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Introduction

Thermodynamic Limit
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We can get rid of the average notation in formulae and simply
use quantitative relations between observables fout court.
Examples:

The first of thermodynamics,
AU=Q+3 W, (U, =0)

Work done during an irreversible process (proxy for the second
law),

W, ,<F,—F, (F=U-TS)

%



but what if the system does not hold the thermodynamic limit?

For a mammoth system undergoing an irreversible transformation
from state A to B one will get, without a shadow of a doubt,

WA—>B <F A F, B
However, if the system is rather small, although,
<WA—>B> < FA _FB

there will be a number of times that in performing a change
alike one will measure,

W,  >F,—F, il
Thence: for small systems we need a probabilistic approach.
For the present case solved by the Jarzynski equality, previous
approaches by
<exp[—,b’W]> = exp[,B(FA - F; )] Bochkov and

Kuzovlev



The model

Following C. Jarzynski when we study the thermostatistical behaviour of a small system there is a need to detail
the equations governing its evolution.

Classical 1-D massive particle the dynamics of which is ruled by,

Dissipation

Confining potential
(permits stationary solutions)



A statistical mechanics problem aims at making predictions by computing
probabilities and cumulants, often in the steady state.

How can we do 1t?

[ — Hammering away at the “Kramers equation” and get the PDFs (which canbe a
pain in the bottom of the back).

Il — Considering a time averaging approach (which easily turns into a pain in the neck)
Redundant with the Kramers equation approach for Brownian reservoirs
BUT
Outperforms the “Kramers equation” for non-Brownian reservoirs as

Fokker-Planck methods are generally poor approximations to the actual solution.

Other ‘pain prone’ methods might be chosen as well, e.g., Caceres & Budini (1997) and
Kanazawa, Sagawa & Hayakawa (2012).



Average steady state
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Business as usual: Gaussian reservoirs

<N(t1)...0(te) =0 (it n#2),
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In this case the thermostatistical approach must be consistent with
equilibrium at temperature 7,
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In the time averaging approach we use a Laplace transforming of the
dynamical equations
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For the kinetic energy we read,
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Making use of further statistical moments one can obtain the steady
(equilibrium state) distribution,
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Importing the greeks to a physical problem...
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And what about the power?

£EO)=T1(©)+ Ip(O)

(;} 1= ‘
= / n(t) v(t) dt — “/ v {i)z dt.
0 0

Because the system attains an equilibrium steady state we must verify,

lim (77 (©) + Jp (©)) = (&) =€,

B0

Analysis of the average injected power
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The non-linearity does
not influence the long
term behaviour of the
injected power!



Analysis of the avegare dissipated power,
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Injected and dissipated heats vs time. The parameters used are the following &y = 1,
m=1v=1/10 and T'= 1 and k3 = 0 or k3 = 1/2, i.e., significantly non-linear. It is clear that
after the transient both heats grow at a rate v7'/m = 1/10, which agrees with the slopes of the
dashed green lines. N.B.: In order to obtain a greater separation between the curves we have set

slightly different initial conditions, namely = = 1.

W.AM. Morgado and SMDQ (2013)



Long-term average values concur, but are the distributions equal?
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Computing further moments (and with the help of the on-1ine
encyclopaedia of integers and series) we are able to find the
moment generating function,

Mzie) (A) = (exp [A T} (©)])
= exp [ﬁ (1 — \/1—|-4T)\)}

2m

Heeding that the energy corresponds to the integral of the

power with respect to time, we can use large deviation theory
and obtain the distribution of the total energy imposing the
Gartner-Ellis theorem which yields,

(Jr —yTO/m)?
4T Ji

L(Jr) ~ exp |- H (J71)

matching Farago’s solution who does the computation for a harmonic system.



Moreover, the computation of higher moments of the dissipated power shows
that both distributions actually have the same distribution.
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W.AM. Morgado and SMDQ (2013)



The concentration of the measure is the same, the injected and
dissipated power are likely to have different distributions,

I =nv jp = —yv?

The dissipated power PDF is easily computed using the conservation of
the probability,

( | . | } T T | . |
il =, exXp |—m/—————=|. 3

Injected power is more complex because the velocity and the “noise”
are correlated,
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Thus we define the velocity as the sum of to variables,

v=cn+ f¢&

¢ =Cyy(0) = fF=v1-3 () =w?=_

Under this assumptions the injected power PDF reads,

&2
pn) //QTM [ 952 —W] 0 (jr—nv) d(v—cn— f§) dnds,

_ 2c c - [\/(CJ)Q-FPMQF |-‘
T nfow P2l ‘”{ o J*‘J’



10 J . T T . T
:? ] Beware that nv is a pulse which is not
= 10 - numerically reproducible. To obtain

minimally reliable results we had to use

107 4 Savitzky-Golay filter.

107

lﬂ41

,Iﬂ.*'u

-80

W.A.M. Morgado and SMDQ (2013)

The PDF allows making explicit the fluctuation relation of the injected
power,

lim P (|Jf |:]
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A non-equilibrium Gaussian model

Classical 1-D massive particles the dynamics of which is ruled by,

dCEi (t)
(L) =
d’U?j t _
m dt() = —kux; (¢ ’m Zk‘zz s () — 2 (01 +m, (1)
koj_1 = YV, = decpupled particles
Dissipation
Confining potential Coupling between particles

(permits stationary solutions)



After a transient this 2-particle system with 7, different to 7', yields a
steady state.
A relevant thermal quantity is the heat flux between particles,

dWi_0 — dWayy Fi_50U3 — Fo 11y

Jisg = _
S 2 dt 2

that written in Laplace space reads,

dq de z
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where ¢ refers to the CoM position and 7, the relative position.



Here we highlight its average value,

T = (Jis2) £ wr) T~ T)

Heat conductance

which gives in the linear case,

7 k*
2 (V2(ki+ k) + k*m)

k =

The moment generating function of the heat flux is,

1
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W.A.M. Morgado and SMDQ (2013)

Applying the Edgeworth expansion using the equilibrium case PDF as the
reference distribution, we obtain another fluctuation relation, namely,

n(|.J J
lim P ([/12]) = exp [‘2 é_}z |Jl—>?.|]
|.f1_}2|—}00 p (_ I*-Il%ﬂ” U-h—}z

-

1 Taaes : 1 |12
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In equilibrium we have, #o(/12)=—= ‘Ln[ 75 ]




A rush of fresh air: Poissonian reservoirs

n(t) = Zz ®(t)d(t —te), Alt) = Al + Acos(wt)], (0<A<]).

(n(t1)...0(t))e = A(E1) B (2 —to) ... 0(th—1 — tn).

Why 1s this relevant?

I — Theoretical relevance
Poisson noise is the quintessential stochastic process with
singular measure.
The Lévy-Ito theorem states that every white noise is represented by a
superposition of Brownian and Poisson noises.

I1 — Factual relevance
Physical-Chemical problems using Anderson thermostats;

Landsberg engine systems

RLC circuits



Nano-technological and nano-bio-technological problems

week ending
PRL 98, 216102 (2007) PHYSICAL REVIEW LETTERS Py 8

Line Shape Broadening in Surface Diffusion of Interacting Adsorbates
with Quasielastic He Atom Scattering

R. Martinez-Casado,"** J.L. Vega,™" A.S. Sanz,”* and S. Miret-Artés™*

'"Lehrstuhl fiir Physikalische Chemie I, Ruhr-Universitdt Bochum, D-44801 Bochum, Germany
*Biosystems Group, School of Computing, University of Leeds, Leeds LS2 9JT, United Kingdom

*Instituto de Matemdticas v Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 123, 28006 Madrid, Spain
(Received 8 February 2007; published 24 May 2007)

The experimental line shape broadening observed in adsorbate diffusion on metal surfaces with
increasing coverage is usually related to the nature of the adsorbate-adsorbate interaction. Here we
show that this broadening can also be understood in terms of a fully stochastic model just considering two
noise sources: (i) a Gaussian white noise accounting for the surface friction, and (ii) a shot noise replacing
the physical adsorbate-adsorbate interaction potential. Furthermore, contrary to what could be expected,
for relatively weak adsorbate-substrate interactions the opposite effect is predicted: line shapes get
narrower with increasing coverage.



Molecular motors (Kinesin and Myosin-V) We utterly depend on these mechanisms!
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1-Particle steady state probabilistcs (linear potentials)
[Morgado, DQ, Soares-Pinto, JSTAT P06010 (2011)]

After a raft of humdrum calculations,
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Figure 1. Numerically obtained probability density function pgs(z) versus
position z for various cases with Ap = 10, ® = 1 and the noise defined by

equation (4) with w = 7. Fn]lcnwing the legend in the figure we have the respective
cases, A: M = 1, An =ly=1d =L kM = ULk = 1Ly =1, 1 = Ik
C:M=10,k = 1,1 l A=1/2 D: M =01,k =1,7v=1,A = E.

M=1=1v7=2, 1 andFJI—lkn—lU*—l 1—[]

Morgado,DQ, Soares-Pinto (2011)



For the velocity,

pss(“} = F, {EXD {Z A pP™ o™ “Dlr}] :

m=
and thus,
) W mmh =
K\ = (™) = m! A (i®)™ U,
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Figure 2. Numerically obtained probability density function ps.(v) versus scalar
velocity v for the same parameter sets of figure 1.

Morgado,DQ, Soares-Pinto (2011)

Neither p (x) nor p (v) are Gaussians.




2-Particle steady state heat transport (linear potentials)
[Morgado, DQ, PRE 86, 041108 (2012)]

JQ — <J1_,>2> = Mg (TQ — Tl)

Using the average trick of Laplace transforming, the calculations boil down to evaluating,

dgr dgs z
2 27 2z —1i (g1 + g2 + 2¢)
X (& (iq1+¢) 8 (i g2 +¢)).

Fu = hmlim f

z2—() 2—()

Assuming the temperature of a Poissonian particle as,

T = A&

the integration renders up,

The exact same result of coupled Brownian particles!



In fact, for Poissonian particles, one gets the same thermal properties as
those featured by if Brownian particles.
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CONCLUSION:

THE SINGULAR NATURE OF THE MEASURE OF A POISSONIAN PARTICLE
IS IRRELEVANT FOR THERMAL PURPOSES.

THENCE

IN ANALYTICALLY TREATING THE THERMOSTATISTICS OF
SUCH PARTICLES ONE CAN HEDGE ALL THOSE NASTY
CALCULATIONS BY USING BROWNIAN PROXIES!

DON'T
RUSH

AND

CARRY ON
COMPUTING




A brand new day: non-linear systems [Morgado, DQ, PRE 86, 041108 (2012)]

md”;t(t) = —kx; (t)—yv; (t) ka Lo () = a5 () 4 (2)

( 7.0\ k2 [AL(2)—A2(2)]
<-J’12 > =g ml T2 (ktk1)

2
(342) = =87k ke Ok R AP)AF]
fv‘h-l-zh}[ (k4k1)+mk ]

(33 = 2;,—7 ([41(2)% - A2(2)%])

THERMOSTATISTICS DOES CARE ABOUT THE NATURE OF THE RESERVOIRS
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FIG. 2. (Colour on-line) Comparison between numerically
obtained walues (symbols) and the first order approxima-
tion of thermal conductance from Eqs. ([@-(0) for different
temperatures pairs, namely A = {1[],%}, B'= {1[},%

C={10,2} withm=10,y=k=1,k =1/5and A =1

for Poissonian particles.

W.A.M. Morgado and SMDQ (2012)



Ulterior evidences of our result

PHYSICAL REVIEW L 87, 052124 (2013)

Heat conduction induced by non-Gaussian athermal fluctuations
Kiyoshi Kanazawa,! Takahiro Sugawat."lt and Hisao Hayakuwu'
"Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa-oiwake cho, Sakyo-ku, Kyoto 606-8502, Japan
The Hakubi Center for Advanced Research, Kyoto University, Yoshida-ushinomiya cho, Sakyo-ku, Kyoto 606-8302, Japan
(Received 11 Seplember 200 2; revised manuscripl received 22 April 2013; published 20 May 2013)

We study the properlies of heal conduction induced by non-Gaossian noises from athermal environments.
We find that new terms should be added to the conventional Fourier law and the Muctuation theorem for the
heal current, where its average and Nuciuation are determined not only by the noise intensities but also by the
non-Ciaussian nature of the noises. Our resulls explicitly show the absence ol the zeroth law of themmodynamics
in athenmal systems.

PHYSICAL REVIEW L 87, 052126 (2013)

Fourier’s law from a chain of coupled anharmonic oscillators under energy-conserving noise

Gabriel T, Landi and Mario J. de Oliveira
Insiitulo de Fisica, Universidade de Sdo Paulo, Caixa Postal 66318, 053 14-970, Sd0 Paulo, Brazil
(Received 30 December 2012; revised manuscripl received 18 March 2013; published 20 May 2013)

Wi analyze the transport of heat along a chain of particles inleracting through anharmonic polentials consisting,
ol guartic lenms in addilion 1o harmonic guadratic erms and subject o heal reservioirs al ils ends. Each particle
is also subject o an impulsive shot noise with exponentially distributed waiting times whose effect is 1o change
the sign of its velocily, thus conserving the energy of the chain, We show that the introduction of this energy-
comserving stochaslic noise leads (o Fourier’s law. The behavior of the heal conductivity Tor small intensitics of
the shot noise and large system sizes is found o obey a finite-size scaling relation. We also show that the heat
conductivity is nod constant but is an increasing monotonic function of lemperature.

DO 10,1103/ PhysRevE.87.052126 PACS number{s): 05.70.Ln, 05.10.Gg, 05.60. -k



Conclusions (this time for real)

Poissonian Reservoir

Brownian Reservoir

Linear coupling

Non-linear coupling

Linear coupling



Consequence: The zeroth law of thermodynamics is not universal
because for non-Gaussian heat reservoirs it depends on the
mechanical trait of the system.



