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Thermodynamic Limit
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We can get rid of the average notation in formulae and simply 
use quantitative relations between observables tout court.

Examples:

The first of thermodynamics,

Work done during an irreversible process (proxy for the second 
law),
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However, if the system is rather small, although,

there will be a number  of times that in performing a change 
alike one will measure,

Thence: for small systems we need a probabilistic approach.

but what if the system does not hold the thermodynamic limit?

For a mammoth system undergoing an irreversible transformation

from state A to B one will get, without a shadow of a doubt,
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For the present case solved by the Jarzynski equality,          previous
approaches by
Bochkov and
Kuzovlev
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The model
Following C. Jarzynski when we study the thermostatistical behaviour of a small system there is a need to detail 
the equations governing its evolution.

Classical 1-D massive particle the dynamics of which is ruled by,

(Pseudo) Force representing
the interaction of the system
with a reservoir

Confining potential
(permits stationary solutions)

Dissipation



A statistical mechanics problem aims at making predictions by computing 
probabilities and cumulants, often in the steady state.

How can we do it?

I – Hammering away at the “Kramers equation” and get the PDFs (which can be a 

pain in the bottom of the back).

II – Considering a time averaging approach (which easily turns into a pain in the neck)

Redundant with the Kramers equation approach for Brownian reservoirs  

BUT

Outperforms the “Kramers equation” for non-Brownian reservoirs as 
Fokker-Planck methods are generally poor approximations to the actual solution.

Other ‘pain prone’ methods might be chosen as well, e.g., Cáceres & Budini (1997) and 
Kanazawa, Sagawa & Hayakawa (2012).



Average steady state

Or



Business as usual: Gaussian reservoirs

In this case the thermostatistical approach must be consistent with 
equilibrium at temperature T,

average

 
2 2 4

1 3

1
, exp

2 2 4
ss

v v v
p x v m k k

T

  
     

  



In the time averaging approach we use a Laplace transforming of the
dynamical equations

Diagrammatically,



For the kinetic energy we read,

The calculations show 
that the terms arising 
from the non-linear 
contribution vanish. 
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Making use of further statistical moments one can obtain the steady 
(equilibrium state) distribution,



Importing the greeks to a physical problem…



And what about the power?

Because the system attains an equilibrium steady state we must verify,

Analysis of the average injected power

The non-linearity does 
not influence the long 
term behaviour of the 
injected power!



Analysis of the avegare dissipated power,

first order,



W.A.M. Morgado and SMDQ (2013)



Long-term average values concur, but are the distributions equal?

For the third-order moment,



Computing further moments (and with the help of the on-line 
encyclopaedia of integers and series) we are able to find the 
moment generating function,

Heeding that the injected energy corresponds to the integral of the 
injected power with respect to time, we can use large deviation theory 
and obtain the distribution of the total injected energy imposing the 
Gartner-Ellis theorem which yields,

matching Farago’s solution who does the computation for a harmonic system.



Moreover, the computation of higher moments of the dissipated power shows 
that both distributions actually have the same distribution.

W.A.M. Morgado and SMDQ (2013)



The concentration of the measure is the same, the injected and 
dissipated power are likely to have different distributions,

The dissipated power PDF is easily computed using the conservation of 
the probability,

Injected power is more complex because the velocity and the “noise”
are correlated,



Thus we define the velocity as the sum of to variables,

Under this assumptions the injected power PDF reads,



Beware that  v is a pulse which is not 
numerically reproducible. To obtain 
minimally reliable  results we had to use 
Savitzky-Golay filter.

The PDF allows making explicit the fluctuation relation of the injected 
power,

W.A.M. Morgado and SMDQ (2013)



A non-equilibrium Gaussian model

Classical 1-D massive particles the dynamics of which is ruled by,

(Pseudo) Force representing
the interaction of the system
with a reservoir

Confining potential
(permits stationary solutions)

Dissipation

Coupling between particles



After a transient this 2-particle system with T1 different to T2 yields a 
steady state. 
A relevant thermal quantity is the heat flux between particles,

that written in Laplace space reads,

where rS refers to the CoM position and rD the relative position.



Here we highlight its average value,

which gives in the linear case,

Heat conductance

The moment generating function of the heat flux is,



Applying the Edgeworth expansion using the equilibrium case PDF as the 
reference distribution, we obtain another  fluctuation relation, namely,

In equilibrium we have,

W.A.M. Morgado and SMDQ (2013)



A rush of fresh air: Poissonian reservoirs

Why is this relevant?

I – Theoretical relevance
Poisson noise is the quintessential stochastic process with 
singular measure. 
The Lévy-Itô theorem states that every white noise is represented by a 
superposition of Brownian and Poisson noises.

II – Factual relevance
Physical-Chemical problems using Anderson thermostats;

Landsberg engine systems

RLC circuits    



Nano-technological and nano-bio-technological problems



J Christof et al, PNAS 103, 8680 (2006)

Molecular motors (Kinesin and Myosin-V) We utterly depend on these mechanisms!



1-Particle steady state probabilistcs (linear potentials)
[Morgado, DQ, Soares-Pinto, JSTAT P06010 (2011)]

After a raft of humdrum calculations,

a little more understandable for the marginal steady state distributions …

and thus,



Morgado,DQ, Soares-Pinto (2011)



For the velocity,

and thus,

with,



Neither pss(x) nor pss(v) are Gaussians.

Morgado,DQ, Soares-Pinto (2011)



Using the average trick of Laplace transforming, the calculations boil down to evaluating, 

Assuming the temperature of a Poissonian particle as,

the integration renders up,

The exact same result of coupled Brownian particles!

2-Particle steady state heat transport (linear potentials)
[Morgado, DQ, PRE 86, 041108 (2012)]



Both asymptotic linear parts equal to             .

The non-oscillating part of the total energy flux JE = JIT + JDT equals to EM
c,

In fact, for Poissonian particles, one gets the same thermal properties as 
those featured by if Brownian particles.



Morgado,DQ, Soares-Pinto (2011)



W.A.M. Morgado and SMDQ (2012)



CONCLUSION:

THE SINGULAR NATURE OF THE MEASURE OF A POISSONIAN PARTICLE  

IS IRRELEVANT FOR THERMAL PURPOSES.

THENCE

IN ANALYTICALLY TREATING THE THERMOSTATISTICS OF 
SUCH PARTICLES ONE CAN HEDGE ALL THOSE NASTY 

CALCULATIONS BY USING BROWNIAN PROXIES!



A brand new day: non-linear systems  [Morgado, DQ, PRE 86, 041108 (2012)]

THERMOSTATISTICS DOES CARE ABOUT THE NATURE OF THE RESERVOIRS



W.A.M. Morgado and SMDQ (2012)



Ulterior evidences of our result



Linear coupling

Linear coupling Non-linear coupling

Brownian Reservoir                                              Poissonian Reservoir

Conclusions (this time for real)



Consequence: The zeroth law of thermodynamics is not universal 
because for non-Gaussian heat reservoirs it depends on the 

mechanical trait of the system.


