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Motivation: geometry of diffusion fronts

The study of the geometry of diffusion fronts has been initiated
by the physicists J.F. Gouyet, M. Rosso and B. Sapoval in 1985.
They showed numerical evidence that such interfaces are fractal,
and they measured the dimension Df = 1.76± 0.02.

To carry on simulations, they used the approximation that the
status of the different sites (occupied / vacant) are independent
of each other: they introduced an inhomogeneous percolation
process with occupation parameter p(z), where p(z) is the
probability of presence of a particle at site z (Gradient
percolation).
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Motivation: geometry of diffusion fronts

One observes for this model various critical exponents (amplitude
of the front, length. . . ) that seem related to those of standard
percolation.

We will explain how one can prove these observations, based on
the recent works by G. Lawler, O. Schramm, W. Werner and S.
Smirnov, that provide a very precise description of percolation near
the critical point in 2 dimensions.
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Motivation: geometry of diffusion fronts

Theoretical importance:

• spontaneous appearance of the percolation phase transition

• revealing of some critical exponents of percolation

• universality of the observed behavior (?)

Practical importance:

• efficient way of estimating pc (B. Sapoval, B. Ziff. . . )
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Motivation: geometry of diffusion fronts

We will then study a simple two-dimensional model where a large
number of particles that start at a given site diffuse independently
on a planar lattice. As the particles evolve, a concentration
gradient appears, and the random interfaces that arise can be
described by using our results for gradient percolation.
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Motivation: geometry of diffusion fronts

Let us also mention a more “dynamical” model where random
resistances are assigned to each site of a material (Etching
Gradient Percolation), used for instance to explain the roughness
of sea coasts (A. Gabrielli, A. Baldassarri, B. Sapoval).

(Fig B. Sapoval)
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Standard percolation background
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Site percolation

We work in the plane, and we consider the triangular lattice:
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Site percolation

We fix a parameter p ∈ [0, 1], and we assume that:

• Each site is occupied (open / black) with probability p,
vacant (closed / white) with probability 1− p.

• The sites are independent.

The associated probability measure is denoted by Pp.
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Site percolation

We represent it as usual with hexagons:
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Site percolation

We obtain this kind of pictures:
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Remark

Why the triangular lattice?

We restrict to the triangular lattice, since at present, this is the
only one for which the existence and the value of critical exponents
have been proved.

However, the results presented here are likely to remain true on
other lattices, like the square lattice Z2.
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Notations

We use oblique coordinates:

0

Sn
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Notations

We denote by
[a1, a2]× [b1, b2]

the parallelogram of vertices ai + bje
iπ/3.

We use in particular

Sn = [−n, n]× [−n, n]

the “box of size n”.
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Cluster of a site

Two sites x et y are connected (x  y) if there exists a path from
x to y composed only of black sites.

The set of sites connected to a site x is called the cluster of x . We
will denote it by C (x).
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Cluster of a site
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Existence of a phase transition at p = 1/2

Percolation features a phase transition, at p = 1/2 on the
triangular lattice:

• If p < 1/2: a.s. no infinite cluster (sub-critical regime).

• If p > 1/2: a.s. a unique infinite cluster (super-critical
regime).

If p = 1/2: critical regime, a.s. no infinite cluster.
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Exponential decay

In sub-critical regime (p < 1/2), there exists a constant C (p) such
that

Pp(0 ∂Sn) ≤ e−C(p)n.

⇒ Fast “decorrelation” of distant points (speed depends on p !).
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Exponential decay

In super-critical regime (p > 1/2), we have similarly

Pp(0 ∂Sn|0 9∞) ≤ e−C(p)n.
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Critical regime

At the critical point p = 1/2, “there is no characteristic length”:
when we take some distance (scaling), we still observe the same
behavior.
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Critical regime

For symmetry reasons, we have for example:

P1/2(crossing [0, n]× [0, n] from left to right) = 1/2.

v
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Critical regime

This implies the Russo-Seymour-Welsh theorem, which is a key
tool for studying critical percolation:

Theorem (Russo-Seymour-Welsh)

For each k ≥ 1, there exists δk > 0 such that

P1/2(crossing [0, kn]× [0, n] from left to right) ≥ δk .
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Near-critical percolation

Two main ingredients:

(1) Study of critical percolation

(2) Scaling techniques

⇒ Description of percolation near the critical point.
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1st ingredient: study of critical percolation

A precise description of critical percolation was made possible by
the introduction of SLE processes in 1999 by O. Schramm, and its
subsequent study by G. Lawler, O. Schramm et W. Werner.

Another important step: conformal invariance of critical
percolation in the scaling limit (S. Smirnov - 2001), that allows to
go from discrete to continuum.
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Arm events

We use in particular the “arm-events”:

0

∂SN
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Arm events

Their probabilities decay like a power law, described by the “j-arm
exponents”:

Theorem (Lawler, Schramm, Werner, Smirnov)

We have
P1/2(0 ∂Sn) ≈ n−5/48

and for each j ≥ 2, for every fixed (non constant) sequence of
“colors” for the j arms,

P1/2(j arms ∂Sj  ∂Sn) ≈ n−(j2−1)/12.
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Study of critical percolation

To describe the discrete process, we try to understand its scaling
limit. We define a radial exploration process “dynamically”:

δ

0
1
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Study of critical percolation

We do not fix a priori boundary conditions, we choose them so
that the process “bounces”:

δ

0
1
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Study of critical percolation

It sometimes closes a clockwise loop or an anti-clockwise loop:

δ

0
1

δ

0
1

In this case we start again in the new domain (with no
boundary condition).
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Study of critical percolation

We have the following connection:

Theorem (Smirnov, Camia-Newman)

When the mesh δ → 0, the radial exploration process converges to
a radial SLE6.

=⇒ Link between arm events and some events for radial SLE6 (ex:
reaching the inner boundary of the annulus without closing any
loop).
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2nd ingredient: scaling techniques (H. Kesten)

For any ε ∈ (0, 1/2) fixed, we define a characteristic length (CH
denotes existence of a left-right crossing):

Definition

Lε(p) =

{
min{n s.t. Pp(CH([0, n]× [0, n])) ≤ ε} if p < 1/2

min{n s.t. Pp(CH([0, n]× [0, n])) ≥ 1− ε} if p > 1/2

Pierre Nolin (École Normale Supérieure & Université Paris-Sud) PhD Thesis supervised by W. WernerNear-critical percolation and the geometry of diffusion fronts



Introduction
Standard percolation background

Gradient Percolation
Application: geometry of diffusion fronts

Framework
Main properties
Near-critical percolation

“It still looks close to critical percolation”

For instance, the RSW theorem remains true for parallelograms of
size ≤ Lε(p), and the probability to observe a path 0 ∂Sn

remains of the same order of magnitude.

We will need:

Lemma

For any j ≥ 1 and any fixed colors,

Pp(j arms ∂Sj  ∂Sn) � P1/2(j arms ∂Sj  ∂Sn)

uniformly in p, n ≤ Lε(p).
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“We quickly become sub-critical”

We have the following lemma, showing exponential decay with
respect to Lε(p) (control of speed for variable p):

Lemma

There exist constants C1,C2 > 0 such that for each n, each
p < 1/2,

Pp(CH([0, n]× [0, n])) ≤ C1e−C2n/Lε(p).

This lemma implies in particular if p > 1/2:

Pp[0 ∞] � Pp[0 ∂SLε(p)]

At this distance, we are already “significantly” far from the origin.
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Scaling techniques

To sum up, Lε(p) is at the same time:

• a scale on which everything looks like critical percolation.

• a scale at which connectivity properties start to change
drastically.

We can also prove that

Lε(p) � Lε′(p)

for any ε, ε′ ∈ (0, 1/2).
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Consequences for the characteristic functions

These ingredients allow to obtain the critical exponents of standard
percolation, associated to the characteristic functions used to
describe macroscopically the model (ξ, χ, θ . . . ). By counting
pivotal sites,

|p − 1/2|(Lε(p))2P1/2(0 4 ∂SLε(p)) � 1.

Hence,
Lε(p) ≈ |p − 1/2|−4/3 (p → 1/2).

The density θ(p) of the infinite cluster satisfies
(5/36 = (−5/48)× (−4/3)):

θ(p) ≈ (p − 1/2)5/36 (p → 1/2+).
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Gradient Percolation
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Gradient percolation: setting

We consider a strip SN = [0, `N ]× [−N,N], of finite width 2N, in
which the percolation parameter decreases linearly in y :

p(z) = 1/2− y/2N.

N

− N
l N

p = 0

p = 1/2

p = 1

p = 1/2 − y/2N
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Gradient percolation: setting
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Gradient percolation: setting

With this convention, all the sites on the lower boundary are
occupied (p = 1), all the sites on the upper boundary are vacant
(p = 0).

⇒ Two different regions appear:

• At the bottom of SN , the parameter is close to 1, we are in a
super-critical region and most occupied sites are connected to
the bottom: “big” cluster of occupied sites.

• At the top of SN , the parameter is close to 0, we are in a
sub-critical region and most vacant sites are connected to the
top (by vacant paths): “big” cluster of vacant sites.
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Gradient percolation: setting

The characteristic phenomenon of this model is the appearance of
a unique “front”, an interface touching simultaneously these two
clusters.

Hypothesis on `N : we will assume that for two constants ε, γ > 0,

N4/7+ε ≤ `N ≤ Nγ

Thus `N = N is OK.
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Heuristics

The critical behavior of this model remains localized in a “critical
strip” around p = 1/2, a strip in which we can consider percolation
as almost critical.

We get away from the critical line p = 1/2: the characteristic
length associated to the percolation parameter decreases =⇒ at
some point, it gets of the same order as the distance from the
critical line. This distance is the width σN of the critical strip

σN = Lε(1/2± σN/2N).

The vertical fluctuations of the front are of order σN .

The exponent for Lε(p) implies that σN ≈ N4/7.
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Heuristics

Hence, we expect:

→ uniqueness of the front.

→ decorrelation of points at horizontal distance � σN .

→ width of the front of the order of σN .
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Uniqueness

There exists with probability very close to 1 a unique front, that
we denote by FN :

Lemma (N.)

There exists δ′ > 0 such that for each N sufficiently large,

P(the boundaries of the two “big” clusters coincide) ≥ 1− e−Nδ′
.

Consequence: a site x is on the front iff there exist two arms, one
occupied to the bottom of SN , and one vacant to the top.
Moreover, this is a local property (depending on a neighborhood
of x of size ≈ σN) ⇒ decorrelation of points at horizontal
distance � σN .
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Width of the front
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Width of the front

The scale σN ≈ N4/7 is actually the order of magnitude of the
vertical fluctuations:

Theorem (N.)

• For each δ > 0, there exists δ′ > 0 such that for N sufficiently
large,

P(FN ⊆ [±N4/7−δ]) ≤ e−Nδ′
.

• For each δ > 0, there exists δ′ > 0 such that for N sufficiently
large,

P(FN * [±N4/7+δ]) ≤ e−Nδ′
.
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Width of the front

N

N / 2

4/7+δ

4/7+δ
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Representative example: length of the front

To estimate a quantity related to the front:

(1) Only the edges in the critical strip must be counted.

(2) For these edges, being on the front is equivalent to the
existence of two arms of length σN :

P(e ∈ Fn) ≈ (σN)−1/4 ≈ N−1/7

(2 arm exponent: 1/4).
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Representative example: length of the front

Thus, for the length TN of the front:

Proposition (N.)

For each δ > 0, we have for N sufficiently large:

N3/7−δ`N ≤ E[TN ] ≤ N3/7+δ`N .

For `N = N, this gives E[TN ] ≈ N10/7.

Noteworthy property: In a box of size σN , approximately N
points are located on the front.
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Variance of TN

The decorrelation of points at horizontal distance � N4/7 implies:

Theorem (N.)

If for some ε > 0, `N ≥ N4/7+ε, then

TN

E[TN ]
−→ 1 in L2, as N →∞.

⇒ Concentration of TN around E[TN ] ≈ N3/7`N .
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Outer boundaries of the front

We can introduce the lower and upper boundaries of the front: we
denote by U+

N and U−N their respective lengths. The proof of the
results on the length TN can easily be adapted, and the 3-arm
exponent (equal to 2/3) gives:

U±N ≈ N4/21`N .
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Estimating pc

We introduce the mean height:

YN =
1

TN

∑
e

yeIe∈FN
,

and we normalize it:

ỸN =
1

2
+

YN

2N
.

For symmetry reasons, E[ỸN ] = 1/2, and the decorrelation
property implies that:

Var(ỸN) ≤ 1

N2/7−δ`N
.
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Estimating pc

But on other lattices, like Z2 ?
We still have Lε(p) ≤ |p − pc |−A. ⇒ The front still converges
toward pc .

The results presented here come from the exponents of standard
percolation.
⇒ For universality reasons, we can think that the critical exponents
remain the same on other lattices, like the square lattice.
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Estimating pc

Question: Behavior of ỸN when we lose symmetry ? We probably
still have (decorrelation) if `N is sufficiently large (`N = N2 for
example):

ỸN ≈ E[ỸN ],

and also (localization):

pc − N−3/7 ≤ E[ỸN ] ≤ pc + N−3/7.

But we can hope for a much better bound (in 1/N for instance).
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Summary

sub-critical

super-critical

≈ critical ≈ SLE(6)

?

2σN

?
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Existence of scaling limits

Using standard arguments due to M. Aizenman and A. Burchard,
one can show the existence of scaling limits. The right way to
scale is by using the characteristic length

σεN = sup{σ s.t. Lε(1/2± σ/2N) ≥ σ}.

One can check that
σεN � σε

′
N ,

and scaling by a quantity much smaller or much larger does not
produce non-trivial limits.
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Discrete Asymmetry

One would like to relate the potential scaling limits to SLE(6).
But:

Proposition

Consider a box of size σN centered on the line y = −2σN : it
contains ≈ N sites of the front, but

#black sites−#white sites ≈ N4/7 �
√

N.

And in fact, in the scaling limit, the law of the front will be
singular with respect to SLE(6). This is related to off-critical
percolation (cf Wendelin’s talk).
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Application: geometry of diffusion
fronts
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Description of the model

We start at time t = 0 with a large number n of particles located
at the origin, and we let them perform independent random walks.

At each time t, we then look at the sites containing at least one
particle. These occupied sites can be regrouped into connected
components, or “clusters”, by connecting two occupied sites if they
are adjacent on the lattice.
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Description of the model
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Different regimes

As time t increases, different regimes arise:

• At first, a very dense cluster around the origin forms. This
clusters grows as long as t remains small compared to n.

• When t gets comparable to n, the cluster first continues to
grow up to some time tmax = λmaxn.

• It then starts to decrease and it finally dislocates at some
critical time tc = λcn - and never re-appears.

Remark: tc/tmax = e is universal.
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Evolution for n = 10000 particles: t = 10
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Evolution for n = 10000 particles: t = 100
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Evolution for n = 10000 particles: t = 500
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Evolution for n = 10000 particles: t = 1000
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Evolution for n = 10000 particles: t = 1463 = λmaxn
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Evolution for n = 10000 particles: t = 2500
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Evolution for n = 10000 particles: t = 3977 = λcn
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Evolution for n = 10000 particles: t = 5000
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Evolution for n = 10000 particles: t = 10000
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Main ingredients

We first need a strong form of the Local Central Limit Theorem.
The distribution of a simple random walk after t steps satisfies:

πt(z) =

√
3

2πt
e−‖z‖

2/t + O

(
1

t2

)
.

(
√

3/2 comes from the “density” of sites on the triangular lattice).
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Main ingredients

The probability of occupation for a site z is

1− (1− πt(z))n ' 1− e−nπt(z).

This is equal to 1/2 for

r∗n,t =

√
t log

λc

t/n

if t ≤ λcn, with λc =
√

3/2π log 2 (and it remains < 1/2
otherwise).

Pierre Nolin (École Normale Supérieure & Université Paris-Sud) PhD Thesis supervised by W. WernerNear-critical percolation and the geometry of diffusion fronts



Introduction
Standard percolation background

Gradient Percolation
Application: geometry of diffusion fronts

Description of the model
Results: roughness of diffusion fronts
Model with a source

Main ingredients

An approximation using Gradient percolation is valid. The
boundary remains localized in an annulus of width
≈ (
√

t)4/7 = t2/7 around r = r∗ �
√

t. They represent a negligible
fraction of the sites, we can thus use a Poissonian approximation.

0

√
t

2t2/7
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Results: case λ < λc

Theorem (N.)

Consider tn = λn, with λ < λc . Then with probability tending to
1,

• There exists a unique macroscopic interface surrounding 0.

• It remains localized in the annulus of width ≈ t2/7 around
r = r∗ �

√
t.

• Its length behaves like t5/7 and its roughness can be described
via the universal exponent 7/4 (it is locally of Hausdorff
dimension 7/4).
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Remark: case t � n

Similar results are valid in the case t = nα, α < 1.

Only the transition window (from parameter 1/2 + ε to 1/2− ε)
is different. This window is of size �

√
t/
√

log t around
r∗ � √t log t (localized transition).
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Remark: case t � n

When t � n, gradual transition:
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Remark: case t � n

When t � n, abrupt transition:
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Results: case λ > λc

In the case tn = λn with λ > λc , the whole picture can be
“dominated” by a sub-critical percolation.

Hence for some constant c = c(λ),

P(every cluster is of size ≤ c log n)→ 1.
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Model with a source

We now consider a model with a Poissonian source at the origin:

• Particles arrive at rate µ > 0.

• Once arrived, they perform independent random walks.
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Model with a source (µ = 50): t = 10
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Model with a source (µ = 50): t = 100
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Model with a source (µ = 50): t = 1000
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Model with a source

The occupation parameter is now

1− e−µρt(z),

with

ρt(z) = π0(z) + . . .+ πt(z) '
√

3

2π

∫ +∞

‖z‖2/t

e−u

u
du.

Pierre Nolin (École Normale Supérieure & Université Paris-Sud) PhD Thesis supervised by W. WernerNear-critical percolation and the geometry of diffusion fronts



Introduction
Standard percolation background

Gradient Percolation
Application: geometry of diffusion fronts

Description of the model
Results: roughness of diffusion fronts
Model with a source

Model with a source

The behavior is then the same as previously for any µ > 0 (no
phase transition):

• There exists a unique macroscopic interface surrounding 0.

• It remains localized in the annulus of width ≈ t2/7 around
r = r∗ �

√
t.

• Its length behaves like t5/7 and it is locally of Hausdorff
dimension 7/4.
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End

Thank you !

Pierre Nolin (École Normale Supérieure & Université Paris-Sud) PhD Thesis supervised by W. WernerNear-critical percolation and the geometry of diffusion fronts


	Introduction
	Standard percolation background
	Framework
	Main properties
	Near-critical percolation

	Gradient Percolation
	Setting
	Main properties
	Behavior of some macroscopic quantities
	Estimating pc
	Scaling limits

	Application: geometry of diffusion fronts
	Description of the model
	Results: roughness of diffusion fronts
	Model with a source


