Split Conformal Prediction for Dependent Data

Paulo Orenstein

June 15th, 2022

IMPA

Joint work with Roberto Imbuzeiro Oliveira, Thiago Ramos, João Vitor Romano and others

Motivation: the need for uncertainty quantification

Motivation: the need for uncertainty quantification

Solution: split conformal prediction, with a single crucial assumption

- Motivation: the need for uncertainty quantification
- ▶ Solution: split conformal prediction, with a single crucial assumption
- Extending split CP to dependent data: new results

Motivation: the need for uncertainty quantification

Solution: split conformal prediction, with a single crucial assumption

Extending split CP to dependent data: new results

In practice: effect of dependency is negligible

Motivation: the need for uncertainty quantification

▶ Solution: split conformal prediction, with a single crucial assumption

Extending split CP to dependent data: new results

▶ In practice: effect of dependency is negligible

Conclusion: further directions

Video with blue solid.

> Dr Heron Werner (DASA): "Given fetal MRI images, can we predict the amount of amniotic fluid"?

- Dr Heron Werner (DASA): "Given fetal MRI images, can we predict the amount of amniotic fluid"?
 - abnormal volume indicates pregnancy pathologies
 - usual measurements are imprecise or subjective
 - estimation is manually done by trained physician, taking hours to days

- > Dr Heron Werner (DASA): "Given fetal MRI images, can we predict the amount of amniotic fluid"?
 - abnormal volume indicates pregnancy pathologies
 - usual measurements are imprecise or subjective
 - estimation is manually done by trained physician, taking hours to days
- Goal: accurate algorithm for volume estimation, in seconds

- > Dr Heron Werner (DASA): "Given fetal MRI images, can we predict the amount of amniotic fluid"?
 - abnormal volume indicates pregnancy pathologies
 - usual measurements are imprecise or subjective
 - estimation is manually done by trained physician, taking hours to days
- Goal: accurate algorithm for volume estimation, in seconds
- ▶ How: segment each layer in the MRI using U-Net, count voxel size for volume

- > Dr Heron Werner (DASA): "Given fetal MRI images, can we predict the amount of amniotic fluid"?
 - abnormal volume indicates pregnancy pathologies
 - usual measurements are imprecise or subjective
 - estimation is manually done by trained physician, taking hours to days
- Goal: accurate algorithm for volume estimation, in seconds
- ▶ How: segment each layer in the MRI using U-Net, count voxel size for volume
- Results: ~ 92% Dice accuracy in under 5 seconds

Video with estimates.

Results

Can we really trust the results?

Can we really trust the results?

▶ In medicine, uncertainty quantification is crucial; best guess is 2.80L but...

- Can we really trust the results?
- In medicine, uncertainty quantification is crucial; best guess is 2.80L but...
 - "I'm 90% sure the true AF volume is between 2.72L and 2.88L"
 - "I'm 90% sure the true AF volume is between 1.90 and 3.70L"

Can we really trust the results?

In medicine, uncertainty quantification is crucial; best guess is 2.80L but...

• "I'm 90% sure the true AF volume is between 2.72L and 2.88L"

"I'm 90% sure the true AF volume is between 1.90 and 3.70L"

How can we provide valid predictive intervals for black-box prediction methods?

Given data $\{(X_i, y_i)\}_{i=1}^n$ to train any prediction method $\hat{\mu}$ and any level $\alpha \in (0, 1)$, can we construct a prediction set $C_{1-\alpha}(x)$ such that, for a new point (X_{n+1}, y_{n+1}) ,

$$\mathbb{P}[y_{n+1} \in C_{1-\alpha}(X_{n+1})] \geq 1-\alpha?$$

Given data $\{(X_i, y_i)\}_{i=1}^n$ to train any prediction method $\hat{\mu}$ and any level $\alpha \in (0, 1)$, can we construct a prediction set $C_{1-\alpha}(x)$ such that, for a new point (X_{n+1}, y_{n+1}) ,

$$\mathbb{P}[y_{n+1} \in C_{1-\alpha}(X_{n+1})] \geq 1-\alpha?$$

(For us, X_i is an MRI exam, y_i is the fluid volume, $\hat{\mu}$ is a U-Net, C is a rule specifying a volume interval for X_i .)

Conformal Prediction was proposed by Vladimir Vovk*

*Vovk, Gammerman, and Shafer. "Algorithmic learning in a random world", Springer (2005).

- Conformal Prediction was proposed by Vladimir Vovk
- \blacktriangleright Provides valid predictive sets for any level $lpha \in (0,1)$ and any model $\hat{\mu}$

- Conformal Prediction was proposed by Vladimir Vovk
- \blacktriangleright Provides valid predictive sets for any level $lpha \in (0,1)$ and any model $\hat{\mu}$
- Many recent variations and extensions, from regression to classification settings[†]

 $^{^{\}dagger}\text{Angelopoulos}$ and Bates, "A Gentle Introduction to Conformal Prediction", arXiv (2021).

- Conformal Prediction was proposed by Vladimir Vovk
- Provides valid predictive sets for any level $\alpha \in (0, 1)$ and any model $\hat{\mu}$
- Many recent variations and extensions, from regression to classification settings
- We will consider the most popular incarnation: split CP[‡]

[‡]Lei, G'Sell, Rinaldo, Tibshirani, and Wasserman, "Distribution-free predictive inference for regression", JASA (2018).

- Conformal Prediction was proposed by Vladimir Vovk
- Provides valid predictive sets for any level $lpha \in (0,1)$ and any model $\hat{\mu}$
- Many recent variations and extensions, from regression to classification settings
- ▶ We will consider the most popular incarnation: split CP

lmportant assumption: data $(X_i, y_i)_{i=1}^n$ is exchangeable (which is implied by iid)

Split the data: $\{(X_i, y_i)\}_{i \in I_{tr}}, \{(X_j, y_j)\}_{j \in I_{cal}}, \{(X_k, y_k)\}_{k \in I_{test}}, \text{ with sizes } n_{tr}, n_{cal}, n_{test}\}$

Split the data: $\{(X_i, y_i)\}_{i \in l_{tr}}, \{(X_j, y_j)\}_{j \in l_{cal}}, \{(X_k, y_k)\}_{k \in l_{test}}, \text{ with sizes } n_{tr}, n_{cal}, n_{test}\}$

▶ Train predictive method $\hat{\mu}_{tr} : \mathcal{X} \to \mathcal{Y}$

- Split the data: $\{(X_i, y_i)\}_{i \in l_{tr}}, \{(X_j, y_j)\}_{j \in l_{cal}}, \{(X_k, y_k)\}_{k \in l_{test}}, \text{ with sizes } n_{tr}, n_{cal}, n_{test}\}$
- ▶ Train predictive method $\hat{\mu}_{tr} : \mathcal{X} \to \mathcal{Y}$
- ▶ Discrepancy scores $\hat{s}_{tr} : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ (e.g., $\hat{s}_{tr}(x, y) = |y \hat{\mu}(x)|$)

- Split the data: $\{(X_i, y_i)\}_{i \in l_{tr}}, \{(X_j, y_j)\}_{j \in l_{cal}}, \{(X_k, y_k)\}_{k \in l_{test}}, \text{ with sizes } n_{tr}, n_{cal}, n_{test}\}$
- ▶ Train predictive method $\hat{\mu}_{tr} : \mathcal{X} \to \mathcal{Y}$

▶ Discrepancy scores $\hat{s}_{tr} : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ (e.g., $\hat{s}_{tr}(x, y) = |y - \hat{\mu}(x)|$)

► Calibrate quantile: if $\hat{s}_j = \hat{s}_{tr}(X_j, y_j)$ for $j \in I_{cal}$,

$$\hat{q}_{1-lpha} := \hat{q}_{1-lpha}\left(\{\hat{s}_j\}_{j\in l_{\mathsf{Cal}}}
ight) = rgmin_{t\in\mathbb{R}} \left\{rac{1}{n_{\mathsf{Cal}}}\sum_{j\in l_{\mathsf{Cal}}}\mathbb{I}_{[\hat{s}_j\leq t]}\geq 1-lpha
ight\}$$

- Split the data: $\{(X_i, y_i)\}_{i \in l_{tr}}, \{(X_j, y_j)\}_{j \in l_{cal}}, \{(X_k, y_k)\}_{k \in l_{test}}, \text{ with sizes } n_{tr}, n_{cal}, n_{test}\}$
- ▶ Train predictive method $\hat{\mu}_{tr} : \mathcal{X} \to \mathcal{Y}$
- ▶ Discrepancy scores $\hat{s}_{tr} : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ (e.g., $\hat{s}_{tr}(x, y) = |y \hat{\mu}(x)|$)
- ► Calibrate quantile: if $\hat{s}_j = \hat{s}_{tr}(X_j, y_j)$ for $j \in I_{cal}$,

$$\hat{q}_{1-\alpha} := \hat{q}_{1-\alpha}\left(\{\hat{s}_{j}\}_{j \in l_{\mathsf{cal}}}\right) = \operatorname*{argmin}_{t \in \mathbb{R}} \left\{ \frac{1}{n_{\mathsf{cal}}} \sum_{j \in l_{\mathsf{cal}}} \mathbb{I}_{[\hat{s}_{j} \leq t]} \geq 1 - \alpha \right\}$$

Prediction set:

$$C_{1-\alpha}(x) = \{y \in \mathcal{Y} : \hat{s}_{tr}(x, y) \leq \hat{q}_{(1+1/n_{Cal})(1-\alpha)}\}.$$

- Split the data: $\{(X_i, y_i)\}_{i \in l_{tr}}, \{(X_j, y_j)\}_{j \in l_{cal}}, \{(X_k, y_k)\}_{k \in l_{test}}, \text{ with sizes } n_{tr}, n_{cal}, n_{test}\}$
- ▶ Train predictive method $\hat{\mu}_{tr} : \mathcal{X} \to \mathcal{Y}$
- ► Discrepancy scores $\hat{s}_{tr} : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ (e.g., $\hat{s}_{tr}(x, y) = |y \hat{\mu}(x)|$)
- ► Calibrate quantile: if $\hat{s}_j = \hat{s}_{tr}(X_j, y_j)$ for $j \in I_{cal}$,

$$\hat{q}_{1-lpha} := \hat{q}_{1-lpha}\left(\{\hat{s}_j\}_{j\in l_{\mathsf{Cal}}}
ight) = rgmin_{t\in\mathbb{R}} \left\{rac{1}{n_{\mathsf{Cal}}}\sum_{j\in l_{\mathsf{Cal}}}\mathbb{I}_{[\hat{s}_j\leq t]}\geq 1-lpha
ight\}$$

Prediction set:

$$C_{1-\alpha}(x) = \{y \in \mathcal{Y} : \hat{s}_{tr}(x, y) \leq \hat{q}_{(1+1/n_{cal})(1-\alpha)}\}.$$

Marginal coverage

Marginal coverage

Given exchangeable data $\{(X_i, y_i)\}_{i=1}^n$ and level $1 - \alpha \in (0, 1)$, consider the calibrated quantile $\hat{q}_{(1+1/n_{cal})(1-\alpha)}$ and define

$$C_{1-\alpha}(x) = \{y \in \mathcal{Y} : \hat{s}_{tr}(x, y) \le \hat{q}_{(1+1/n_{cal})(1-\alpha)}\}.$$

Marginal coverage

Given exchangeable data $\{(X_i, y_i)\}_{i=1}^n$ and level $1 - \alpha \in (0, 1)$, consider the calibrated quantile $\hat{q}_{(1+1/n_{cal})(1-\alpha)}$ and define

$$C_{1-\alpha}(x) = \{y \in \mathcal{Y} : \hat{s}_{tr}(x, y) \leq \hat{q}_{(1+1/n_{cal})(1-\alpha)}\}.$$

Then, for any single test data point (X_k, y_k) , $k \in I_{\text{test}}$,

 $\mathbb{P}[y_k \in C_{1-\alpha}(X_k)] \geq 1-\alpha.$

Marginal coverage

Given exchangeable data $\{(X_i, y_i)\}_{i=1}^n$ and level $1 - \alpha \in (0, 1)$, consider the calibrated quantile $\hat{q}_{(1+1/n_{cal})(1-\alpha)}$ and define

$$C_{1-\alpha}(x) = \{y \in \mathcal{Y} : \hat{s}_{tr}(x, y) \leq \hat{q}_{(1+1/n_{cal})(1-\alpha)}\}.$$

Then, for any single test data point (X_k, y_k) , $k \in I_{\text{test}}$,

 $\mathbb{P}[y_k \in C_{1-\alpha}(X_k)] \geq 1-\alpha.$

Additionally, if \hat{s}_j are almost surely distinct, then $\mathbb{P}[y_k \in C_{1-\alpha}(X_k)] \leq 1 - \alpha + 1/(n_{cal} + 1)$.
Marginal coverage

Given exchangeable data $\{(X_i, y_i)\}_{i=1}^n$ and level $1 - \alpha \in (0, 1)$, consider the calibrated quantile $\hat{q}_{(1+1/n_{cal})(1-\alpha)}$ and define

$$C_{1-\alpha}(x) = \{y \in \mathcal{Y} : \hat{s}_{tr}(x, y) \leq \hat{q}_{(1+1/n_{cal})(1-\alpha)}\}.$$

Then, for any single test data point (X_k, y_k) , $k \in I_{\text{test}}$,

$$\mathbb{P}[y_k \in C_{1-\alpha}(X_k)] \geq 1-\alpha.$$

Additionally, if \hat{s}_j are almost surely distinct, then $\mathbb{P}[y_k \in C_{1-\alpha}(X_k)] \leq 1 - \alpha + 1/(n_{cal} + 1)$.

Proof sketch: since data is exchangeable, \hat{s}_j are also exchangeable. Consider the $1 - \alpha$ quantile of $\{\hat{s}_j\}_{j \in I_{cal}} \cup \{\hat{s}_k\}$; the probability of \hat{s}_k being bigger than the quantile must be bigger than $1 - \alpha$.

Marginal coverage

Given exchangeable data $\{(X_i, y_i)\}_{i=1}^n$ and level $1 - \alpha \in (0, 1)$, consider the calibrated quantile $\hat{q}_{(1+1/n_{cal})(1-\alpha)}$ and define

$$C_{1-\alpha}(x) = \{y \in \mathcal{Y} : \hat{s}_{tr}(x, y) \leq \hat{q}_{(1+1/n_{cal})(1-\alpha)}\}.$$

Then, for any single test data point (X_k, y_k) , $k \in I_{\text{test}}$,

$$\mathbb{P}[y_k \in C_{1-\alpha}(X_k)] \geq 1-\alpha.$$

Additionally, if \hat{s}_j are almost surely distinct, then $\mathbb{P}[y_k \in C_{1-\alpha}(X_k)] \leq 1 - \alpha + 1/(n_{cal} + 1)$.

Proof sketch: since data is exchangeable, \hat{s}_j are also exchangeable. Consider the $1 - \alpha$ quantile of $\{\hat{s}_j\}_{j \in l_{cal}} \cup \{\hat{s}_k\}$; the probability of \hat{s}_k being bigger than the quantile must be bigger than $1 - \alpha$. Issue: can't use \hat{s}_k for the quantile, but can you can assume it's infinite:

$$\hat{s}_k > \hat{q}_{1-lpha}(\{\hat{s}_j\}_{j\in l_{\mathsf{cal}}}\cup\{\hat{s}_k\}) \iff \hat{s}_k > \hat{q}_{1-lpha}(\{\hat{s}_j\}_{j\in l_{\mathsf{cal}}}\cup\{\infty\}).$$

Marginal coverage

Given exchangeable data $\{(X_i, y_i)\}_{i=1}^n$ and level $1 - \alpha \in (0, 1)$, consider the calibrated quantile $\hat{q}_{(1+1/n_{cal})(1-\alpha)}$ and define

$$C_{1-\alpha}(x) = \{y \in \mathcal{Y} : \hat{s}_{tr}(x, y) \leq \hat{q}_{(1+1/n_{cal})(1-\alpha)}\}.$$

Then, for any single test data point (X_k, y_k) , $k \in I_{\text{test}}$,

$$\mathbb{P}[y_k \in C_{1-\alpha}(X_k)] \geq 1-\alpha.$$

Additionally, if \hat{s}_j are almost surely distinct, then $\mathbb{P}[y_k \in C_{1-\alpha}(X_k)] \leq 1 - \alpha + 1/(n_{cal} + 1)$.

Proof sketch: since data is exchangeable, \hat{s}_j are also exchangeable. Consider the $1 - \alpha$ quantile of $\{\hat{s}_j\}_{j \in l_{cal}} \cup \{\hat{s}_k\}$; the probability of \hat{s}_k being bigger than the quantile must be bigger than $1 - \alpha$. Issue: can't use \hat{s}_k for the quantile, but can you can assume it's infinite:

$$\hat{s}_k > \hat{q}_{1-lpha}(\{\hat{s}_j\}_{j\in I_{\mathsf{cal}}}\cup\{\hat{s}_k\}) \iff \hat{s}_k > \hat{q}_{1-lpha}(\{\hat{s}_j\}_{j\in I_{\mathsf{cal}}}\cup\{\infty\}).$$

So: $\mathbb{P}[\hat{s}_k \leq \hat{q}_{(1+1/n_{\mathsf{cal}})(1-\alpha)}(\{\hat{s}_j\}_{j \in I_{\mathsf{cal}}})] = \mathbb{P}[\hat{s}_k \leq \hat{q}_{(1-\alpha)}(\{\hat{s}_j\}_{j \in I_{\mathsf{cal}}} \cup \{\infty\})] \geq 1-\alpha.$

Empirical coverage

Conditional coverage

Empirical coverage

If the data $\{(X_i, y_i)\}_{i=1}^n$ is iid, then for any $\varepsilon > 0$ there exists $c_{\varepsilon} > 0$ such that

$$\mathbb{P}\left[\frac{1}{n_{\text{test}}}\sum_{k\in I_{\text{test}}}\mathbb{I}_{[\nu_k\in C_{1-\alpha}(X_k)]}\geq 1-\alpha-\varepsilon\right]\geq 1-e^{-c_\varepsilon n_{\text{test}}}.$$

Conditional coverage

Empirical coverage

If the data $\{(X_i, y_i)\}_{i=1}^n$ is iid, then for any $\varepsilon > 0$ there exists $c_{\varepsilon} > 0$ such that

$$\mathbb{P}\left[\frac{1}{n_{\text{test}}}\sum_{k\in I_{\text{test}}}\mathbb{I}_{[\nu_k\in C_{1-\alpha}(X_k)]}\geq 1-\alpha-\varepsilon\right]\geq 1-e^{-c_\varepsilon n_{\text{test}}}.$$

So, empirically over the entire test set, $C_{1-\alpha}$ approximates the $1-\alpha$ quantile (with a penalty).

Conditional coverage

Empirical coverage

If the data $\{(X_i, y_i)\}_{i=1}^n$ is iid, then for any $\varepsilon > 0$ there exists $c_{\varepsilon} > 0$ such that

$$\mathbb{P}\left[\frac{1}{n_{\text{test}}}\sum_{k\in I_{\text{test}}}\mathbb{I}_{[y_k\in C_{1-\alpha}(X_k)]}\geq 1-\alpha-\varepsilon\right]\geq 1-e^{-c_\varepsilon n_{\text{test}}}.$$

So, empirically over the entire test set, $C_{1-\alpha}$ approximates the $1-\alpha$ quantile (with a penalty).

Conditional coverage

If the data $\{(X_i, y_i)\}$ is iid and $\mathcal{A} \subset \mathcal{X}$ has finite VC dimension, then for any $A \in \mathcal{A}$ where $\mathbb{P}[X_k \in A]$ is not too small,

$$\mathbb{P}[y_k \in C_{1-\alpha}(X_k; K) \mid X_k \in A] \geq 1-\alpha-\varepsilon.$$

Empirical coverage

If the data $\{(X_i, y_i)\}_{i=1}^n$ is iid, then for any $\varepsilon > 0$ there exists $c_{\varepsilon} > 0$ such that

$$\mathbb{P}\left[\frac{1}{n_{\text{test}}}\sum_{k\in I_{\text{test}}}\mathbb{I}_{[y_k\in C_{1-\alpha}(X_k)]}\geq 1-\alpha-\varepsilon\right]\geq 1-e^{-c_\varepsilon n_{\text{test}}}.$$

So, empirically over the entire test set, $C_{1-\alpha}$ approximates the $1-\alpha$ quantile (with a penalty).

Conditional coverage

If the data $\{(X_i, y_i)\}$ is iid and $\mathcal{A} \subset \mathcal{X}$ has finite VC dimension, then for any $A \in \mathcal{A}$ where $\mathbb{P}[X_k \in A]$ is not too small,

$$\mathbb{P}[y_k \in C_{1-\alpha}(X_k; K) \mid X_k \in A] \geq 1 - \alpha - \varepsilon.$$

Thus, split CP can guarantee coverage even if conditioned on some events.

Provides valid coverage and finite-sample statistical guarantees

Provides valid coverage and finite-sample statistical guarantees

• Works for any exchangeable data $\{(X_i, y_i)\}_{i=1}^n$, any model $\hat{\mu}$

Provides valid coverage and finite-sample statistical guarantees

- Works for any exchangeable data $\{(X_i, y_i)\}_{i=1}^n$, any model $\hat{\mu}$
- Simple to implement, computationally cheap

- Provides valid coverage and finite-sample statistical guarantees
- Works for any exchangeable data $\{(X_i, y_i)\}_{i=1}^n$, any model $\hat{\mu}$
- Simple to implement, computationally cheap
- Arbitrary discrepancy score $\hat{s}_{tr} : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$:
 - residuals: $\hat{s}_{tr}(x, y) = |y \hat{\mu}(x)|$
 - conditional likelihood: $\hat{s}_{tr}(x, y) = -\log \hat{p}(y|x)$
 - conformalized quantile: $\hat{s}_{tr}(x, y) = \max{\{\hat{\mu}_{\alpha/2}(x) y, y \hat{\mu}_{1-\alpha/2}(x)\}}$

Provides valid coverage and finite-sample statistical guarantees

- ▶ Works for any exchangeable data $\{(X_i, y_i)\}_{i=1}^n$, any model $\hat{\mu}$
- Simple to implement, computationally cheap
- ▶ Arbitrary discrepancy score $\hat{s}_{tr} : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$:
 - residuals: $\hat{s}_{tr}(x, y) = |y \hat{\mu}(x)|$
 - conditional likelihood: $\hat{s}_{tr}(x, y) = -\log \hat{p}(y|x)$
 - conformalized quantile: $\hat{s}_{tr}(x, y) = \max{\{\hat{\mu}_{\alpha/2}(x) y, y \hat{\mu}_{1-\alpha/2}(x)\}}$

Many more generalizations: e.g., prediction masks*

^{*}Bates, Angelopoulos, Lei, Malik, and Jordan, "Distribution-free, risk-controlling prediction sets"

Conclusion

Conclusion

But severe limitation: without exchangeability theory falls apart

But severe limitation: without exchangeability theory falls apart

(For us, some exams came from the same mother at different stages in the pregnancy.)

Recent interest in independent data with distributional drift*

*Barber, Candès, Ramdas and Tibshirani. "Conformal prediction beyond exchangeability", arXiv (2022).

Recent interest in independent data with distributional drift

Our work[†]: rebuild split conformal prediction without exchangeability

[†]Oliveira, O., Ramos, Romano, "Split Conformal Prediction for Dependent Data", arXiv (2022).

- Recent interest in independent data with distributional drift
- Our work: rebuild split conformal prediction without exchangeability
- Intuition: see how data CDF concentrates when exchangeability is replaced by looser conditions:

$$\mathbb{P}[y_k \in C_{1-lpha+\eta}(X_k)] \geq 1-lpha$$
, so $\mathbb{P}[y_k \in C_{1-lpha}(X_k)] \geq 1-lpha-\eta$,

where η is an added penalty due to non-exchangeability

- Recent interest in independent data with distributional drift
- Our work: rebuild split conformal prediction without exchangeability
- Intuition: see how data CDF concentrates when exchangeability is replaced by looser conditions:

$$\mathbb{P}[y_k \in C_{1-\alpha+\eta}(X_k)] \ge 1-\alpha$$
, so $\mathbb{P}[y_k \in C_{1-\alpha}(X_k)] \ge 1-\alpha-\eta$,

where η is an added penalty due to non-exchangeability

Tools: concentration inequalities and decoupling properties

Assumptions on data:

Assumptions on data:

- Stationarity: $(Z_t, \ldots, Z_m) \stackrel{d}{=} (Z_{t+k}, \ldots, Z_{t+m+k})$
- β -mixing: $\beta(a) = \|\mathbb{P}_{-\infty:0,a:\infty} \mathbb{P}_{-\infty:0} \otimes \mathbb{P}_{a:\infty}\|_{\mathsf{TV}} \xrightarrow{a \to \infty} 0$

Assumptions on data:

• Stationarity:
$$(Z_t, \ldots, Z_m) \stackrel{d}{=} (Z_{t+k}, \ldots, Z_{t+m+k})$$

• β -mixing: $\beta(a) = \|\mathbb{P}_{-\infty:0,a:\infty} - \mathbb{P}_{-\infty:0} \otimes \mathbb{P}_{a:\infty}\|_{\mathsf{TV}} \stackrel{a \to \infty}{\longrightarrow} 0$

Data is time-invariant and asymptotically independent

Assumptions on data:

- Stationarity: $(Z_t, \ldots, Z_m) \stackrel{d}{=} (Z_{t+k}, \ldots, Z_{t+m+k})$
- β -mixing: $\beta(a) = \|\mathbb{P}_{-\infty:0,a:\infty} \mathbb{P}_{-\infty:0} \otimes \mathbb{P}_{a:\infty}\|_{\mathsf{TV}} \stackrel{a \to \infty}{\longrightarrow} 0$
- Data is time-invariant and asymptotically independent
- Examples: Markov chains, renewal processes, AR(1)

Assumptions on data:

• Stationarity:
$$(Z_t, \ldots, Z_m) \stackrel{d}{=} (Z_{t+k}, \ldots, Z_{t+m+k})$$

•
$$\beta$$
-mixing: $\beta(a) = \|\mathbb{P}_{-\infty:0,a:\infty} - \mathbb{P}_{-\infty:0} \otimes \mathbb{P}_{a:\infty}\|_{\mathsf{TV}} \stackrel{a \to \infty}{\longrightarrow} 0$

Data is time-invariant and asymptotically independent

Examples: Markov chains, renewal processes, AR(1)

Main theoretical tool: Blocking technique*

^{*}Yu, "Rates of Convergence of Empirical Processes of Stationary Mixing Sequences", Annals of Probability (1994)

Main Theoretical Results

Marginal coverage

Empirical coverage

Main Theoretical Results

Marginal coverage

Suppose that $\{(X_i, y_i)\}_{i=1}^n$ is stationary β -mixing. Given $\alpha \in (0, 1)$ and $\delta_{cal} > 0$, for $k \in I_{test}$,

$$\mathbb{P}[y_k \in C_{1-lpha}(X_k)] \geq 1 - lpha - oldsymbol{\eta}$$
 ,

with $\eta = \varepsilon_{cal} + \varepsilon_{tr} + \delta_{cal}$, where $\varepsilon_{tr} = \beta(k - n_{tr})$.

Empirical coverage

Main Theoretical Results

Marginal coverage

Suppose that $\{(X_i, y_i)\}_{i=1}^n$ is stationary β -mixing. Given $\alpha \in (0, 1)$ and $\delta_{cal} > 0$, for $k \in I_{test}$,

 $\mathbb{P}[y_k \in C_{1-lpha}(X_k)] \geq 1 - lpha - oldsymbol{\eta}$,

with $\eta = arepsilon_{ ext{cal}} + arepsilon_{ ext{tr}} + \delta_{ ext{cal}}$, where $arepsilon_{ ext{tr}} = eta(k - n_{ ext{tr}})$.

Empirical coverage

Suppose that $\{(X_i, y_i)\}_{i=1}^n$ is stationary β -mixing. Given $\alpha \in (0, 1)$ and $\delta_{cal} > 0$, $\delta_{test} > 0$:

$$\mathbb{P}\left[\frac{1}{n_{\mathsf{test}}}\sum_{k\in h_{\mathsf{est}}}\mathbb{I}_{[y_k\in C_{1-\alpha}(X_k)]}\geq 1-\alpha-\eta\right]\geq 1-\delta_{\mathsf{cal}}-\delta_{\mathsf{test}},$$

with $\eta = \varepsilon_{cal} + \varepsilon_{test}$.

The Details

►
$$F_{cal} = \{(a, m, r) \in \mathbb{N}^3_+ : 2ma = n_{cal} - r + 1, \delta_{cal} > 4(m - 1)\beta(a) + \beta(r)\}$$

$$\blacktriangleright \ F_{\text{test}} = \left\{ (a, m, s) \in \mathbb{N}^3_+ : 2ma = n_{\text{test}} - s, \delta_{test} > 4(m-1)\beta(a) + \beta(n_{\text{cal}}) \right\}$$

•
$$\tilde{\sigma}(a) = \sqrt{1/4 + (2/a) \sum_{j=1}^{a-1} (a-j)\beta(j)}$$

$$\blacktriangleright \ \varepsilon_{cal} = \inf_{(a,m,r) \in F_{cal}} \left\{ \tilde{\sigma}(a) \sqrt{\frac{4}{n_{cal} - r + 1} \log \left(\frac{4}{\delta_{cal} - 4(m-1)\beta(a) - \beta(r)}\right)} + \frac{1}{3m} \log \left(\frac{4}{\delta_{cal} - 4(m-1)\beta(a) - \beta(r)}\right) + \frac{r - 1}{n_{cal}} \right\}$$

$$\blacktriangleright \ \varepsilon_{\text{test}} = \inf_{(a,m,s)\in F_{\text{test}}} \left\{ \tilde{\sigma}(a) \sqrt{\frac{4}{n_{\text{test}}} \log\left(\frac{4}{\delta_{\text{test}} - 4(m-1)\beta(a) - \beta(n_{\text{cal}})}\right)} + \frac{1}{3m} \log\left(\frac{4}{\delta_{\text{test}} - 4(m-1)\beta(a) - \beta(n_{\text{cal}})}\right) + \frac{s}{n_{\text{test}}} \right\}$$

Conditional Theoretical Results

Marginal coverage, conditional version

Empirical coverage, conditional version

Conditional Theoretical Results

Marginal coverage, conditional version

Suppose that $\{(X_i, y_i)\}_{i=1}^n$ is stationary β -mixing. Given $\alpha \in (0, 1)$ and $\delta_{cal} > 0$, for any $k \in I_{test}$ and $K \in \mathcal{K}$ (with $VC(\mathcal{K}) = d, \mathbb{P}[X_k \in \mathcal{K}] > \gamma$),

$$\mathbb{P}[y_k \in C_{1-\alpha}(X_k; K) \mid X_k \in K] \geq 1 - \alpha - \eta,$$

with $\eta = \varepsilon_{\text{cal}} + \varepsilon_{\text{test}}$.

Empirical coverage, conditional version

Conditional Theoretical Results

Marginal coverage, conditional version

Suppose that $\{(X_i, y_i)\}_{i=1}^n$ is stationary β -mixing. Given $\alpha \in (0, 1)$ and $\delta_{cal} > 0$, for any $k \in I_{test}$ and $K \in \mathcal{K}$ (with $VC(\mathcal{K}) = d, \mathbb{P}[X_k \in K] > \gamma$),

$$\mathbb{P}[y_k \in C_{1-lpha}(X_k; \mathcal{K}) \mid X_k \in \mathcal{K}] \geq 1 - lpha - oldsymbol{\eta},$$

with $\eta = arepsilon_{ ext{cal}} + arepsilon_{ ext{test}}$.

Empirical coverage, conditional version

Suppose that $\{(X_i, y_i)\}_{i=1}^n$ is stationary β -mixing. Given $\alpha \in (0, 1)$ and $\delta_{cal} > 0$, $\delta_{test} > 0$ and $K \in \mathcal{K}$:

$$\mathbb{P}\left[\inf_{\mathcal{K}\in\mathcal{K}}\frac{1}{n_{\mathsf{test}}(\mathcal{K})}\sum_{k\in I_{\mathsf{test}}(\mathcal{K})}\mathbb{I}_{[y_k\in C_{1-\alpha}(X_k;\mathcal{K})]}\geq 1-\alpha-\eta\right]\geq 1-\delta_{\mathsf{cal}}-\delta_{\mathsf{test}},$$

with $\eta = \varepsilon_{cal} + \varepsilon_{test}$.

Introduction	Split Conformal Prediction	Dependent data	Applications	Conclusion
The Details				

•
$$G_{cal} = \{(a, m, r) \in \mathbb{N}^3_+ : 2ma = n_{cal} - r + 1, \delta_{cal} > 16(m - 1)\beta(a) + \beta(r)\}$$

$$\blacktriangleright \quad G_{\text{test}} = \left\{ (a, m, s) \in \mathbb{N}^3_+ : 2ma = n_{\text{test}} - s, \delta_{test} > 8(m-1)\beta(a) + \beta(n_{\text{cal}}) \right\}$$

$$\blacktriangleright \ \varepsilon_{cal} = \inf_{(a,m,r)\in G_{cal}} \left\{ \frac{1}{\gamma} \left(4\sqrt{\frac{\log(2(m+1)^d)}{m}} + \frac{2(r-1)}{n_{cal}} + 2\sqrt{\frac{1}{2m}\log\left(\frac{16}{\delta_{cal}-16(m-1)\beta(a)-\beta(r)}\right)} \right) \right\}$$

$$\blacktriangleright \ \varepsilon_{\text{test}} = \inf_{(a,m,s)\in G_{\text{test}}} \left\{ \frac{1}{\gamma} \left(4\sqrt{\frac{\log(2(m+1)^d)}{m}} + \frac{2s}{n_{\text{test}}} + 2\sqrt{\frac{1}{2m}\log\left(\frac{8}{\delta_{\text{test}} - 8(m-1)\beta(a) - \beta(n_{\text{cal}})}\right)} \right) \right\}$$
Application: Autoregressive Process

▶ For every 11 points in AR(1) time series, predict the following point

Application: Autoregressive Process

▶ For every 11 points in AR(1) time series, predict the following point

Get predictive set via split conformal quantile regression

Application: Autoregressive Process

- ▶ For every 11 points in AR(1) time series, predict the following point
- Get predictive set via split conformal quantile regression

▶ Time series with EUR/USD spot exchange rate; predictions with boosting

Time series with EUR/USD spot exchange rate; predictions with boosting

Sliding window of 1000 training points, 500 calibration points and 1 test point

- ▶ Time series with EUR/USD spot exchange rate; predictions with boosting
- Sliding window of 1000 training points, 500 calibration points and 1 test point
- Get predicitive set via split conformal quantile regression

- ▶ Time series with EUR/USD spot exchange rate; predictions with boosting
- Sliding window of 1000 training points, 500 calibration points and 1 test point
- Get predicitive set via split conformal quantile regression

Two-state hidden Markov model

Two-state hidden Markov model

Gradient boosting model with 1000 training points, 15000 calibration points and 15000 test points

- Two-state hidden Markov model
- Gradient boosting model with 1000 training points, 15000 calibration points and 15000 test points
- Average over 1000 simulations to ascertain empirical coverage: $\frac{1}{n_{\text{test}}} \sum_{k \in I_{\text{test}}} \mathbb{I}_{[y_k \in C_{1-\alpha}(X_k)]}$

- Two-state hidden Markov model
- ▶ Gradient boosting model with 1000 training points, 15000 calibration points and 15000 test points
- Average over 1000 simulations to ascertain empirical coverage: $\frac{1}{n_{\text{test}}} \sum_{k \in I_{\text{test}}} \mathbb{I}_{[y_k \in C_{1-\alpha}(X_k)]}$

Uncertainty quantification is crucial for the deployment of ML systems.

Uncertainty quantification is crucial for the deployment of ML systems.

Conformal prediction is a set of tools that yield marginal, empirical and conditional coverage.

- Uncertainty quantification is crucial for the deployment of ML systems.
- Conformal prediction is a set of tools that yield marginal, empirical and conditional coverage.
- It traditionally requires little beyond exchangeability; we show it works even for dependent data.

- Uncertainty quantification is crucial for the deployment of ML systems.
- > Conformal prediction is a set of tools that yield marginal, empirical and conditional coverage.
- ▶ It traditionally requires little beyond exchangeability; we show it works even for dependent data.
- Our results can be extended beyond stationarity and to non-split CP (e.g., rank-one-out, riskcontrolling prediction sets).

- Uncertainty quantification is crucial for the deployment of ML systems.
- Conformal prediction is a set of tools that yield marginal, empirical and conditional coverage.
- ▶ It traditionally requires little beyond exchangeability; we show it works even for dependent data.
- Our results can be extended beyond stationarity and to non-split CP (e.g., rank-one-out, risk-controlling prediction sets).
- ► There is much more theory and algorithms to be developed on top of it.

References

- Vovk, Gammerman, Shafer, Algorithmic Learning in a Random World. Springer, 2005
- Lei, G'Sell, Rinaldo, Tibshirani, Wasserman, "Distribution-free predictive inference for regression," Journal of the American Statistical Association, vol. 113, no. 523, pp. 1094–1111, 2018
- Angelopoulos, Bates, "A Gentle Introduction to Conformal Prediction and Distribution-free Uncertainty Quantification," arXiv, 2021
- Csillag, Monteiro, Ramos, Romano, Schuller, Seixas, Oliveira, O., "AmnioML: Amniotic Fluid Segmentation and Volume Prediction with Uncertainty Quantification," in submission, 2022
- Barber, Candès, Ramdas, Tibshirani. "Conformal Prediction Beyond Exchangeability," *arXiv*, 2022
- Oliveira, O., Ramos, Romano, "Split Conformal Prediction for Dependent Data", arXiv, 2022