STATE ESTIMATION AND PREDICTIVE CONTROL APPLIED TO THE TREATEMENT OF THE HYPOXIC-ISCHEMIC ENCEPHALOPATHY IN NEONATES

Felipe S. Nunes¹, Helcio R. B. Orlande¹, Andrzej J. Nowak² ¹Department of Mechanical Engineering, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil ²Institute of Thermal Technology, Silesian University of Technology, Gliwice, Poland

Summary

Introduction

- Neonate's Bioheat Transfer Model
- > Actual Temperature Measurements
- State Estimation and Predictive Control
- Results: Verification and Validation
- > Conclusions

Introduction

This work deals with numerical simulations, prediction and stochastic control of state variables. The application of interest is in the treatment of the neonatal hypoxic-ischemic encephalopathy

Causes

- Lack of oxygen | Low blood flow

Treatment

- Cooling of the affected region (temperature reduction ~3°C)

Cooling Techniques

- Local | Systemic

Phases of the Cooling Treatment

- Fast cooling | Constant cooling | Rewarming

Temperature Measurements

- Forehead | Skin over abdomen | Rectum

Olympic Cool-Cap System(https://natus.com)

Kool-Kit Neonate (https://www.gentherm.com)

Introduction

Motivation:

- > Non-intrusive temperature measurements of internal tissues are still not feasible.
- Computational simulations under different types of uncertainties and nonintrusive measurements that intrinsically contain errors can be used together in order to estimate and control state variables of the system under analysis.

Objectives:

- Development of an optimization procedure to build the geometric model by using the actual mass, length and perimeter of the head.
- Application of the SIR to sequentially estimate the internal body temperatures of a newborn and external heat fluxes, by using both simulated and actual temperature measurements.
- Application of the PF-MPC for stochastic control of the internal body temperature by manipulating external heat fluxes imposed as boundary conditions.

Neonate's Bioheat Transfer Model

Heat transfer to the external medium

Neonate's Bioheat Transfer Model

Mathematical Formulation

Blood pool concept

Blood Temperatures

$$T_{v,l} = \frac{\rho_b \sum_{s=1}^{2} \int_{V_{t,s,l}} \omega_{t,s,l} T_{t,s,l} dV_{t,s,l}}{\dot{m}_{b,l}} T_{a,l}$$

$$T_{a,l} = \frac{\dot{m}_{b,l} c_b T_p + U_{xc,l} T_{v,l}}{\dot{m}_{b,l} c_b + U_{xc,l}}$$

$$T_{p} = \frac{\sum_{l=1}^{8} \frac{\left(\dot{m}_{b,l}\right)^{2} c_{b}}{\dot{m}_{b,l} c_{b} + U_{l}} T_{v,l}}{\sum_{l=1}^{8} \frac{\left(\dot{m}_{b,l}\right)^{2} c_{b}}{\dot{m}_{b,l} c_{b} + U_{xc,l}}}$$

Fiala, D., Lomas, K.J. and Sthorer, M. (1999), "A computer model of human thermoregulation for a wide range of environmental conditions: the passive system", Journal of Applied Physiology, Vol. 87 No. 5, pp. 1957-1972

Neonate's Bioheat Transfer Model <u>Mathematical Formulation</u>

Body element	D	L	Tissue	r	k	ρ	С	g^{bas}	ω^{bas}	U
	ſm	m]		[mm]	[W/mK]	[kg/m ³]	[]/kgK]	[W/m ³]	[s ⁻¹]	[W/K]
head	102	· .	brain	47	0.5	1000	3805	6454.4	0.017	0
			bone	49	0.8	1030	1796	0	0	
			skin	51	0.3	1000	3631	445.5	0.008	
thorax	92	90	lung	27	0.4	700	3719	858.5	0.39	0
			bone	32	0.8	1030	1796	0	0	
			muscle	44	0.5	1000	3645	363.6	0.001	
			skin	46	0.3	1000	3631	445.5	0.008	
abdomen	92	90	viscera	27	0.5	1005	3697	4038.5	0.004	0
			bone	32	0.8	1030	1796	0	0	
			muscle	44	0.5	1000	3645	363.6	0.001	
			skin	46	0.3	1000	3631	445.5	0.008	
arm	38	160	bone	4	0.8	1030	1796	0	0	1.652
			muscle	17	0.5	1000	3645	363.6	0.001	
			skin	19	0.3	1000	3631	445.5	0.008	
leg	48	180	bone	5	0.8	1030	1796	0	0	2.76
			muscle	22	0.5	1000	3645	363.6	0.001	
			skin	24	0.3	1000	3631	445.5	0.008	

Łaszczyk, J. E., Nowak, A. J. "Computational Modeling of Neonate's Brain Cooling", *International Journal of Numerical Methods for Heat and Fluid Flow*, v. 26, n. 2, pp. 1-23, 2016.

Neonate's Bioheat Transfer Model

Code Verification

Metabolic heat generation

$$g_{t,s,l} = g_{t,s,l}^{bas} Q_{10}^{\frac{T_{t,s,l} - T_0}{10}}$$

Blood perfusion

 $\omega_{t,s,l} = \omega_{t,s,l}^{bas} Q_{10}^{\frac{T_{t,s,l}-T_0}{10}}$

Silva, A.B.C.G., Wrobel, L.C. and Ribeiro, F.L.B. (2018), "A thermoregulation model for whole body cooling hypothermia", Journal of Thermal Biology, Vol. 78, pp. 122-130.

Actual Measurements During the Local Treatment

University Clinical Hospital of Opole, Poland

Tumidajski, J., Wagstyl, D., Bandola, M. Bojdol, M., Ostrowski, Z., Rojczyk, M., Walas, W. "Non-Invasive Thermal Measurements During Newborn's Therapeutic Hypothermia and Processing of Their Results", In: 9th European Thermal Sciences Conference, Jun 10 - 13, Bled, Slovenia, 2024

State Estimation Problem

Evolution model:
$$\mathbf{x}_k = \mathbf{f}_k \left(\mathbf{x}_{k-1}, \mathbf{u}_{k-1}, \mathbf{v}_{k-1} \right)$$
Observation model: $\mathbf{z}_k = \mathbf{h}_k \left(\mathbf{x}_k, \mathbf{n}_k \right)$

 $\mathbf{x}_k = \text{state vector}$

- $\mathbf{u}_k = \text{control input vector}$
- \mathbf{z}_k = prediction of the measurements
- \mathbf{v}_k = noises of the evolution model
- \mathbf{n}_k = noises of the observation model
- \mathbf{f}_k = nonlinear function
- \mathbf{h}_k = nonlinear function

Prediction and Update Steps:

State Estimation Problem

Particle Filter - SIR

Represent the posterior probability density function by a set of random samples with associated weights and obtain the estimates based on these samples and weights.

- (1) Particles have uniform weights;
- (2) Particles have updated weights after observations by using the likelihood function;
- (3) Particles with smaller weights are discarded and new particles are generated from the particles closer to regions of large probability.

State Estimation Step 1 - Generate new particles and compute weights for $i = 1, ..., N_i$ Sample $\mathbf{x}_{k}^{i} \sim p(\mathbf{x}_{k} | \mathbf{x}_{k-1}^{i}, \mathbf{u}_{k-1})$ Compute weights as $w_{k}^{i} = p(\mathbf{z}_{k} | \mathbf{x}_{k}^{i})$ Normalize the weights as $w_k^i = w_k^i (w_{tot})^{-1}$ Step 2 - Resample for $i = 1, ..., N_i$ Construct the cumulative sum of weights Let i = 1 and draw u_1 from the uniform distribution $U(0, N^{-1})$ for $i = 1, ..., N_i$ Compute $u_{j} = u_{1} + N_{i}^{-1} [j-1]$ while $u_j > c_i$ i = i + 1Assign sample $\mathbf{x}_k^j = \mathbf{x}_k^i$ Assign sample weight $w_k^j = N_i^{-1}$

Ristic, B., Arulampalam, S., Gordon, N., *Beyond the Kalman Filter*, Boston: Artech House, (2004).

State Estimation Problem and Model Predictive Control

Stahl, D., Hauth, J., "PF-MPC: Particle filtermodel predictive control", *Systems & Control Letters*, 60, pp. 632-643, (2011). Stochastic Control Step 3 - Initialize states and control inputs for $i = 1, ..., N_i$ Set $\overline{\mathbf{x}}_k^i = \mathbf{x}_k^i$ Sample $\overline{\mathbf{u}}_{k}^{i} \sim p\left(\overline{\mathbf{u}}_{k} \mid \mathbf{u}_{k-1}\right)$ Step 4 - Prediction horizon loop for h = k + 1, ..., k + HStep 5 - Generate new particles and compute weights for $i = 1, ..., N_i$ Sample $\overline{\mathbf{x}}_{h}^{i} \sim p\left(\overline{\mathbf{x}}_{h} \mid \overline{\mathbf{x}}_{h-1}^{i}, \overline{\mathbf{u}}_{h-1}^{i}\right)$ Sample $\overline{\mathbf{u}}_{h}^{i} \sim p(\overline{\mathbf{u}}_{h} | \overline{\mathbf{u}}_{h-1})$ Compute weights $w_h^i = p(\mathbf{s}_k | \overline{\mathbf{x}}_h^i)$ Normalize the particle weights Step 6 - Resample Resample as Step 2 for the respective state variables Assign sample $\overline{\mathbf{x}}_{h}^{j} = \overline{\mathbf{x}}_{h}^{i}$ and $\overline{\mathbf{u}}_{h}^{j} = \overline{\mathbf{u}}_{h}^{i}$ Step 7 - Compute statistical point estimates Mean states Standard deviation Mean control inputs $\boldsymbol{\sigma}_{k} = \sqrt{\frac{1}{N} \sum_{i=1}^{N_{i}} \left(\mathbf{x}_{k}^{i} - \mathbf{x}_{k}\right)^{2}} \qquad \boldsymbol{u}_{k} = \sum_{i=1}^{N_{i}} \overline{\boldsymbol{u}}_{k+H} \overline{W}_{k+H}$ $\mathbf{x}_{k} = \sum_{i=1}^{N_{i}} \mathbf{x}_{k}^{i} \mathbf{w}_{k}^{i}$

State Estimation Using Simulated Temperature Measurements

Evolution model:
$$\mathbf{x}_{k} = [\mathbf{T}_{k}] = \mathbf{f}_{k} (\mathbf{x}_{k-1}, \mathbf{u}_{k-1}) + \mathbf{v}_{k}$$

Observation model: $\mathbf{z}_{k} = \mathbf{h}_{k} (\mathbf{x}_{k}) + \mathbf{n}_{k}$
Likelihood: $w_{k} \propto p(\mathbf{z}_{k} | \mathbf{x}_{k}) = \exp \left\{ -\frac{1}{2} \frac{[\mathbf{z}_{k}^{meas} - \mathbf{h}(\mathbf{x}_{k})]^{T}[\mathbf{z}_{k}^{meas} - \mathbf{h}(\mathbf{x}_{k})]}{\sigma_{meas}^{2}} \right\}$
Noise: $\mathbf{n}_{k} = N(0, \sigma_{meas}), \ \mathbf{v}_{k} = N(0, \sigma_{mod})$

State Estimation Using Simulated Temperature Measurements

Systemic Cooling: Heat transfer processes

State Estimation Using Simulated Temperature Measurements

Results and Discussions: VERIFICATION State Estimation Using Simulated Temperature Measurements

Systemic Cooling: The influence of the uncertainties of the evolution model for the temperatures

State Estimation Using Simulated Temperature Measurements

Systemic Cooling: The influence of the solution of the estimation problem on the uncertainties

State Estimation Using Simulated Temperature Measurements

Systemic Cooling: Estimated Temperature Distribution

<u>Results and Discussions: VERIFICATION</u> <u>State Estimation Using Simulated Temperature Measurements</u>

Local Cooling: Heat transfer processes

State Estimation Using Simulated Temperature Measurements

Local Cooling: Estimated Temperature Distribution

12 hours of cooling

Evolution model: $\mathbf{x}_{k} = [\mathbf{T}_{k}] = \mathbf{f}_{k} (\mathbf{x}_{k-1}, \mathbf{u}_{k-1}) + \mathbf{v}_{k}$ **Observation model:** $\mathbf{z}_{k} = \mathbf{h}_{k} (\mathbf{x}_{k}) + \mathbf{n}_{k}$ **Likelihood:** $w_{k} \propto p(\mathbf{z}_{k} | \mathbf{x}_{k}) = \exp\left\{-\frac{1}{2} \frac{\left[\mathbf{z}_{k}^{meas} - \mathbf{h}(\mathbf{x}_{k})\right]^{T} \left[\mathbf{z}_{k}^{meas} - \mathbf{h}(\mathbf{x}_{k})\right]}{\sigma_{meas}^{2}}\right\}$

Random walk for the control inputs: $\overline{\mathbf{u}}_h = \overline{\mathbf{u}}_{h-1} + \mathbf{c}_h$ **Likelihood:** $p(\mathbf{s}_h | \overline{\mathbf{x}}_h) = \exp\left\{-\frac{1}{2} \frac{\left[\mathbf{s}_h - \mathbf{g}(\overline{\mathbf{x}}_h)\right]^{\mathrm{T}} \left[\mathbf{s}_h - \mathbf{g}(\overline{\mathbf{x}}_h)\right]}{\sigma_{set}^2}\right\}$

<u>Noise:</u> $\mathbf{n}_k = N(0, \sigma_{meas}), \mathbf{v}_k = N(0, \sigma_{mod}), \mathbf{c}_h = N(0, \sigma_{rw})$

Local Treatment: Heat transfer processes for the cooling phase

Local Treatment: Undesired metabolic changes

Local Treatment: Heat transfer processes for the rewarming phase

Systemic Treatment: Heat transfer processes for the cooling and rewarming phases

Back Front

1

4.5

4

Construction of the Geometric Model

Input Measurements: Mass, Length, Perimeter of the Head

Parameters:Diameter of the Trunk, Leg and ArmPercentage of surface area of the Head, Trunk, Leg and Arm

Objective Function:

$$S_{OLS} = \left(BSA_{Model} - BSA_{Meban}\right)^2$$

where:
$$BSA_{Meban} = \left[6.4954 \left(10^3 m \right)^{0.562} \left(10^2 L \right)^{0.320} \right] 10^{-4}$$

BSA = Body surface area *fBSA* = *Fraction* of the body surface area

Construction of the Geometric Model

 m_{model}

L_{model}

Restrictions (Medical Data):

noworodek

Length of body elements (CLEGG and MACKEAN, 1994)

$$= m_{meas} \qquad 2 d_{leg} \leq d_{trunk}$$

$$= L_{meas} \qquad d_{arm} \leq d_{leg}$$

$$(P_{head} - 0.02) \leq P_{trunk}$$

$$0.33 \leq fBSA_{trunk}$$

$$0.13 \leq fBSA_{leg}$$

Rule of Nines (WALLACE, 1951)

Construction of the Geometric Model

	Model									
Dationt Mass	Maga		Diame	ter [m]		Length [m]			RS1	BSA
N°	N° [kg]	Head	Trunk	Leg	Arm	Trunk	Leg	Arm	$[m^2]$	Discrepancy [%]
1	2.80	0.106	0.098	0.038	0.026	0.202	0.212	0.212	0.183	8.02
2	3.36	0.106	0.098	0.046	0.034	0.230	0.206	0.260	0.210	4.97
3	2.92	0.106	0.098	0.040	0.028	0.208	0.207	0.207	0.188	7.52
4	2.17	0.102	0.096	0.036	0.026	0.188	0.200	0.194	0.166	3.62
5	3.72	0.112	0.106	0.044	0.032	0.228	0.222	0.222	0.221	5.72
6	3.25	0.106	0.098	0.044	0.032	0.226	0.210	0.210	0.205	5.54
7	3.17	0.106	0.098	0.042	0.032	0.222	0.213	0.213	0.203	5.52

Comparison With Data From Literature

		Surface	area (%)		Length (%)				
	Head	Trunk	Leg	Arm	Head	Trunk	Leg	Arm	
Literature	18.00	35.00	15.00	9.00	25.00	37.50	37.50	37.50	
Patient 1	19.31	34.03	13.85	9.48	20.38	38.85	40.77	40.77	
Patient 2	16.84	33.77	14.20	10.50	19.55	42.44	38.00	38.00	
Patient 3	18.80	34.10	13.85	9.70	20.34	39.92	39.73	39.73	
Patient 4	19.65	34.09	13.60	9.53	20.82	38.37	40.82	37.59	
Patient 5	17.80	34.30	13.86	10.08	19.93	40.57	39.50	39.50	
Patient 6	17.21	33.91	14.15	10.30	19.55	41.70	38.75	38.75	
Patient 7	17.42	33.72	13.87	10.56	19.6	41.03	39.37	39.37	

State Estimation Using Actual Temperature Measurements

Evolution model: $\mathbf{x}_{k} = \begin{bmatrix} \mathbf{T}_{k} \\ \dot{Q}_{war,k} \end{bmatrix} = \begin{bmatrix} \mathbf{f}_{k} (\mathbf{x}_{k-1}, \mathbf{u}_{k-1}) + \mathbf{v}_{k} \\ -\dot{Q}_{gen,k-1} + \dot{Q}_{conv,k} + \dot{Q}_{rad,k} + \mathbf{v}_{war,k} \end{bmatrix}$

Observation model: $\mathbf{z}_k = \mathbf{h}_k(\mathbf{x}_k) + \mathbf{n}_k$

Noise:

$$\mathbf{v}_{k} = N(0, \sigma_{mod})$$

 $\mathbf{v}_{war,k} = \dot{Q}_{cap,k} \sim \mathcal{U}(\dot{Q}_{cv2,k}, \dot{Q}_{cv1,k})$
 $\mathbf{n}_{k} = N(0, \sigma_{meas})$

State Estimation Using Actual Temperature Measurements

State Estimation Using Actual Temperature Measurements

Noise of the random walk function:

$$\mathbf{v}_{war,k} = \dot{Q}_{cap,k} \sim \mathcal{U}\left(\dot{Q}_{cv2,k}, \dot{Q}_{cv1,k}\right)$$

<u>Heat transfer rate:</u>

$$\dot{Q}_{cv1,k} = \dot{m}c_p \left(T_{m,out} - T_{m,in}\right) = UA_{ext} \left(\Delta T_{\ln 1} + \Delta T_{\ln 2}\right) + \dot{Q}_{cv2,k}$$
$$\dot{Q}_{cv2,k} = \dot{m}c_p \left(T_{cap,out} - T_{cap,in}\right)$$

State Estimation Using Actual Temperature Measurements

Noise of the random walk function:

Heat transfer rates:

$$\mathbf{v}_{war,k} = \dot{Q}_{cap,k} \sim \mathcal{U}\left(\dot{Q}_{cv2,k}, \dot{Q}_{cv1,k}\right)$$
$$\dot{Q}_{cv1,k} = \dot{m}c_p \left(T_{m,out} - T_{m,in}\right) = UA_{ext} \left(\Delta T_{\ln 1} + \Delta T_{\ln 2}\right) + \dot{Q}_{cv2,k}$$
$$\dot{Q}_{cv2,k} = \dot{m}c_p \left(T_{cap,out} - T_{cap,in}\right)$$

<u>Expressions to calculate</u> <u>the temperatures of the cooling cap:</u>

$$\begin{pmatrix} T_{ext} - T_{cap,in} \end{pmatrix} = \begin{pmatrix} T_{ext} - T_{m,in} \end{pmatrix} \exp\left(\frac{-U\pi d_{ext}L}{\dot{m}c_p}\right)$$
$$\begin{pmatrix} T_{ext} - T_{m,out} \end{pmatrix} = \begin{pmatrix} T_{ext} - T_{cap,out} \end{pmatrix} \exp\left(\frac{-U\pi d_{ext}L}{\dot{m}c_p}\right)$$

Global heat transfer coefficient:

$$U = \frac{1}{(R_{conv,int} + R_{cond} + R_{conv,ext})A_{ext}}$$

State Estimation Using Actual Temperature Measurements

Monte Carlo Simulation for the Uncertainties of the Evolution Model for the Temperatures

- 10000 solutions of the direct problem
- Standard deviation of 1% of the values of the diameters and lengths of each body element

$$T_0 = 37^{\circ}\text{C} \mid T_{amb} = 23.5^{\circ}\text{C} \mid h_{amb} = 8 \text{ W/m}^2\text{K}$$

State Estimation Using Actual Temperature Measurements

Initial Temperature Distribution: Hypoxic-ischemic condition

State Estimation Using Actual Temperature Measurements

Local Cooling: Estimated heat rates

State Estimation Using Actual Temperature Measurements

Local Cooling: Estimated heat rates

Measured temperatures: Blood pool, skins of the head and abdomen.

State Estimation Using Actual Temperature Measurements

Local Cooling: Estimated temperatures

Measured temperatures: Blood pool, skins of the head and abdomen.

Skin over the head (Front)

Skin over the abdomen (Front)

State Estimation Using Actual Temperature Measurements

Local Cooling: Estimated temperatures

Measured temperatures: Blood pool, skins of the head and abdomen.

State Estimation Using Actual Temperature Measurements

Local Cooling: Estimated heat rates

Measured temperatures: Blood pool and skin of the head-and abdomen.

State Estimation Using Actual Temperature Measurements

Local Cooling: Estimated temperatures

Measured temperatures: Blood pool and skin of the head-and abdomen.

State Estimation Using Actual Temperature Measurements

Local Cooling: Estimated temperatures

Measured temperatures: Blood pool and skin of the head-and abdomen.

State Estimation Using Actual Temperature Measurements

Measured temperatures: Blood pool, skins of the head and abdomen.

Measured temperatures: Blood pool and skin of the head-and-abdomen.

Conclusions

1. Geometrical Model

- ➤The optimization procedure to build the geometric model was able to produce realistic dimensions for the body elements.
- ≻The mean error between the total surface area calculated with the model and with Meban's equation was 5.8%.

2. State Estimation Problem Using Simulated Measurements

- ➤The SIR algorithm produced accurate and stable estimated temperatures not only in regions where measurements were available but in the whole body.
- Estimated uncertainties were larger where measurements were not available, since the likelihood function did not contribute significantly.
- \succ The solution was not influenced by the cooling technique.
- ➤Uncertainties from direct Monte Carlo simulations were much larger than those obtained with the particle filter.

Conclusions

3. State Estimation and Model Predictive Control

- The application of two nested particle filters for stochastic control of the body temperatures was able to drive the temperatures of body to the desired setpoints at all phases of the treatment and to avoid undesired temperature variations.
- ➤ The combined application of particle filters and stochastic model predictive control, using the SIR algorithm, has great potential to act as an observer and controller of the body temperatures.

4. State Estimation Problem Using Actual Measurements

- Estimated temperatures in excellent agreement with the actual measurements, even during large temperature variations.
- ➢For important internal regions of the body, such as in the brain and in the blood pool, estimated mean temperatures and associated uncertainties were stable (and within the measurement uncertainties, wherever available).
- ➤The application of the SIR algorithm was successfully validated by using temperature measurements of the skin over the abdomen.

11th INTERNATIONAL CONFERENCE ON INVERSE PROBLEMS IN ENGINEERING https://icipe2024.org/

June 23-28, 2024 Atlântico Búzios Convention & Resort, Búzios, Rio de Janeiro, Brazil, icipe2024.org

18th INTERNATIONAL HEAT TRANSFER CONFERENCE - IHTC-2026

RIO DE JANEIRO – BRAZIL August 02 – 07, 2026

Consider publishing your work in:

<section-header><section-header><section-header><text><text><text>

Computational Thermal Sciences: An International Journal

Editor-in-Chief: <u>Wilson K. S. Chiu, Helcio R. B. Orlande</u> Associate Editor: <u>David Carrington</u>, <u>Pedro Jorge Martins Coelho, George S. Dulikravich,</u> <u>Ankur Jain, Oronzio Manca, Arun Kumar Nayak,</u> <u>Akshai K. Runchal, Bengt Sunden</u> Founding Editor: <u>Graham de Vahl Davis,</u> <u>Darrell W. Pepper</u>

Published 6 issues per year ISSN Print: 1940-2503 ISSN Online: 1940-2554

Clarivate IF: 1.5								
Clarivate 5-Year IF: 1								
Clarivate Analytics Index: 0.3								
Clarivate Eigenfactor: 0.00017								
Clarivate JCI: 0.28								
SJR: 0.279								
SNIP: 0.544								
CiteScore™:: 2.5								
H-Index: 22								

Indexed in Clarivate Clarivate Clarivate SCIE Clarivate ESCI Engineering Village -11 Scopus Preview Scopus (Preview) Engineering Village 1-🔣 Google INSPEC Google Scholars (USA) Inspec ()nci z# Ulrichsweb™ CNKI (China) Ulrich's Copyright Clearance Copyright Clearance Center (USA) Portico (Digital Preservation Agency) (USA) Scilit Sci (Thenticate) iThenticate (USA) Scilit (Switzerland)

ACKNOWLEDGEMENTS

- Organizers of COLMEA:
 - > Leandro P. R. Pimentel (UFRJ)
 - Maria Eulalia Vares (UFRJ)
- Support provided by CNPq, CAPES and FAPERJ.

