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Agenda

I Motivation: the need for uncertainty quantification

I Solution: split conformal prediction, with a single crucial assumption

I Extending split CP to dependent data: new results

I In practice: effect of dependency is negligible

I Conclusion: further directions
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Motivation

I Dr Heron Werner (DASA): “Given fetal MRI images, can we predict the amount of amniotic fluid”?

abnormal volume indicates pregnancy pathologies

usual measurements are imprecise or subjective

estimation is manually done by trained physician, taking hours to days

I Goal: accurate algorithm for volume estimation, in seconds

I How: segment each layer in the MRI using U-Net, count voxel size for volume

I Results: ∼ 92% Dice accuracy in under 5 seconds
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Results

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Predicted volume (L)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ta
rg

et
 v

ol
um

e 
(L

)

Paulo Orenstein Split Conformal Prediction for Dependent Data IMPA 6 / 26



Introduction Split Conformal Prediction Dependent data Applications Conclusion

Problem: uncertainty quantication

I Can we really trust the results?

I In medicine, uncertainty quantification is crucial; best guess is 2.80L but...

“I’m 90% sure the true AF volume is between 2.72L and 2.88L”

“I’m 90% sure the true AF volume is between 1.90 and 3.70L”

I How can we provide valid predictive intervals for black-box prediction methods?
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Given data {(Xi , yi)}ni=1 to train any prediction method µ̂ and any level α ∈ (0, 1),

can we construct a prediction set C1−α(x) such that, for a new point (Xn+1, yn+1),

P[yn+1 ∈ C1−α(Xn+1)] ≥ 1− α?

(For us, Xi is an MRI exam, yi is the fluid volume, µ̂ is a U-Net, C is a rule specifying a volume interval for Xi .)
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Conformal Prediction

I Conformal Prediction was proposed by Vladimir Vovk∗

I Provides valid predictive sets for any level α ∈ (0, 1) and any model µ̂

I Many recent variations and extensions, from regression to classification settings

I We will consider the most popular incarnation: split CP

I Important assumption: data (Xi , yi)
n
i=1 is exchangeable (which is implied by iid)

∗Vovk, Gammerman, and Shafer. “Algorithmic learning in a random world”, Springer (2005).
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Split Conformal Prediction: Setup

I Split the data: {(Xi , yi)}i∈Itr , {(Xj , yj)}j∈Ical , {(Xk , yk)}k∈Itest , with sizes ntr, ncal, ntest

I Train predictive method µ̂tr : X → Y

I Discrepancy scores ŝtr : X × Y → R (e.g., ŝtr(x , y) = |y − µ̂(x)|)

I Calibrate quantile: if ŝj = ŝtr(Xj , yj) for j ∈ Ical,

q̂1−α := q̂1−α ({ŝj}j∈Ical) = argmin
t∈R

 1
ncal

∑
j∈Ical

I[ŝj≤t] ≥ 1− α


I Prediction set:

C1−α(x) = {y ∈ Y : ŝtr(x , y) ≤ q̂(1+1/ncal )(1−α)}.
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I[ŝj≤t] ≥ 1− α


I Prediction set:
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Split Conformal Prediction: Results

Marginal coverage

Given exchangeable data {(Xi , yi)}ni=1 and level 1− α ∈ (0, 1), consider the calibrated quantile
q̂(1+1/ncal )(1−α) and define

C1−α(x) = {y ∈ Y : ŝtr(x , y) ≤ q̂(1+1/ncal )(1−α)}.

Then, for any single test data point (Xk , yk), k ∈ Itest,

P[yk ∈ C1−α(Xk)] ≥ 1− α.

Additionally, if ŝj are almost surely distinct, then P[yk ∈ C1−α(Xk)] ≤ 1− α+ 1/(ncal + 1).

Proof sketch: since data is exchangeable, ŝj are also exchangeable. Consider the 1− α quantile of
{ŝj}j∈Ical ∪ {ŝk}; the probability of ŝk being bigger than the quantile must be bigger than 1− α. Issue:
can’t use ŝk for the quantile, but can you can assume it’s infinite:

ŝk > q̂1−α({ŝj}j∈Ical ∪ {ŝk}) ⇐⇒ ŝk > q̂1−α({ŝj}j∈Ical ∪ {∞}).

So: P[ŝk ≤ q̂(1+1/ncal)(1−α)({ŝj}j∈Ical)] = P[ŝk ≤ q̂(1−α)({ŝj}j∈Ical ∪ {∞})] ≥ 1− α. �
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C1−α(x) = {y ∈ Y : ŝtr(x , y) ≤ q̂(1+1/ncal )(1−α)}.

Then, for any single test data point (Xk , yk), k ∈ Itest,

P[yk ∈ C1−α(Xk)] ≥ 1− α.
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{ŝj}j∈Ical ∪ {ŝk}; the probability of ŝk being bigger than the quantile must be bigger than 1− α. Issue:
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So: P[ŝk ≤ q̂(1+1/ncal)(1−α)({ŝj}j∈Ical)] = P[ŝk ≤ q̂(1−α)({ŝj}j∈Ical ∪ {∞})] ≥ 1− α. �

Paulo Orenstein Split Conformal Prediction for Dependent Data IMPA 11 / 26



Introduction Split Conformal Prediction Dependent data Applications Conclusion

Split Conformal Prediction: Results

Marginal coverage

Given exchangeable data {(Xi , yi)}ni=1 and level 1− α ∈ (0, 1), consider the calibrated quantile
q̂(1+1/ncal )(1−α) and define

C1−α(x) = {y ∈ Y : ŝtr(x , y) ≤ q̂(1+1/ncal )(1−α)}.

Then, for any single test data point (Xk , yk), k ∈ Itest,

P[yk ∈ C1−α(Xk)] ≥ 1− α.
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Additionally, if ŝj are almost surely distinct, then P[yk ∈ C1−α(Xk)] ≤ 1− α+ 1/(ncal + 1).
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Paulo Orenstein Split Conformal Prediction for Dependent Data IMPA 11 / 26



Introduction Split Conformal Prediction Dependent data Applications Conclusion

Split Conformal Prediction: Results

Empirical coverage

If the data {(Xi , yi)}ni=1 is iid, then for any ε > 0 there exists cε > 0 such that

P
[

1
ntest

∑
k∈Itest

I[yk∈C1−α(Xk )] ≥ 1− α− ε

]
≥ 1− e−cεntest .

So, empirically over the entire test set, C1−α approximates the 1− α quantile (with a penalty).

Conditional coverage

If the data {(Xi , yi)} is iid and A ⊂ X has finite VC dimension, then for any A ∈ A where P[Xk ∈ A]
is not too small,

P [yk ∈ C1−α(Xk ;K) | Xk ∈ A] ≥ 1− α− ε.

Thus, split CP can guarantee coverage even if conditioned on some events.
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Split Conformal Prediction: General Tool

I Provides valid coverage and finite-sample statistical guarantees

I Works for any exchangeable data {(Xi , yi)}ni=1, any model µ̂

I Simple to implement, computationally cheap

I Arbitrary discrepancy score ŝtr : X × Y → R:

residuals: ŝtr(x , y) = |y − µ̂(x)|

conditional likelihood: ŝtr(x , y) = − log p̂(y |x)

conformalized quantile: ŝtr(x , y) = max{µ̂α/2(x)− y , y − µ̂1−α/2(x)}

I Many more generalizations: e.g., prediction masks
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conditional likelihood: ŝtr(x , y) = − log p̂(y |x)
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I Many more generalizations: e.g., prediction masks∗

∗Bates, Angelopoulos, Lei, Malik, and Jordan, “Distribution-free, risk-controlling prediction sets”
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But severe limitation: without exchangeability theory falls apart

(For us, some exams came from the same mother at different stages in the pregnancy.)
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Introduction Split Conformal Prediction Dependent data Applications Conclusion

Dealing with Dependence

I Recent interest in independent data with distributional drift∗

I Our work: rebuild split conformal prediction without exchangeability

I Intuition: see how data CDF concentrates when exchangeability is replaced by looser conditions:

P[yk ∈ C1−α+η(Xk)] ≥ 1− α, so P[yk ∈ C1−α(Xk)] ≥ 1− α− η,

where η is an added penalty due to non-exchangeability

I Tools: concentration inequalities and decoupling properties

∗Barber, Candès, Ramdas and Tibshirani. “Conformal prediction beyond exchangeability”, arXiv (2022).
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Theoretical Results

I Assumptions on data:

Stationarity: (Zt , . . . ,Zm)
d
= (Zt+k , . . . ,Zt+m+k )

β-mixing: β(a) = ‖P−∞:0,a:∞ − P−∞:0 ⊗ Pa:∞‖TV
a→∞−→ 0

I Data is time-invariant and asymptotically independent

I Examples: Markov chains, renewal processes, AR(1)

I Main theoretical tool: Blocking technique
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I Data is time-invariant and asymptotically independent

I Examples: Markov chains, renewal processes, AR(1)

I Main theoretical tool: Blocking technique∗

∗Yu, “Rates of Convergence of Empirical Processes of Stationary Mixing Sequences”, Annals of Probability (1994)
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Main Theoretical Results

Marginal coverage

Suppose that {(Xi , yi)}ni=1 is stationary β-mixing. Given α ∈ (0, 1) and δcal > 0, for k ∈ Itest,

P[yk ∈ C1−α(Xk)] ≥ 1− α−η,

with η = εcal + εtr + δcal, where εtr = β(k − ntr).

Empirical coverage

Suppose that {(Xi , yi)}ni=1 is stationary β-mixing. Given α ∈ (0, 1) and δcal > 0, δtest > 0:

P
[

1
ntest

∑
k∈Itest

I[yk∈C1−α(Xk )] ≥ 1− α−η

]
≥ 1− δcal − δtest,

with η = εcal + εtest.
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The Details

I Fcal =
{
(a,m, r) ∈ N3

+ : 2ma = ncal − r + 1, δcal > 4(m − 1)β(a) + β(r)
}

I Ftest =
{
(a,m, s) ∈ N3

+ : 2ma = ntest − s, δtest > 4(m − 1)β(a) + β(ncal)
}

I σ̃(a) =
√
1/4+ (2/a)

∑a−1
j=1 (a − j)β(j)

I εcal = inf(a,m,r)∈Fcal

{
σ̃(a)

√
4

ncal−r+1 log
(

4
δcal−4(m−1)β(a)−β(r)

)
+ 1

3m log
(

4
δcal−4(m−1)β(a)−β(r)

)
+ r−1

ncal

}

I εtest = inf(a,m,s)∈Ftest

{
σ̃(a)

√
4

ntest
log
(

4
δtest−4(m−1)β(a)−β(ncal)

)
+ 1

3m log
(

4
δtest−4(m−1)β(a)−β(ncal)

)
+ s

ntest

}
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Conditional Theoretical Results

Marginal coverage, conditional version

Suppose that {(Xi , yi)}ni=1 is stationary β-mixing. Given α ∈ (0, 1) and δcal > 0, for any k ∈ Itest and
K ∈ K (with VC(K) = d ,P[Xk ∈ K ] > γ),

P[yk ∈ C1−α(Xk ;K) | Xk ∈ K ] ≥ 1− α−η,

with η = εcal + εtest.

Empirical coverage, conditional version

Suppose that {(Xi , yi)}ni=1 is stationary β-mixing. Given α ∈ (0, 1) and δcal > 0, δtest > 0 and K ∈ K:

P

 inf
K∈K

1
ntest(K)

∑
k∈Itest(K)

I[yk∈C1−α(Xk ;K)] ≥ 1− α−η

 ≥ 1− δcal − δtest,

with η = εcal + εtest.
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The Details

I Gcal =
{
(a,m, r) ∈ N3

+ : 2ma = ncal − r + 1, δcal > 16(m − 1)β(a) + β(r)
}

I Gtest =
{
(a,m, s) ∈ N3

+ : 2ma = ntest − s, δtest > 8(m − 1)β(a) + β(ncal)
}

I εcal = inf(a,m,r)∈Gcal

{
1
γ

(
4
√

log(2(m+1)d )
m + 2(r−1)

ncal
+ 2
√

1
2m log

(
16

δcal−16(m−1)β(a)−β(r)

))}

I εtest = inf(a,m,s)∈Gtest

{
1
γ

(
4
√

log(2(m+1)d )
m + 2s

ntest
+ 2
√

1
2m log

(
8

δtest−8(m−1)β(a)−β(ncal)

))}
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Application: Autoregressive Process

I For every 11 points in AR(1) time series, predict the following point

I Get predictive set via split conformal quantile regression
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Application: Finance

I Time series with EUR/USD spot exchange rate; predictions with boosting

I Sliding window of 1000 training points, 500 calibration points and 1 test point

I Get predicitive set via split conformal quantile regression
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Application: Empirical Coverage

I Two-state hidden Markov model
I Gradient boosting model with 1000 training points, 15000 calibration points and 15000 test points
I Average over 1000 simulations to ascertain empirical coverage: 1

ntest

∑
k∈Itest I[yk∈C1−α(Xk )]
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Conclusion

I Uncertainty quantification is crucial for the deployment of ML systems.

I Conformal prediction is a set of tools that yield marginal, empirical and conditional coverage.

I It traditionally requires little beyond exchangeability; we show it works even for dependent data.

I Our results can be extended beyond stationarity and to non-split CP (e.g., rank-one-out, risk-
controlling prediction sets).

I There is much more theory and algorithms to be developed on top of it.
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