochastic Trend, where for a given initial
condition z(0)

i0 = OP (1), let

z(0)
it = z(0)

it−1 + fit + uit , t ≥ 1. (1)

2. or by a Deterministic Trend, where

z(0)
it = ci + fit + uit , t ≥ 1, (2)

In both cases, {fit}t≥1 denotes a deterministic se-
quence and {ut := (u1t , . . . ,unt )

′}t≥1 ∈ U ⊂ Rn is a
zero mean weakly dependent process.



Data Generating Process

Data Generating Process (2/3)

{ut}t is a zero mean strong mixing sequence of du-
dimensional random vectors with mixing coefficients
given by α(m) = exp(−2cm) for some c > 0, fulfilling
one of the conditions below:

1. For ξ > 2, sup{E|uit |ξ+ϵ : 1 ≤ i ≤ du , t ∈ N} <∞
for some ϵ > 0; or

2. there exist positive constants c1, c2, c3 such that
sup{P(|uit | > x) : 1 ≤ i ≤ du , t ∈ N} ≤
c1 exp(−c2x c3) for all x > 0,

and, in both cases, the smallest eigenvalue of the
matrix E(utu ′

t ) is bounded away from 0 uniformly in
t ∈ N.



Data Generating Process

Data Generating Process (3/3)

In the case of a DGP with stochastic trends, there are
r independent linear combinations (with non zero
coefficient for the treated units) among the units
that result in an I (0) process:

Γy(0)
t ∼ I (0),

where 0 < r < n.

I In case of cointegration, the target “true” θ in the
estimation will be a function of the cointegration
relation.
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Nonstationary case: Main Result

Asymptotic Results

Set T1 = T0−1. Under some regularity assumptions (in the
paper) and the additional assumption that for any c > 0,
the penalty parameter ς is given by either ς = 4cd2/ξ/

√
T1

or ς = 4(c + 2 log d)/
√

T1 (depending on the DGP), then:

1. ∥γ̂ − γ0∥1 = OP [ψ(d)s0/
√

T1] = oP (1), as T1 → ∞

2. δ̂t − δt − νt = OP [ψ(d)2s0/
√

T1] = oP (1) for all
T1 < t ≤ T , as T1 → ∞

3. ∆̂T −∆T = OP [ψ(d)s0/
√

T ] = oP (1), as T → ∞

where ψ(d) = d2/ξ or ψ(d) = exp(d) (depending on the
DGP).

I Not all elements of xt are of the same order. Therefore,
γ = Aθ, A = diag(a1, . . . ,ad), ai = di,T1

or ai =
√

T1

(depending on the DGP). dit is the deterministic
component of the DGP.



Inference
I Inference procedure based on the sequence of

estimators {δ̂t}t>T0.

I Continuous mappings ϕ : RT2 → Rb whose argument
is the T2-dimensional vector
(δ̂T0+1 − δT0+1, . . . , δ̂T − δT )

′.

I We are interested in distribution of
ϕ̂ := ϕ(δ̂T0+1 − δT0+1, . . . , δ̂T − δT ) under the null where
δt = 0 for all t > T0.

I As a direct corollary we have under the asymptotic on
the pre-invention period (T0 → ∞) that

ϕ̂
p−→ ϕ0 := ϕ(νT0+1, . . . , νT ).
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Inference
I Consider the construction of ϕ̂ using only blocks of

size T2 of consecutive observations from the
pre-intervention sample.

I There are T0 − T2 − 1 such blocks denoted by

ϕ̂j := ϕ(ν̂j , . . . , ν̂j+T2−1) j = 1, . . . ,T0 − T2 + 1

where ν̂t := yt − θ̂
′
T0

X t with the subscript T0 in θ̂ is to
indicate that the estimator is calculated using the
entire pre-intervention sample.

I For fixed j, we have that ϕ̂j
p−→ ϕj := ϕ(νj , . . . , νj+T2−1).

I Under a strictly stationarity assumption on νt we
have that ϕj is equal in distribution to ϕ0 for all j.

Q̂T (x) :=
1

T0 − T2 + 1

T0−T2+1∑
j=1

I(ϕ̂j ≤ x)
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ϕ̂j := ϕ(ν̂j , . . . , ν̂j+T2−1) j = 1, . . . ,T0 − T2 + 1
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have that ϕj is equal in distribution to ϕ0 for all j.

Q̂T (x) :=
1

T0 − T2 + 1

T0−T2+1∑
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Inference

Resampling

For any continuous ϕ : RT2 → Rb, let ϕ̂ := ϕ(δ̂T0+1 −
δT0+1, . . . , δ̂T − δT ) and ϕ0 := ϕ(νT0+1, . . . , νT ). Un-
der regularity conditions (in the paper) and s0 =
o
{√

T0/ [ψ(p)ψ(pT0)]
}

then, as T0 → ∞:

1. ϕ̂ p−→ ϕ0

2. Q̂T (x)−QT (x)
p−→ 0 for all x ∈ C0 :=

{continuity point of Q0(x) := P(ϕ0 ≤ x)}
3. If Q0(x) is continuous, the result (b) holds

uniformily in x ∈ Rb.
4. If ϕ is real-valued then QT [Q̂−1

T (τ)] → τ for all
τ ∈ (0, 1) such that Q−1

0 (τ) ∈ C0 where
Q−1(τ) := {inf x : Q(x) ≥ τ}.



Counterfactuals and Spurious Regressions
I What happens when there are unit-roots but no

cointegration?
– In high-dimensions, we do not know but...
– In Low-dimensions, Carvalho, Masini and Medeiros

(WP, 2017) and Masini and Medeiros (2020, JBES)
show that:

Under the some regularity conditions, if no cointegration
relation exists, then as T → ∞

1√
T

(
∆̂T −∆T

)
⇒ h(W (r),nuisance parameters)

where h is a known function of

I W (r), r ∈ [0, 1] is a standard Wiener process on
[0, 1]n ;

I intervention fraction λ0 = T0/T ; and

I nuisance parameters.



Monte Carlo Simulation
Rejection Rates under the Null (empirical size): Deterministic Trends

LASSO Oracle True
0.01 0.5 0.1 0.01 0.05 0.1 0.01 0.05 0.1

Innovation Distribution
Normal 0.0205 0.0637 0.1169 0.0297 0.0755 0.1275 0.0207 0.0583 0.1079
χ2(1) 0.0198 0.0602 0.1078 0.0231 0.0703 0.1277 0.0198 0.0591 0.1076

t-stud(3) 0.0187 0.0632 0.1144 0.0275 0.0781 0.1299 0.0208 0.0602 0.1086
Mixed-Normal 0.0205 0.0603 0.1105 0.0300 0.0775 0.1339 0.0186 0.0572 0.1049

Sample Size
T = 50 0.0270 0.0768 0.1320 0.0494 0.1144 0.1740 0.0262 0.0694 0.1210
100 0.0205 0.0637 0.1169 0.0297 0.0755 0.1275 0.0207 0.0583 0.1079
150 0.0194 0.0632 0.1094 0.0220 0.0644 0.1212 0.0152 0.0536 0.1050
200 0.0182 0.0578 0.1042 0.0202 0.0592 0.1116 0.0164 0.0526 0.1018
500 0.0138 0.0530 0.1016 0.0140 0.0544 0.1004 0.0104 0.0514 0.1006

Number of Total Units
n = 200 0.0205 0.0637 0.1169 0.0297 0.0755 0.1275 0.0207 0.0583 0.1079

300 0.0236 0.0671 0.1175 0.0281 0.0743 0.1281 0.0198 0.0579 0.1053
500 0.0268 0.0748 0.1206 0.0289 0.0780 0.1327 0.0224 0.0626 0.1099
1000 0.0325 0.0778 0.1304 0.0273 0.0755 0.1298 0.0193 0.0554 0.1089

Number of Relevant (non-zero) Covariates
s0 = 2 0.0201 0.0634 0.1152 0.0210 0.0653 0.1195 0.0174 0.0573 0.1036

5 0.0205 0.0637 0.1169 0.0297 0.0755 0.1275 0.0207 0.0583 0.1079
50 0.0223 0.0661 0.1153 0.2480 0.3547 0.4290 0.0196 0.0606 0.1079
97 0.0217 0.0626 0.1088 1.0000 1.0000 1.0000 0.0233 0.0607 0.1091



Monte Carlo Simulation
Rejection Rates under the Null (empirical size): Deterministic Trends

LASSO Oracle True
0.01 0.5 0.1 0.01 0.05 0.1 0.01 0.05 0.1

Deterministic Component
f F
t =

√
t 0.0280 0.0809 0.1367 0.0255 0.0745 0.1299 0.0195 0.0572 0.1068

t 0.0205 0.0637 0.1169 0.0297 0.0755 0.1275 0.0207 0.0583 0.1079
t3/2 0.0317 0.0823 0.1407 0.0314 0.0855 0.1413 0.0224 0.0630 0.1112
t2 0.0253 0.0685 0.1177 0.0263 0.0742 0.1280 0.0178 0.0508 0.1005

Serial Correlation
ρ = 0 0.0205 0.0637 0.1169 0.0297 0.0755 0.1275 0.0207 0.0583 0.1079
0.5 0.0216 0.0607 0.1134 0.0278 0.0749 0.1281 0.0199 0.0574 0.1037
0.7 0.0246 0.0720 0.1245 0.0308 0.0812 0.1384 0.0191 0.0590 0.1046
0.9 0.0342 0.0889 0.1404 0.0486 0.1111 0.1745 0.0220 0.0635 0.1111

Post Intervention Periods
T2 = 1 0.0166 0.0583 0.1061 0.0151 0.0572 0.1099 0.0121 0.0562 0.1027

2 0.0198 0.0631 0.1109 0.0273 0.0685 0.1185 0.0125 0.0566 0.1033
3 0.0205 0.0637 0.1169 0.0297 0.0755 0.1275 0.0207 0.0583 0.1079
4 0.0301 0.0717 0.1247 0.0370 0.0896 0.1467 0.0256 0.0670 0.1151
5 0.0286 0.0686 0.1184 0.0448 0.0933 0.1537 0.0279 0.0650 0.1127



Monte Carlo Simulation
Rejection Rates under the Null (empirical size): Stochastic Trends

LASSO Oracle True
0.01 0.5 0.1 0.01 0.05 0.1 0.01 0.05 0.1

Innovation Distribution
Normal 0.0324 0.0824 0.1384 0.0319 0.0770 0.1348 0.0220 0.0611 0.1095
χ2(1) 0.0260 0.0765 0.1385 0.0244 0.0727 0.1308 0.0209 0.0598 0.1060

t-stud(3) 0.0282 0.0831 0.1444 0.0261 0.0779 0.1355 0.0194 0.0581 0.1118
Mixed-Normal 0.0357 0.0912 0.1444 0.0330 0.0862 0.1426 0.0208 0.0615 0.1103

Sample Size
T = 50 0.0566 0.1155 0.1791 0.0512 0.1071 0.1663 0.0247 0.0641 0.1086
100 0.0324 0.0824 0.1384 0.0319 0.0770 0.1348 0.0220 0.0611 0.1095
150 0.0226 0.0686 0.1208 0.0216 0.0664 0.1174 0.0156 0.0526 0.0988
200 0.0193 0.0630 0.1145 0.0190 0.0617 0.1143 0.0156 0.0542 0.1022
500 0.0106 0.0546 0.1026 0.0108 0.0544 0.1010 0.0104 0.0520 0.0966

Number of Total Units
n = 200 0.0324 0.0824 0.1384 0.0319 0.0770 0.1348 0.0220 0.0611 0.1095

300 0.0391 0.0875 0.1479 0.0274 0.0748 0.1290 0.0184 0.0581 0.1039
500 0.0471 0.0953 0.1520 0.0281 0.0802 0.1358 0.0198 0.0610 0.1088
1000 0.0583 0.1085 0.1575 0.0293 0.0764 0.1300 0.0224 0.0590 0.1042

Number of Relevant (non-zero) Covariates
s0 = 2 0.0256 0.0698 0.1272 0.0225 0.0667 0.1213 0.0188 0.0558 0.1054

5 0.0324 0.0824 0.1384 0.0319 0.0770 0.1348 0.0220 0.0611 0.1095
50 0.0497 0.1117 0.1797 0.2541 0.3636 0.4441 0.0174 0.0572 0.1058
97 0.0574 0.1251 0.1950 1.0000 1.0000 1.0000 0.0203 0.0579 0.1060



Monte Carlo Simulation
Rejection Rates under the Null (empirical size): Stochastic Trends

LASSO Oracle True
0.01 0.5 0.1 0.01 0.05 0.1 0.01 0.05 0.1

Deterministic Component
f F
t = 0 0.0324 0.0824 0.1384 0.0319 0.0770 0.1348 0.0220 0.0611 0.1095
1 0.0314 0.0815 0.1373 0.0316 0.0815 0.1393 0.0205 0.0615 0.1122√
t 0.0264 0.0693 0.1191 0.0294 0.0814 0.1380 0.0215 0.0605 0.1083

t 0.0265 0.0711 0.1225 0.0292 0.0768 0.1334 0.0184 0.0560 0.1050
Serial Correlation

ρ = 0 0.0324 0.0824 0.1384 0.0319 0.0770 0.1348 0.0220 0.0611 0.1095
0.5 0.0297 0.0785 0.1313 0.0280 0.0761 0.1320 0.0178 0.0572 0.1019
0.7 0.0275 0.0773 0.1335 0.0264 0.0781 0.1342 0.0211 0.0575 0.1064
0.9 0.0299 0.0752 0.1278 0.0323 0.0823 0.1359 0.0222 0.0631 0.1107

Post Intervention Periods
T2 = 1 0.0321 0.0753 0.1273 0.0304 0.0714 0.1201 0.0295 0.0690 0.1151

2 0.0289 0.0777 0.1316 0.0271 0.0762 0.1311 0.0219 0.0759 0.1224
3 0.0324 0.0824 0.1384 0.0319 0.0770 0.1348 0.0220 0.0611 0.1095
4 0.0396 0.0930 0.1522 0.0345 0.0879 0.1430 0.0212 0.0608 0.1087
5 0.0516 0.1088 0.1695 0.0464 0.1021 0.1641 0.0293 0.0661 0.1181



Monte Carlo Simulation
Rejection Rates under the alternative (empirical power)

Deterministic Trends
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Mean Intervention δt = cσ1{t > T0}
c = 0.2 0.10 0.12 0.14 0.16 0.17 0.19 0.20 0.22 0.23 0.25
0.4 0.23 0.27 0.32 0.35 0.37 0.40 0.43 0.46 0.47 0.48
0.6 0.48 0.51 0.56 0.60 0.63 0.65 0.67 0.69 0.70 0.71
0.8 0.76 0.79 0.82 0.86 0.88 0.89 0.91 0.91 0.92 0.93
1.0 0.94 0.95 0.97 0.97 0.97 0.98 0.98 0.98 0.99 0.99

Variance Intervention δt = cσZ1{t > T0} where Z ∼ N (0, 1)
c = 0.2 0.09 0.12 0.13 0.15 0.17 0.18 0.20 0.22 0.24 0.25
0.4 0.26 0.29 0.32 0.36 0.38 0.39 0.41 0.44 0.46 0.48
0.6 0.50 0.54 0.58 0.63 0.66 0.69 0.70 0.71 0.73 0.74
0.8 0.78 0.81 0.85 0.88 0.89 0.91 0.92 0.92 0.92 0.93
1.0 0.93 0.95 0.96 0.97 0.97 0.97 0.98 0.98 0.99 0.99



Monte Carlo Simulation
Rejection Rates under the alternative (empirical power)

Stochastic Trends
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Mean Intervention δt = cσ1{t > T0}
c = 0.1 0.19 0.20 0.24 0.28 0.30 0.32 0.33 0.36 0.38 0.39
0.2 0.63 0.67 0.72 0.73 0.76 0.78 0.80 0.81 0.81 0.83
0.3 0.95 0.96 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98
0.4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Variance Intervention δt = cσZ1{t > T0}
c = 0.1 0.17 0.20 0.22 0.25 0.27 0.30 0.32 0.33 0.35 0.37
0.2 0.57 0.60 0.65 0.68 0.70 0.72 0.75 0.76 0.78 0.79
0.3 0.91 0.92 0.94 0.96 0.96 0.97 0.97 0.98 0.98 0.98
0.4 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00



Application: Heterogeneous Price
Elasticities



Heterogeneous Price Elasticities
Setup

I Experiments in order to estimate the price elasticity
of a specific group of products from a large retailer in
Brazil.

I More than 1,000 stores distributed over 400
municipalities in Brazil. Prices are determined at a
municipal level.

I On Average, the company sells more than 29,000
unities per day of this specific group of products,
which represents an important share of the company
total’s revenue.

I Optimal pricing policy for this family of products is of
utmost importance.

I Prices could be set at a municipal level. High degree
of heterogeneity.
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Heterogeneous Price Elasticities
Setup

I 50% of the stores were divided in two groups: Control
and Treatment groups.

– Control group: 126 municipalities
– Treatment group: 107 municipalities

I The selection of the treatment and control groups
was carried out according to socioeconomic and
demographic characteristics of each municipality as
well as to the distribution of stores in each city.

I The randomization process has not used any
information about quantities sold of the product in
each municipality, which is our output variable.

I DiD methods not adequate: no parallel trends and
not useful to measure heterogeneous effects (either
per state or municipality).

I Time-series of sold quantities displays a clear trend
and a seasonal pattern.
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Heterogeneous Price Elasticities
Setup

I qit : total quantities sold of the group of products on
all stores of municipality i .

I Sample runs from June 20, 2016 to October 31,
2016, a total of 134 daily observations.

I The experiment was conducted during the period
October 18-31, 14 days.

I During these days, the practiced prices in the
municipalities belonging to the treatment group were
reduced in ∆p Brazilian Reais while for the other
municipalities where kept fixed.

I The first 126 municipalities are in the control group
(i = 1, . . . , 126) whereas the remaining 107 are in the
treatment group (i = 127, . . . , 233).
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Heterogeneous Price Elasticities
Setup

I In order to determine the optimal price of the product
it is necessary to obtain the effects of the price
change on the quantities sold.

I We consider two cases.

1. Effects are homogeneous across municipalities and
our output variable of interest is the total quantity of
the product sold in treatment group
(q1t =

1
107

∑233
i=126 qit ).

2. Effects are heterogeneous.

I Linear Demand
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Heterogeneous Price Elasticities
Optimal price computation

I Linear demand curve:

β̂i =
∆̂i

Ni∆p
,

where:

– ∆̂i is the estimated
treatment effect;

– Ni : number of treated
stores in municipality
i ;

– ∆p is the price
change.

I Elasticity:

ϵ̂i =
β̂i pi,T0−1

Q i
,

where:

– pi,T0−1 is the price
before the change;

– Q i is the
counterfactual
quantity sold.

I Optimal price:

p∗
i =

(1− taxesi )(Q i − β̂i pi,T0−1)− β̂i × Costsi

−2β̂i (1− Taxesi )
.
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Heterogeneous Price Elasticities
Optimal price computation

I Linear demand curve:
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,

where:
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– Q i is the
counterfactual
quantity sold.

I Optimal price:

p∗
i =

(1− taxesi )(Q i − β̂i pi,T0−1)− β̂i × Costsi

−2β̂i (1− Taxesi )
.



Heterogeneous Price Elasticities
Homogeneous effects

1. Estimate the parameters of the regression

qt = β0 +
126∑
i=1

βi qit + π1Mont + π2Tuet + π3Wedt + π4Thut

+ π5Frit + π6Satt + Vt ,

= X tβ + Vt

by the WLASSO procedure using the 120
observations from June 20, 2016 to October 18,
2016 (pre-treatment sample). The penalty parameter
of the WLASSO procedure is selected by the BIC.

2. Project the counterfactual for the treatment period as

q̂t = X t β̂

and compute
δt = qt − q̂t .
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Heterogeneous Price Elasticities
Heterogeneous Effects

I In order to measure the degree of heterogeneity of
price elasticities across different municipalities, we
estimate the counterfactuals for each one of the
municipalities in the treatment group.

qjt = βk0 +

126∑
i=1

βkiqit + πk1Mont + πk2Tuet + πk3Wedt + πk4Thut

+ πk5Frit + πk6Satt + Vjt ,

= X jtβk + Vjt , , � = 126, . . . , 233, k = j − 126.



Heterogeneous Price Elasticities
Data: Quantities sold
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Heterogeneous Price Elasticities
Descriptive Statistics

Aggregated Data: Trend Parameters and ADF Test
All Treatment Group Control Group All Treatment Group Control Group

Intercept 13, 458.57
(530.68)

6, 157.138
(238.33)

7, 301.43
(301.35)

8, 359.75
(614.94)

3, 958.18
(257.12)

4, 401.58
(371.18)

Slope 26.08
(10.14)

11.93
(4.49)

14.16
(5.73)

26.55
(10.62)

12.09
(4.57)

14.46
(6.30)

Days-of-the Week Dummies No No No Yes Yes Yes

ADF (p-value) 0.06 0.07 0.00
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Heterogeneous Price Elasticities
Actual and counterfactual sales
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(a) Actual and Counterfactual Sales
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(b) Actual and Counterfactual Sales during Treatment Period



Results

Panel (a): Aggregated Panel (b) Disaggregated
Mean Std. Dev. Max. Min.

∆ -1,147 -12.90 52.08 5.52 -526.70
∆/#shops -4.33 -4.21 4.42 5.52 -23.27
p-value (square) 0 0.41 0.29 1 0
p-value (absolute) 0 0.36 0.31 1 0
Proportion (%) of rejection of the null (square) NA 19 NA NA NA
Proportion (%) of rejection of the null (absolute) NA 31 NA NA NA
R-squared 0.96 0.44 0.25 0.95 0
Number of regressors 133 133 NA NA NA
Number of relevant regressors 26 9.46 8.06 72 0
Number of pre-treatment observations 120 120 NA NA NA
Number of observations during treatment 14 14 NA NA NA



Application
Mean treatment effect using LASSO

(c) CO (d) N (e) NE

(f) S (g) SE



Heterogeneous Price Elasticities
Mean treatment effect using Random Forest

(h) CO (i) N (j) NE

(k) S (l) SE



Heterogeneous Price Elasticities
Optimal Pricing with Random Forest

(m) CO (n) N (o) NE

(p) S (q) SE



Application: Petrobrás Prices



Additional Example: The Petrobrás Case
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Additional Example: The Petrobrás Case
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Conclusions
I General approach for counterfactual analysis with

time-series data: stationary and nonstationary.

I By controlling for common shocks that might have
occurred in all units after the intervention, it
provides a effective methodology to isolate the effect
of the intervention of interest.

I R package available at CRAN: Fonseca, Masini,
Medeiros and Vasconcelos (2018, R Journal).



expect terrorism to have a lagged negative ef-
fect on per capita GDP. In Figure 2, we plotted
the per capita GDP gap, Y1 2 Y*1, as a percent-
age of Basque per capita GDP, and the number

of deaths caused by terrorist actions (used as a
proxy for overall terrorist activity). As ex-
pected, spikes in terrorist activity seem to be
followed by increases in the amplitude of the

FIGURE 1. PER CAPITA GDP FOR THE BASQUE COUNTRY

FIGURE 2. TERRORIST ACTIVITY AND ESTIMATED GAP

118 THE AMERICAN ECONOMIC REVIEW MARCH 2003

back


