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the problem with thermodynamics

With Clausius’ formulation of the second law of
thermodynamics, the conflict between thermodynamics
and dynamics became obvious. There is hardly a single
question in physics that has come moe often and more
actively discussed than the relation between
thermodynamics and dynamics. Even now, a 150 years
after Clausius, the question arouses strong feelings.

I. Prigogine, I. Stengers, Order out of chaos (1984).



the problem with thermodynamics

Perhaps, after all, the wise man’s attitude towards
thermodynamics should be to have nothing to do with
it. To deal with thermodynamics is to look for trouble.
This is not the citation of a famous scientist, but the
result of a deep cogitation following mere observations.
Why do we need to get involved in a field of knowledge
which, within the last hundred years, has exhibited the
largest number of schizophrenics and megalomaniacs,
imbalanced scientists, paranoiacs, egocentrists, and
probably insomniacs and sleepwalkers?

Gérard A Maugin, The Thermomechanics Of Nonlinear Irreversible
Behaviors.



the problem with thermodynamics

Every mathematician knows that it is impossible to
understand any elementary course in thermodynamics.

V.I. Arnold, Contact Geometry: the Geometrical Method of
Gibbs’s Thermodynamics. (1989)



the problem with statistical mechanics

The objective of statistical mechanics is to explain the
macroscopic properties of matter on the basis of the
behavior of the atom and molecules of which it is
composed.

Oscar R. Lanford III, 1973

If we want to make the above definition specific for the
non-equilibrium statistical mechanics, we can refrase it as

The objective of non-equilibrium statistical mechanics is to explain
the macroscopic evolution (in space and time) of matter on the
basis of the behaviour of the atom and molecules of which it is
composed.
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the connection

Microscopic Dynamics

⇓

statistical mechanics
(equilibrium, non-equilibrium, local equilibrium)

⇓

thermodynamics
(Carnot Cycles, entropy, 1st and 2nd principles...)

The mathematical connection is through space-time scaling limits
(Hydrodynamic Limits).



What is (equilibrium) thermodynamics?

I take seriously as defined in these classical books:

Connections between measurable quantities as:
pressure, tension, volume, ’temperature’, energy
and heat, work, entropy.



Thermodynamics concern Macroscopic Objets
Vapor machine of Joseph Cugnot (1770)



Fathers of Thermodynamics:

Clausius, Thompson (Lord Kelvin)



Fathers of Statistical Mechanics

Maxwell Boltzmann

atoms in a machine ∼ 1023 ∼ ∞, and they move fast!



relation between thermodynamics and microscopic
dynamics: different space-time scale

thermodynamics describe objects that are big (macroscopic),
constituted by an enourmous number of atoms, but these objects
are moving very slowly, compared with the typical frequency of the
jiggling of these atoms.

Macroscopic means big and slow, but how big and how much
slower?
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relation between thermodynamics and microscopic
dynamics: different space-time scale

thermodynamics describe objects that are big (macroscopic),
constituted by an enourmous number of atoms, but these objects
are moving very slowly, compared with the typical frequency of the
jiggling of these atoms.

Macroscopic means big and slow, but how big and how much
slower?

the entire universe?



God Given postulate or principles

As any physical and mathematical theory, thermodynamics
studies the consequences of his postulates, here called
principles of thermodynamics:

▸ 0th principle: existence of equilibrium states,

▸ 1st principle: energy conservation (and much more!),

▸ 2nd principle: possible and impossible transformations from
an equilibrium to another,

In particular we cannot apply (directly) these ideas to system that
have no equilibrium states or we do not know them.
Galaxy? Universe?

From here come most of the abuse of 2nd principle and Entropy.
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the first one to start this abuse was Clausius himself:

TM

PDF Editor



Non-equilibrium

EQUILIBRIUM A Ô⇒ EQUILIBRIUM B

we have to go through some non-equilibrium states.

Equilibrium thermodynamics only talks about which are the
possible transformation, without specifying any time scale or any
inhomogeneity.

Equilibrium Statistical Mechanics defines corresponding equilibrium
probability distribution, or Gibbs ensembles, on microscopic
configurations of the atoms.

A non equilibrium statistical mechanics should explain, from
microscopic dynamics of atoms, why only some transformations
can happens, and how: space-time scale etc.
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Classical Irreversible Thermodynamics
These non-equilibrium developpements have been much more
controversial, and many proposals had been done from teh
beginning of teh 20th century. One of these is called

Classical Irreversible Thermodynamics,

and it is based on the postulate of local equilibrium:
it is applicable for transformations where locally in space, we find
the system close to some of its equilibrium thermodynamic states,
maybe with different values of the parameters.

Such theory is well justified for system where there is a clear
separation of space-time scale between macroscopic evolution of
the thermodynamic parameters and microscopic dynamics.

What is nice of this approach is that it is possible to give a precise
mathematical statement about obtaining thermodynamics from
microscopic dynamics, through a limiting process:
Hydrodynamic limits
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A crash course in thermodynamics
A one dimensional system (rubber under tension):

Mechanical Equilibrium:

L = L(τ), τ = tension

Thermodynamic Equilibrium

L = L(τ, θ)

θ is the temperature
Empirical definition of temperature.
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Internal Energy and Heat
1st Principle

Changing tension τ0 → τ1 we arrive after some time to a new
equilibrium characterized by (L1, τ1), and there exists a energy U
function of the equilibrium state satisfy

U(L1, τ1) −U(L0, τ0) = W +Q

W = work done by the external tension (force) = τ1(L1 − L0)
Q = heat exchanged with the environment



1st principle of thermodynamics

U(L1, τ1) −U(L0, τ0) = W +Q

This is usually only referred as a statement on conservation of
energy.

But the mechanical interpretation is deeper: we separate
here the change of energy due to

▸ the external work W done by a known, slow, controllable,
macroscopic force τ ,

▸ from the work Q done by unknown, fast, microscopic forces,
we call heat this work,

I think this is the main conceptual point of thermodynamics, in
particular in its connection to the microscopic mechanics.The first
principle contains the separation of scales (time and space)
between microscopic and macroscopic.
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Quasi-Static or Reversible transformations

Performing (slowly) a small (differential) change of tension dτ or a
change of temperature dθ, the equilibrium length will change

dL = (∂L
∂θ

)
τ

dθ + (∂L
∂τ

)
θ

dτ (1)

What is the physical meaning of these differential changes of
equilibrium states?
In principle, as we actually change the tension of the cable, the
system will go into a sequence of non-equilibrium states before to
relax to the new equilibrium.
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∂θ

)
τ
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)
θ

dτ (1)

What is the physical meaning of these differential changes of
equilibrium states?
In principle, as we actually change the tension of the cable, the
system will go into a sequence of non-equilibrium states before to
relax to the new equilibrium. But, quoting Zemanski,

Every infinitesimal in thermodynamics must satisfy the
requirement that it represents a change in a quantity
which is small with respect to the quantity itself and
large in comparison with the effect produced by the
behavior of few molecules.



Quasi-Static or Reversible transformations

Performing (slowly) a small (differential) change of tension dτ or a
change of temperature dθ, the equilibrium length will change

dL = (∂L
∂θ

)
τ
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θ
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What is the physical meaning of these differential changes of
equilibrium states?
In principle, as we actually change the tension of the cable, the
system will go into a sequence of non-equilibrium states before to
relax to the new equilibrium.�
�

�
�

We should consider the existence of these quasi-static transfor-
mations as kind of an hidden principle. Then eventually obtain
them from a mathematical scaling limit process.



Thermodynamic transformations and Cycles

▸ reversible or quasi-static tranformations:
Often is used the T − L diagrams.

In the third transformation the work is given by the integral
along the cycle

W = ∮ τdL = −Q (2)



Irreversible themodynamic transformations
In principle any transformation that is not quasi-static, but brings
the system from an initial equilibrium state A = (L0, τ0) to a final
state B = (L1, τ1).

Thermodynamics does not attempt to describe
in detail these transformations, nor investigate their time scale.
Still funny pictures appears in the thermodynamic books:

from the Fermi’s Thermodynamics

from the Zemanski Heat and
Thermodynamics
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Special quasi-static transformations

▸ Isothermal:
System in contact with a thermostat while the external force
τ is doing work:

d/W = τdL = τ (∂L
∂τ

)
θ

dτ = −d/Q + dU



Special quasi–static Transformations

▸ Adiabatic: d/Q = 0.

d/W = τdL = dU

dτ

dL = −∂LU

∂τU
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Carnot Cycles

A

B

C

D

Q

Q

A→ B , C → D isothermal
B → C , D → A adiabatic

W = ∮ τdL = Qh −Qc = −∮ d/Q
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Carnot Cycles

W > 0 is a heat machine:

in a reverse mode is a Carnot refrigerator: W < 0
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Second Principle of Thermodynamics

Lord Kelvin statement: if W > 0 then Q2 > 0 and Q1 > 0:

Clausius Statement: if W = 0, then Q2 = Q1 > 0:
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Equivalence of Kelvin and Clausius statement



Kelvin’s theorem

For any Carnot cycle operating between temperatures θh and θc ,
the ratio Qh

Qc
depends only from (θh, θc) and there exist a universal

function g(θ) such that

Qh

Qc
= g(θh)

g(θc)

T = g(θ) absolute temperature
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Thermodynamic Entropy

From Kelvin’s theorem:

0 = Qh

Th
− Qc

Tc
= ∮

d/Q

T

Extension to any cycle C : ∮c
d/Q
T = 0
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Thermodynamic Entropy

There exists a function S of the thermodynamic state such that

dS = d/Q

T

If we choose the extensive coordinates U,L:

dS(U,L) = − τ
T

dL + 1

T
dU

▸ In isothermal transformation ∆S = ∆Q/T .

▸ Adiabatic quasistatic transformations are isoentropic.
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Axiomatic approach

Extensive quantities: M,U,L = (mass, energy, length)

There exist an open cone set Γ ⊂ R+ ×R+ ×R, and (M,U,L) ∈ Γ.
There exists a C 1–function

S(M,U,L) ∶ Γ→ R

such that

▸ S is concave,

▸ ∂S
∂U > 0,

▸ S is positively homogeneous of degree 1:

S(λM, λU, λL) = λS(M,U,L), λ > 0

this scaling property means it refers to macroscopic objects.
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Axiomatic Approach

Choose S and L as thermodynamic coordinates,
there exists a function U(M,S ,L) such that ∂U

∂S > 0.

T = ∂U

∂S
temperature

τ = ∂U

∂L tension

U(M,S ,L) is homogeneous of degree 1 (extensive), and T , τ are
homogeneous of degree 0 (intensive).
Since M is constant in most transformations we can set M = 1 or
just omit it if not necessary.



Axiomatic Approach

Choose S and L as thermodynamic coordinates,
there exists a function U(M,S ,L) such that ∂U

∂S > 0.

T = ∂U

∂S
temperature

τ = ∂U

∂L tension

U(M,S ,L) is homogeneous of degree 1 (extensive), and T , τ are
homogeneous of degree 0 (intensive).

Since M is constant in most transformations we can set M = 1 or
just omit it if not necessary.



Axiomatic Approach

Choose S and L as thermodynamic coordinates,
there exists a function U(M,S ,L) such that ∂U

∂S > 0.

T = ∂U

∂S
temperature

τ = ∂U

∂L tension

U(M,S ,L) is homogeneous of degree 1 (extensive), and T , τ are
homogeneous of degree 0 (intensive).
Since M is constant in most transformations we can set M = 1 or
just omit it if not necessary.



Irreversible Transformations

For irreversible thermodynamic transformations (not quasi-static),
we find in thermodynamics books the expression

∮
d/Q

T
< 0 Clausius Inequality

or

∫
B

A

d/Q

T
≤ S(B) − S(A)

Not very clear the meaning of this.



Isothermal Irreversible Transformations

A = (L0,T ), B = (L1,T )

Q ≤ T [S(B) − S(A)]

By the first principle: W = [U(B) −U(A)] −Q

−W ≤ −[U(B) −U(A)] +T [S(B) − S(A)].

F (L,T ) = inf
U

{U −TS(U,L)} free energy (3)

U(L,T ) = ∂T ( 1

T
F (L,T )) (4)

F = U −TS convex function of L.
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Irreversible Transformations

For isothermal transformations, F = U −TS

W ≥ F (B) − F (A) = ∆F

For adiabatic transformations Q = 0. Adiabatic reversible processes
are always isoentropic. But there exists non reversible adiabatic
processes for which

0 < S(B) − S(A)

d/Q = TdS

has a meaning only in quasistatic processes.
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Local equilibrium thermodynamics

Two systems: (M1,U1,L1), (M2,U2,L2).
If attached they are not in equilibrium.
We can define the total entropy as

S(M1,U1,L1) + S(M2,U2,L2)

By concavity and 1-homogeneity:

S(M1,U1,L1) + S(M2,U2,L2) ≤ 2S (M1 +M2

2
,

U1 +U2

2
,
L1 + L2

2
)

= S(M1 +M2,U1 +U2,L1 + L2)
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Irreversible transformations from non-equilibrium

Second principle of thermodynamics intended as a strict increase of
the entropy if the system undergoes a non-reversible transformation

⇑

Property of this transformation to bring the system towards global
equilibrium



Local equilibrium thermodynamic states

0 M
x

0

U(x), 
r(x)

x ∈ [0,M], U(x), r(x).

L(x) = ∫
x

0
r(x ′)dx ′ displacement of x

Ltot = ∫
M

0
r(x)dx , Utot = ∫

M

0
U(x)dx , Stot = ∫

M

0
S(1,U(x), r(x))dx .

Stot ≤ MS(1,M−1Utot ,M
−1Ltot) = S(M,Utot ,Ltot)
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Example: isothermal transformations by diffusion equations

The rubber is immersed in a very viscous liquid at temperature T .
Velocity are dumped down by the viscosity.
τ̄(x , t) = τ(r(x , t),T )

∂tr(x , t) = ∂2
x τ̄(x , t)

∂x r(0, t) = 0, τ̄(1, t) = τ1

free energy of the nonequilibrium profile {r(x , t), x ∈ [0,1]}:

F(t) = ∫
1

0
F (r(x , t),T ) dx , (F = U −TS) (5)

d

dt
F(t) = −∫

1

0
(∂x τ̄(x , t))2 dx + τ1∂xτ(1, t)
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Isothermal by diffusion

d

dt
L(t) = ∫

1

0
∂xx τ̄(x , t) dx = ∂xτ(1, t)
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F(t) − F(0) = τ1 (L(t) − L(0)) − ∫
t

0
ds ∫
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(∂x τ̄(x , s))2 dx

= W − ∫
t

0
ds ∫
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(∂x τ̄(x , s))2 dx

initial global equilibrium r(x ,0) = r0, τ0 = τ(r0,T ).
t →∞ we have r(x , t) → r1, τ1 = τ(r1,T ).

F (r1,T ) − F (r0,T ) = τ1(r1 − r0) − ∫
∞

0
ds ∫

1

0
(∂x τ̄(x , t))2 dx

∆F < W
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Irreversible Isothermal Cycle

initial global equilibrium r(x ,0) = r0, τ0 = τ(r0,T ).

t →∞ we have r(x , t) → r1, τ1 = τ(r1,T ).

F (r1,T )−F (r0,T ) = τ1(r1−r0)−∫
∞

0
ds ∫

1

0
(∂xτ(r(x , t),T ))2 dx

Inverse transformation: initial global equilibrium

r(x ,0) = r1, τ1 = τ(r1,T ),
and we apply the tension τ0 = τ(r0,T ).
t →∞ we have r̃(x , t) → r0, τ0 = τ(r0,T ).

F (r0,T )−F (r1,T ) = τ0(r0−r1)−∫
∞

0
ds ∫
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0
(∂xτ(r̃(x , t),T ))2 dx
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Irreversible Isothermal Cycle

Summing up we have a cycle and

W = (τ1 − τ0)(r1 − r0)

= ∫
∞

0
ds ∫

1

0
[(∂xτ(r(x , t),T ))2 + (∂xτ(r̃(x , t),T ))2] dx

this work is gone to the thermostat as heat.



Reversible quasi static isothermal transformation
Pull slowly: τ̄(t) smooth and τ̄(0) = τ0, τ̄(1) = τ1

∂tr ε(x , t) = ∂2
x τ(r ε(x , t))

∂x r ε(0, t) = 0, τ(r ε(1, t)) = τ̄(εt)

introduce the time scale t ′ = εt, rε(x , t ′) = rε(x , t):

∂t′rε = ε∂2
x τ(r ε(x , t ′))

∂x r ε(0, t) = 0, τ(r ε(1, t ′)) = τ̄(t ′)

after the limit as t ′ →∞:

F (r1,T ) − F (r0,T ) = ∫
∞

0
τ(rε(1, t ′)∂Lε(t ′)dt ′

+ε∫
∞

0
dt ′∫

1

0
(∂xτ(rε(x , t ′),T ))2

dx

= Wε + ε∫
∞

0
dt ′∫

1

0
(∂xτ(r(x , t ′),T ))2

dx

and take ε→ 0: ∆F = W !!!
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Example: adiabatic evolution by Euler Equations
x ∈ [0,1]. The velocity of the material point x is

π(x , t) = ∂tL(x , t)

the force acting on the material element x is

∂xτ(U(x , t),L(x , t))

the total energy of x is

E(x , t) = U(x , t) + π(x , t)2

2

∂tr = ∂xπ

∂tπ = ∂xτ

∂tE = ∂x(τπ)
π(0, t) = 0, τ(1, t) = τ̄(t)
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∂tr = ∂xπ

∂tπ = ∂xτ

∂tE = ∂x(τπ)

∂tU = τ∂xπ

d

dt
S(U(x , t), r(x , t)) = 1

T
∂tU − τ

T
∂tr = 0

After shock appears, Entropy should increase:

d

dt
S(U(x , t), r(x , t)) ≥ 0

Uniqueness of the weak entropy solution is an open problem.
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Statistical Mechanics:
deduction of the above theory

from the microscopic dynamics.



Microscopic Dynamics: Chain of Oscillators

Isobar Dynamics:

ṙj(t) = pj(t) − pj−1(t), j = 1, . . . ,m,

ṗj(t) = V ′(rj+1(t)) −V ′(rj(t)), j = 1, . . . ,m − 1,

ṗm(t) = τ −V ′(rm(t)),

Equilibrium measures:

dαm,gc
τ,β =

m

∏
j=1

e−β(Ej−τ rj)√
2πβ−1Z(βτ, β)

drjdpj ∀β > 0.

Ej =
p2
j

2
+V (rj), Z(βτ, β) = ∫R

e−β(V (r)−τ r)dr
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Microcanonical surface: M > 0,U > 0,L ∈ R,

Σ̃m(M,MU,ML) ∶=
⎧⎪⎪⎨⎪⎪⎩
(r1,p1, . . . , rm,pm) ∶ 1

n

m

∑
j=1

Ej = MU,
1

n

m

∑
j=1

rj = ML
⎫⎪⎪⎬⎪⎪⎭

= Σm(U,L) = {(r1,p1, . . . , rm,pm) ∶ E(m) = U, r (m) = L} .



Entropy!

Σm(U,L) = {(r1,p1, . . . , rm,pm) ∶ E(m) = U, r (m) = L} .

Wm(U,L) = ∫
Σm(U,L)

γm(dr1,dp1, . . . ,dpm; U,L)

= microcanonical volume(Σm(U,L))

Boltzmann formula (made precise):

S(M,MU,ML) ∶= lim
n→∞

1

n
log WnM(U,L) = M S(1,U,L)

the limit exists and is concave and homogeneous function of
degree 1,

S(U,L) ∶= S(1,U,L) = inf
λ,β>0

{−λL + βU − log (Z(λ,β)
√

2πβ−1)} .
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Thermodynamic relations

U,L are here the coordinates:

τβ = λ = −∂S

∂L , β = 1

T
= ∂S

∂U

They can be inverted:

L(λ,β) = ∂ log Z(λ,β)
∂λ

= ∫ r
eλr−βV (r)

Z(λ,β) dr = ∫ rj dµgc
τ,β

U(λ,β) = −
∂ log (Z(λ,β)

√
2π/β)

∂β
= ∫ V (r)eλr−βV (r)

Z(λ,β) dr + 1

2β

= ∫ Ej dµgc
τ,β

In particular β−1 = ∫ p2
j dµgc

τ,β.
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Gibbs Thermodynamics: orthodic ensembles

i.e. defining a heat differential form:

d/Q = −τdL + dU

we have
dS = βd/Q = βdU − βτdL

but this is only a mathematical definition!!
Clausius was not talking about Gibbs measures.



Example: harmonic chain

V (r) = r 2, so that, for L2 ≤ 2U,
Σ̃m(M,MU,ML) is the 2m − 2-dimensional sphere (even
dimension) of radius

√
m(U − L2/2), and γm the uniform measure

and

Wm(U,L) = (2π)m−1[m(U − L2/2)]m−3/2

2 ⋅ 4 . . . (2m − 4) = 2
πm−1[m(U − L2/2)]m−3/2

Γ(m − 1)

S(M,MU,ML) = M (1 + logπ + log [U − L2/2]) = MS(U,L)

β = T−1 = ∂S

∂U
= [U − L2/2]−1

, τ = −T
∂S

∂L = L

S = 1 + log(πT ), F (L,T ) = U −T−1S , ∂LF = ∂LU = L
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Isocore dynamics: microcanonical measure.

ṙj(t) = pj(t) − pj−1(t), j = 1, . . . ,m − 1,

ṗj(t) = V ′(rj+1(t)) −V ′(rj(t)), j = 1, . . . ,m − 1,

rm(t) = mL −
m−1

∑
j=1

rj(t) .

H = ∑j Ej = mU and ∑m
j=1 rj = mL are conserved.

Corresponding conditioned measure (microcanonical) are
stationary.
Usually not the only one! Other conservation laws can be present.
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Local Equilibrium probability measures

Definition
Given two profiles β(y) > 0, τ(y), y ∈ [0,1], we say that the
sequence of probability measures µn on R2n has the local
equilibrium property (with respect to the profiles β(⋅), τ(⋅)) if for
any k > 0 and y ∈ (0,1),

lim
n→∞

µn∣([ny],[ny]+k) = µ
k,gc
τ(y),β(y)



Example: Local Gibbs

n

∏
j=1

e−β(j/n)(Ej−τ(j/n)rj)√
2πβ(j/n)−1Z(β(j/n)τ(j/n), β(j/n))

drjdpj = gn
τ(⋅),β(⋅)

n

∏
j=1

drjdpj

or 1st order perturbations:

e
1
n ∑j Fj(rj−h,pj−h,...,rj+h,pj+h)gn

τ(⋅),β(⋅)

n

∏
j=1

drjdpj (6)

with Fj local functions.
As in extended thermodynamics, define entropy of the local
equilibrium

S(r(⋅),u(⋅)) = ∫
1

0
S(r(y),u(y)) dy

where r(y),u(y) are computed from τ(y), β(y)
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equilibrium

S(r(⋅),u(⋅)) = ∫
1

0
S(r(y),u(y)) dy

where r(y),u(y) are computed from τ(y), β(y)



Isothermal dynamics

Modelling the interaction with the viscous fluid at temperature T :
Langevin heat bath in each site:

ṙj(t) = pj(t) − pj−1(t), j = 1, . . . ,n,

dpj(t) = (V ′(rj+1(t)) −V ′(rj(t)))dt − pj(t)dt +
√
βdwj(t),

j = 1, . . . ,n − 1,

dpn(t) = (τ1 −V ′(rn(t)))dt − pn(t)dt +
√
βdwn(t)

wj(t) i.i.d. standard Wiener processes.

dαn
β,τ1

is the only stationary probability.
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ṙj(t) = pj(t) − pj−1(t), j = 1, . . . ,n,

dpj(t) = (V ′(rj+1(t)) −V ′(rj(t)))dt − pj(t)dt +
√
βdwj(t),

j = 1, . . . ,n − 1,

dpn(t) = (τ1 −V ′(rn(t)))dt − pn(t)dt +
√
βdwn(t)

wj(t) i.i.d. standard Wiener processes.
dαn

β,τ1
is the only stationary probability.



Non-equilibrium isothermal dynamics

We start instead with dαn
β,τ0

, for τ0 ≠ τ1.

Eventually we converge to dαn
β,τ1

. At which time
scale? How?

Empirical Distribution: diffusive scaling

µn(t)(G) = 1

n

n

∑
i=1

G ( i

n
) ri(n2t)

µn(0) → r0dy , with τ(r0, β
−1) = τ0.
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Isothermal diffusion limit

Theorem

1

n

n

∑
i=1

G ( i

n
) ri(n2t) Ð→

n→∞∫
1

0
G(y)r(y , t)dy

in probability, with r(y , t) solution of

∂tr(y , t) = ∂2
y τ(r(y , t),T )

∂y r(0, t) = 0, τ(r(1, t),T ) = τ1

with T = β−1.



Isothermal Dynamics: heat exchanged

Average internal energy at time n2t:

Un(n2t) = 1

n

n

∑
i=1

EEE i(n2t) = 1

n

n

∑
i=1

(p2
i (n2t)

2
+V (ri(n2t)))

Un(n2t) − Un(0) = ∫
t

0
ds n

n

∑
i=1

(p2
i (n2s) −T ) + τ1

qn(n2t) − qn(0)
n

= Qn(t) + Wn(t)
after n →∞

∫
1

0
[U(r(x , t),T ) −U(L0,T )]dx = lim

n→∞
Qn(t) + τ1 (L(1, t) − L0)

and t →∞ to reach the new equilibrium:

[U(L,T ) −U(L0,T )] = Q + τ1 (L1 − L0)

i.e. the first principle!.
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Adiabatic dynamics

Balistic dynamics:

ṙj(t) = pj(t) − pj−1(t), j = 1, . . . ,n,

dpj(t) = (V ′(rj+1(t)) −V ′(rj(t)))dt, j = 1, . . . ,n − 1,

dpn(t) = (τ1 −V ′(rn(t)))dt

Deterministic dynamics: difficult!

Locally momentum and energy are also conserved:
Ô⇒ hyperbolic scaling and (non-linear) wave
equations.
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Hyperbolic Adiabatic Dynamics

3 conserved quantities:

stretch Rn(t)[G ] = 1
n ∑i G(i/n)ri(nt)

momentum πn(t)[G ] = 1
n ∑i G(i/n)pi(nt)

energy en(t)[G ] = 1
n ∑i G(i/n)Ei(nt)

(Rn(t), πn(t), en(t)) Ð→ (r(x , t)dx , π(x , t)dx , e(x , t)dx)

∂tr = ∂xπ

∂tπ = ∂xτ

∂te = ∂x(τπ)
∂r(0, t) = 0, τ(r(1, t),U(1, t)) = τ1
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Ergodicity of the infinite dynamics

Consider the dynamics of the infinite system:

ṙj(t) = pj(t) − pj−1(t), j ∈ Z
dpj(t) = (V ′(rj+1(t)) −V ′(rj(t)))dt j ∈ Z,

We say that it is ergodic if all stationary translational invariant
probability measures locally absolutely continuous are convex
combinations of the Gibbs measures:

dαβ,π,τ =∏
j∈Z

e−βEj+πpj+τ rj−Z(β,π,τ)drjdpj

Not true for harmonic chain or any other completely integrable
system.
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Velocity echeangeability

Theorem (Fritz, Funaki, Lebowitz, 1993)

if dν is a (regular) translation invariant probability on (R2)Z

stationary for the infinite dynamics and such that

dν(p∣r)

is excheangeable, then it is a convex combination of Gibbs
measures.



Stochastic dynamic perturbations

We search for stochastic perturbations that conserve energy,
momentum, length, and that will give the ergodic property
requested:

momentum exchange For each couple of nearest neighbor particle,
we randomly exchange momentum,
(pi ,pi+1) → (pi+1,pi), with intensity 1. The resulting
infinite dynamics has the ergodic property.

diffusive exchange of momentum Done with three body exchange.

With this stochastic perturbation, we can prove the convergence to
the Euler system of PDE, at least in the smooth regime.
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Conclusion

▸ Thermodynamics is a macroscopic theory

▸ It can be deduced from the microscopic dynamics in a large
space-time scale limit. This is a mathematical difficult but
precise problem.

▸ The mathematical deduction needs to prove the ergodicity
and eventually the chaoticity of the infinite system.

▸ The ergodicity (or the non-ergodicity) of the finite system is
irrelevant for this problem.
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