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Abstract

A desirable property of an autocovariance estimator is to be ro-
bust to the presence of additive outliers. It is well-known that
the sample autocovariance, based on the moments, does not
own this property. Hence, the definition of an autocovariance
estimator which is robust to additive outlier can be very useful
for time-series modeling. In this paper, some asymptotic proper-
ties of the robust scale and autocovariance estimators proposed
by Ma & Genton (2000) is study and applied to time series with
different correlation structures.
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Applications: Nile river 622 - 1281 D.C.
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Aplications: Quarterly mean flow of Castelo River,
Castelo-ES
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Aplications: The daily average PM10 concentration-
Vitoria-ES
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Figura: ACF (a) and PACF (b).



Introduction-some references

I Haldrup & Nielsen (2007) evaluated the impact of
measurement errors, outliers and structural breaks on the
long-memory parameter estimation.

I Sun & Phillips (2003) suggested the use of a approach
adding a nonlinear factor to the log-periodogram
regression, as a way to minimize any existing bias.

I Agostinelli & Bisaglia (2003) proposed the use of a
weighted maximum likelihood approach as a modification
of the the estimator proposed by Beran(1994).



The impact of outliers in stationary processes

Let {Xt}t∈Z be a stationary process and let {zt}t∈Z be a process
contaminated by additive outliers, which is described by

zt = Xt +
m∑

i=1

ωi I
(Ti )
t , (1)

where m is the number of outliers; the unknown parameter ωi re-
presents the magnitude of the i th outlier at time Ti , and I(Ti )

t is a

Bernoulli random variable with probability distribution Pr
(

I(Ti )
t = −1

)
=

Pr
(

I(Ti )
t = 1

)
= pi

2 and Pr
(

I(Ti )
t = 0

)
= 1 − pi . The random va-

riables Xt and I(Ti )
t are independent.



Proposition 1.

Suppose that {zt} follows (1) and Xt has spectral density fX .
i . The autocovariance function (ACOVF) of {zt} is given by

γz(h) =

γX (0) +
m∑

i=1
ω2

i pi , if h = 0,

γX (h), if h 6= 0.

ii . The spectral density function of {zt} is given by

fz(λ) = fX (λ) +
1

2π

m∑
i=1

ω2
i pi , λ ∈ [−π, π].



Proposition 2.

Let z1, z2, . . . , zn be a set of observations generated from model
(1) with m = 1, and let the outlier occurs at time t = T . It follows
that:

i . The sample ACOVF is given by

γ̂z(h) = γ̂X (h)± ω

n
(XT−h + XT+h − 2ȳ) +

ω2

n
δ(h) + op(n−1),

(2)

where γ̂X (h) =
1
n

n−h∑
t=1

(Xt − X̄ )(Xt+h − X̄ ) and

δ(h) =

{
1, when h = 0,
0, otherwise.



Proposition 2 (continuation).

ii . The periodogram is given by

Iz(λ) = IX (λ) + ∆(ω), [−π, π],

where

∆(ω) =
ω2

2πn
± ω

πn

{
(XT − X̄ ) +

n−1∑
h=1

(XT−h + XT+h − 2X̄ ) cos(hλ)

}
(3)

+ op(n−1).



Proposition 3. (Chan (1992, 1995))

Suppose that z1, z2, . . . , zn is a set of observations generated
from model (1) and let ρ̂z(h) = γ̂z(h)/γ̂z(0), then

i. For m = 1,

lim
n→∞

lim
ω→∞

ρ̂z(h) = 0.

ii. For m = 2 and T2 = T1 + l , such that
h < T1 < T1 + l < n − h, we have

lim
n→∞

{
plimω1→∞

ω2→±∞
ρ̂z(h)

}
=

{
0, if h 6= l ,
±0.5, if h = l .



Some specific comments

I The outliers cause an increase in the variance of process,
which reduces the magnitude of the autocorrelations and
introduces loss of information on the pattern of serial
correlation.

I The spectral density of the process is characterized by an
translation due to the contributions of magnitude of outliers.

I These results also give the evidence that an outlier can
seriously affect the autocorrelation structure due to an
increase in the variance.



Lemma 1.

Let {Xt}t∈Z be a stationary and invertible ARFIMA(p,d ,q) pro-
cess. Also, let {zt}t∈Z be such that zt = Xt +

∑m
i=1 ωi I

(T )
t ,

where m is the number of outliers, the unknown parameter ωi

is the magnitude of the i th outlier at time Ti and I(Ti )
t is Ber-

noulli distributed: Pr
(

I(Ti )
t = −1

)
= Pr

(
I(Ti )
t = 1

)
= pi

2 and

Pr
(

I(Ti )
t = 0

)
= 1 − pi . The spectral density of {zt} is given

by

fz(λ) =
σ2
ε

2π
|Θ(e−iλ)|2

|Φ(e−iλ)|2

{
2 sin

(
λ

2

)}−2d

+
1

2π

m∑
i=1

ω2
i pi .

where λ ∈ [−π, π].



Spectrum of ARFIMA(0,d ,0) model with d = 0.3
The dotted line is the spectral density of the outlier-free pro-
cess and the solid line is the spectral density of the process
under an additive outlier. The contaminated series is obtained
by replacing 5% of the observations with additive outliers using
w = 10,15.
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A robust estimator of ACF

Rousseeuw & Croux (1993) proposed a robust scale estimator
function which is based on the k th order statistic of

(n
2

)
distances

{|yi − yj |, i < j}, and can be written as

Qn(y) = c × {|yi − yj |; i < j}(k), (4)

where y = (y1, y2, . . . , yn)′, c is a constant used to guaran-
tee consistency (c = 2.2191 for the normal distribution), and

k =

⌊
(n

2)+2
4

⌋
+ 1. The above function can be calculated using

the algorithm proposed by Croux & Rousseeuw (1992), which is
computationally efficient. Rousseeuw & Croux (1993) showed
that the asymptotic breakdown point of Qn(·) is 50%, which me-
ans that the time series can be contaminated by up to half of
the observations with outliers and Qn(·) will still yield sensible
estimates.



A robust estimator of ACF- continuation

Q(·), Ma & Genton (2000) proposed a highly robust estimator
for the ACOVF:

γ̃(h) =
1
4

[
Q2

n−h(u + v)−Q2
n−h(u − v)

]
, (5)

where u and v are vectors containing the initial n − h and the
final n − h observations, respectively. The robust estimator for
the autocorrelation function is

ρ̃(h) =
Q2

n−h(u + v)−Q2
n−h(u − v)

Q2
n−h(u + v) + Q2

n−h(u − v)
.

It can be shown that |ρ̃(h)| ≤ 1 for all h.



ACF ARFIMA(0,d ,0) model, d = 0.3, n = 300
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ACF ARFIMA(0,d ,0) model, d = 0.3, n = 300

0 50 100 150 200 250 300

0.
0

0.
1

0.
2

0.
3

0.
4

Data with outliers

ACF (dot line)

Robust (dashed line)

A
ut

oc
ov

ar
ia

nc
es



Theoretical Results-Short-memory and long-memory
cases

It supposes that the empirical c.d.f. Fn, adequately normalized,
converges. Let us first define the Influence Function. Following
Huber (1981), the influence function x 7→ IF(x ,T ,F ) is defined
for a functional T at a distribution F at point x as the limit

IF(x ,T ,F ) = lim
ε→0+

ε−1{T (F + ε(δx − F ))− T (F )} ,

where δx is the Dirac distribution at x . Influence functions are a
classical tool in robust statistics used to understand the effect of
a small contamination at the point x on the estimator.



Theoretical Results-Short-memory case

(Xi)i≥1 is a stationary mean-zero Gaussian process with auto-
covariance sequence γ(h) = E(X1Xh+1) satisfying:∑

h≥1

|γ(h)| <∞ .



Theorem
Under some assumption Qn(X1:n) satisfies the following central
limit theorem:

√
n(Qn(X1:n)− σ)→ N (0, σ̃2) ,

where σ =
√
γ(0) and the limiting variance σ̃2 is given by

γ(0)E[IF2(X1/σ,Q,Φ)]+2γ(0)
∑
k≥1

E[IF(X1/σ,Q,Φ)IF(Xk+1/σ,Q,Φ)]

IF(·,Q,Φ) is the Influence Function defined previously.



Theorem
Let h be a non negative integer. Under some assumptions the
autocovariance estimator γ̂Q(h,X1:n,Φ) satisfies the following
Central Limit Theorem:

√
n (γ̂Q(h,X1:n,Φ)− γ(h)) −→ N (0, σ̌2

h) ,

where

σ̌2(h) = E[ψ2(X1,X1+h)] + 2
∑
k≥1

E[ψ(X1,X1+h)ψ(Xk+1,Xk+1+h)]

(6)
where ψ is a function of γ(h) and IF. (See, Theorem 4 in Leduc,
Boistard, Moulines, Taqqu and Reisen ( 2011)).



Main theoretical Results-Long-memory case

Now, let (Xi)i≥1 be a stationary mean-zero Gaussian process
with autocovariance γ(h) = E(X1Xh+1) satisfying:

γ(h) = h−DL(h), 0 < D < 1 ,

where L is slowly varying at infinity and is positive for large
h.A classical model for long memory process is the so-called
ARFIMA(p,d ,q), which is a natural generalization of standard
ARIMA(p,d ,q) models. By allowing d to assume any value in
(−1/2,1/2). D = 1− 2d in above.



Theorem
(Theorem 8 in Leduc et all ( 2011)) Let h be a non negative
integer and under some assumptions the robust autovariance
of (Xi)i≥1, γ̂Q(h,X1:n,Φ), satisfies the following limit theorems
as n tends to infinity.

(i) If D > 1/2(d < 1/4),

√
n (γ̂Q(h,X1:n,Φ)− γ(h))

d−→ N (0, σ̌2(h)) ,

where

σ̌2(h) = E[ψ2(X1,X1+h)]+2
∑
k≥1

E[ψ(X1,X1+h)ψ(Xk+1,Xk+1+h)] ,

ψ being defined previously.
(ii) If D < 1/2,

β(D)
nD

L̃(n)
(γ̂Q(h,X1:n,Φ)− γ(h))

d−→ γ(0) + γ(h)

2
(Z2 − Z 2

1 )



In the theorem, β(D) = B((1 − D)/2,D), B denotes the Beta
function, the processes Z1,D(·) (the standard fractional Brownian
motion) and Z2,D(·) (the Rosenblatt process) are defined in the
Levy-Leduc et al (2011), and

L̃(n) = 2L(n) + L(n + h)(1 + h/n)−D + L(n − h)(1− h/n)−D



Proposition
Under Assumption and D < 1/2 for the process (Xi)i≥1, the
robust autocovariance estimator γ̂Q(h,X1:n,Φ) has the same
asymptotic behavior as the classical autocovariance estimator.
There is no loss of efficiency.



An Application: Long-memory parameter estimators-d
estimators

The GPH estimator (Geweke and Porter-Hudak (1983)) is given
by

dGPH = −
∑g(n)

j=1 (xj − x̄) log I(λj)∑g(n)
j=1 (xj − x̄)2

, (7)

where xj = log
{

2 sin
(
λj
2

)}2
, g(n) being the bandwidth in the

regression equation which has to satisfy g(n) → ∞, n → ∞,
with g(n)

n → 0.



The GPH estimator

Hurvich, Deo, Brodsky (1998) proved that, under some regula-
rity conditions on the choice of the bandwidth, the GPH estima-
tor is consistent for the memory parameter and is asymptotically
normal when the time series is Gaussian. The authors also es-
tablished that the optimal g(n) is of order o(n4/5). They showed
that if g(n) → ∞,n → ∞ with g(n)

n → 0 and g(n)
n log g(n) → 0,

then, under some conditions on 0 < fu(λj) < ∞, the GPH esti-
mator is a consistent estimator of d ∈ (−0.5,0.5) with variance
var(dGPH) = π2

24g(n) + o(g(n)−1).



A robust estimator of d

Assumption: Let M = min{h′,nβ} with 0 < β < 1, where

h′ = min
{

0 < h < n : εtemp
n (γ̂Q(h)) ≤ m

n

}
− 1,

m and n are the numbers of outliers and the sample size, res-
pectively.



A robust estimator of d

Let Ĩ(λ) be given by

Ĩ(λ) =
1

2π

n−1∑
s=−(n−1)

κ(s)R̃(s) cos(sλ), (8)

where R̃(s) is the sample autocovariance function in (5) and
κ(s) is defined as

κ(s) =

{
1, |s| ≤ M,

0, |s| > M.

κ(s) is called truncated periodogram lag window see, e.g., Pri-
estley (1981, p. 433-437). We shall call the estimator in (8) ro-
bust truncated pseudo-periodogram, since it does not have the
same finite-sample properties as the periodogram, with M = nβ,
0 < β < 1.



A robust estimator of d

The robust GPH estimator we propose is

dGPHR = −
∑g(n)

i=1 (xi − x̄) log Ĩ(λi)∑g(n)
i=1 (xi − x̄)2

, (9)

where xi = log
{

2 sin
(
λj
2

)}2
and g(n) is as before.



A robust estimator of d
The value of β, in M = nβ, was selected empirically by minimi-
zing the MSE of the long-memory parameter estimates. The
Figure presents simulation results for a free-outliers ARFIMA
process generated with n = 800 and 10000 Monte Carlo experi-

ments.

 



Numerical results: ARFIMA(0,d ,0) with d = 0.3

g(n) = n0.7 M = n0.7

d n d̂GPH d̂GPHc d̂GPHR d̂GPHR c

100 mean 0.2988 0.1134 0.2584 0.2449
sd 0.1735 0.1619 0.1558 0.1556
bias −0.0012 −0.1866 −0.0416 −0.0551
MSE 0.0301 0.0610 0.0260 0.0272

300 mean 0.3062 0.1007 0.2907 0.2837
0.30 sd 0.1005 0.0978 0.0926 0.0960

bias 0.0062 −0.1993 −0.0093 −0.0163
MSE 0.0101 0.0493 0.0087 0.0095

800 mean 0.3003 0.1184 0.2949 0.2869
sd 0.0679 0.0715 0.0573 0.0610
bias 0.0003 −0.1816 −0.0051 −0.0131
MSE 0.0046 0.0381 0.0033 0.0039

ω = 10, outliers = 5% (of sample)



Numerical results: ARFIMA(0,d ,0) with d = 0.45

g(n) = n0.7 M = n0.7

d n d̂GPH d̂GPHc d̂GPHR d̂GPHR c

100 mean 0.4561 0.1923 0.3975 0.3778
sd 0.1722 0.1727 0.1506 0.1433
bias 0.0061 −0.2577 −0.0525 −0.0722
MSE 0.0297 0.0962 0.0254 0.0258

300 mean 0.4594 0.2015 0.4329 0.4233
0.45 sd 0.0986 0.0976 0.1041 0.1013

bias 0.0094 −0.2485 −0.0171 −0.0267
MSE 0.0098 0.0713 0.0111 0.0110

800 mean 0.4620 0.2306 0.4457 0.4349
sd 0.0688 0.0809 0.0562 0.0576
bias 0.0121 −0.2194 −0.0043 −0.0151
MSE 0.0049 0.0547 0.0032 0.0035

ω = 10, outliers = 5% (of sample)



Numerical results: ARFIMA(0,d ,0) with d = 0.45

ω n dGPHc dGPHRc
3 100 mean 0.3747 0.3799

sd 0.1953 0.1513
bias −0.0753 −0.0701
MSE 0.0438 0.0278

800 mean 0.4080 0.4309
sd 0.0679 0.0576
bias −0.0419 −0.0191
MSE 0.0064 0.0037

5 100 mean 0.3108 0.3741
sd 0.1934 0.1452
bias −0.1392 −0.0759
MSE 0.0567 0.0268

800 mean 0.3526 0.4270
sd 0.0846 0.0568
bias −0.0974 −0.0229
MSE 0.0166 0.0038

10 100 mean 0.1923 0.3778
sd 0.1727 0.1433
bias −0.2577 −0.0722
MSE 0.0962 0.0258

800 mean 0.2306 0.4349
sd 0.0809 0.0576
bias −0.2194 −0.0151
MSE 0.0547 0.0035

outliers = 5% (of sample)



Numerical results: ARFIMA(0,d ,0) n = 300
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Numerical results: ARFIMA(0,d ,0) n = 3000
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Applications: Nile river 622 - 1281 D.C.

We have applied the methodology proposed in previous section
to the annual minimum water levels of the Nile river measured at
the Roda Gorge near Cairo. This data set has been widely used
as to illustrate long-memory memory modeling strategies; see
Beran (1992), Reisen, Abraham & Toscano (2002), Robinson
(1995), among others. The period analyzed ranges from 622
A.D. to 1284 A.D. (663 observations).
Various conclusions have been reached as to whether or not
this series contains outliers. For example, Chareka, Matarise &
Turner(2006) developed a test to identify outliers and ran it on
the Nile data. Their test located two outliers at 646 A.D. and at
809 A.D.



Applications: Nile river 622 - 1281 D.C.
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Applications: Nile river 622 - 1281 D.C.
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Applications: Nile river 622 - 1281 D.C.

GPH GPHR
Bandwidth d̂ s.e. d̂ s.e.
g(n) = 25 0.503 0.142 0.459 0.057
g(n) = 49 0.537 0.117 0.475 0.045
g(n) = 94 0.396 0.079 0.416 0.040
g(n) = 180 0.386 0.054 0.460 0.039

Tabela: Estimated values of d using the Nile data.

Based on a slight modification of the robust estimator proposed
by Beran (1994), Agostinelli & Bisaglia (2004) found 0.412 as
the estimate of d which is very close to the GPHR estimate when
g(n) = 94.



Concluding remarks

The simulation results showed that the GPH estimator of the
fractional differencing parameter can be considerably biased when
the data contain atypical observations, and that the robust esti-
mator we propose displays good finite-sample performance even
when the data contain highly atypical observations. Future re-
search should address the important issue of establishing the
asymptotic properties for the proposed estimator.



THANK YOU
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