How does the chromatic number of a random graph vary?

Oliver Riordan

University of Oxford

COLMEA, PUC-Rio, Gávea

22 November 2023

Joint work (and slides!) with Annika Heckel.

Graphs

A graph consists of a set V of vertices (nodes) and a set E of edges (links), where an edge is just a pair of distinct vertices.

The data defining a graph G is: what are its vertices, and which pairs of vertices are adjacent, i.e., joined by an edge.

Given a set V of n vertices, there are thus $2^{\binom{n}{2}}$ possible graphs on V.

What is a colouring?

Colouring of *G***:** Colour vertices so that neighbours get different colours.

Chromatic number $\chi(G)$: Minimum number of colours we need.

Sounds like a game..., but important in applications.

Chromatic numbers

What can we say about the chromatic numbers of all graphs on a set V of size n?

Range of values is 1 to n:

What is the typical value? What is the typical spread?

Chromatic number of random graphs

Pick a graph on $V = \{1, 2, \dots, n\}$ uniformly at random. Or,

Consider $G_{n,1/2}$: choose a graph on V by including each possible edge independently with probability 1/2.

An independent set in G is a set of vertices spanning no edges.

Colouring is the same as partitioning into independent sets.

Independence number

The independence number $\alpha(G)$ is the size of a largest independent set in G.

What do we expect $\alpha(G_{n,1/2})$ to be?

For each k, consider the random variable

 X_k = number of k-vertex independent sets in $G_{n,1/2}$.

$$\mathbb{E}X_k = \binom{n}{k}(1-p)^{\binom{k}{2}} = \binom{n}{k}2^{-\binom{k}{2}}.$$

$$\mathbb{E}X_k = \binom{n}{k} 2^{-\binom{k}{2}} \approx n^k 2^{-k^2/2}$$

 $\log_2(\mathbb{E}X_k) \approx k \log_2 n - k^2/2.$

Sad parabola!

Up to some size $\alpha(n) \approx 2 \log_2 n$ we have $\mathbb{E}[X_k] \ge 1$, and usually $\mathbb{E}[X_k]$ very large.

For $k > \alpha(n)$ we have $\mathbb{E}[X_k] < 1$, and usually very small.

For k near the crossing point we have $\mathbb{E}[X_{k+1}]/\mathbb{E}[X_k] \approx n^{-1}$.

Usually $\mathbb{E}[X_{\alpha+1}]$ is small, so whp (with high probability) no independent sets of this size.

Usually $\mathbb{E}[X_{\alpha}]$ is large... does that mean X_{α} is?

Consider the second moment or variance of X_{α} .

Involves summing over pairs S, S' of sets of size α .

Only relevant parameter: $r = |S \cap S'|$.

Easy calculation: $var[X_{\alpha}] \approx \mathbb{E}[X_{\alpha}]$, and in fact close to Poisson distribution.

Conclusion: (usually) whp $\alpha(G_{n,1/2}) = \alpha(n)$ for a known value $\alpha \approx 2 \log_2 n$.

In a colouring with c colours, $n \leq \alpha c$. Thus whp

$$\chi(G_{n,1/2}) \ge (1-o(1))\frac{n}{2\log_2 n}.$$

Further bounds

Grimmett + McDiarmid 1975:

$$(1 - o(1))\frac{n}{2\log_2 n} \leqslant \chi(G_{n,\frac{1}{2}}) \leqslant (1 + o(1))\frac{n}{\log_2 n} \text{ whp.}$$

Bollobás 1987: $\chi(G_{n,\frac{1}{2}}) \sim \frac{n}{2\log_2 n} \text{ whp.}$

Improvements: McDiarmid '90, Panagiotou & Steger '09, Fountoulakis, Kang & McDiarmid '10. Heckel 2016:

$$\chi\left(G_{n,\frac{1}{2}}\right) = \frac{n}{2\log_2 n - 2\log_2\log_2 n - 2} + o\left(\frac{n}{\log^2 n}\right) \text{ whp.}$$

Explicit interval of length $o\left(\frac{n}{\log^2 n}\right)$ which contains $\chi(G_{n,\frac{1}{2}})$ whp.

Directly study the random variable X = number of colourings.

Calculate $\mathbb{E}X$ and var[X].

The first is (relatively) easy:

One partition

Two partitions

Two partitions

Complications?

What about other edge probabilities p?

In general, p can vary with n, and we expect very different behaviour if $p \to 1$ or $p \to 0.$

What about constant $p \in (0,1)$? Surely the same?

NO! Annika showed $p > 1 - 1/e^2 \approx 0.865$ is different!

Recent developements

 $\begin{array}{l} \mbox{Theorem (Heckel, Panagiotou 23)}\\ \mbox{If } \mu_{\alpha} \geqslant n^{0.1}, \mbox{ whp}\\ \chi_{\alpha-1}(\mathcal{G}_{n,\frac{1}{2}}) = {\bf k}_{\alpha-1} + \mathcal{O}(n^{0.99}). \end{array}$

• $\chi(G_{n,1/2})$ and $\chi_{\alpha-1}(G_{n,1/2})$ differ by at most about μ_{α}

 \rightarrow This gets us sharper upper and lower bounds for $\chi(G_{n,1/2})$.

Proof is clever and complicated!

What can we say about $\chi(G_{n,p})$?

Concentration?

Shamir, Spencer 1987: For any function p = p(n), $\chi(G_{n,p})$ is whp contained in a sequence of intervals of length about \sqrt{n} .

Proof uses martingales!

Martingales

Informally: a sequence of random variables (M_t) where the expected value of M_{t+1} 'at time t' is M_t .

E.g., total winnings after a sequence of fair bets: $M_{t+1} = M_t + S_t W_{t+1}$, where S_t (amount bet) depends on what's happened so far, but conditional on the past, W_{t+1} is ± 1 with equal probability.

Formally, $\mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{F}_n$ a sequence of σ -algebras (information available at time t), and

- M_t is \mathcal{F}_t -measurable (known at time t),
- $\mathbb{E}[M_{t+1} \mid \mathcal{F}_t] = M_t.$

(We are in a finite probabliity space here, so no problems with integrability.)

Martingales

Key property: a martingale 'behaves much like' a sum of independent random variables. In particular

Theorem (Hoeffding, Azuma)

Let $(M_t)_{t=0}^n$ be a martingale such that $|M_{t+1} - M_t| \leq C$ for every t. Then for any x $\mathbb{P}(|M_n - M_0| \geq x) \leq e^{-x^2/(2C^2n)}.$

In other words, similar Gaussian tails to sum of *n* independent RVs with variance C^2 , whose sum has variance C^2n .

Lipschitz functions

A function defined on graphs is 1-(vertex)-Lipschitz if, whenever G - v = G' - v, then $|f(G) - f(G')| \leq 1$.

E.g., chromatic number! We have

$$\chi(G-v)\leqslant\chi(G)\leqslant\chi(G-v)+1.$$

$$\chi(G-v) \leqslant \chi(G') \leqslant \chi(G-v) + 1.$$

So $|\chi(G) - \chi(G')| \leq 1$.

Vertex exposure martingales

Let $f : \mathcal{G} \to \mathbb{R}$ be a function defined on graphs. Let $G = G_{n,p}$ be random.

Let \mathcal{F}_t be the information describing which edges among vertices $1, \ldots, t$ are present. Then (\mathcal{F}_t) is a filtration, so $M_t := \mathbb{E}[f(G) | \mathcal{F}_t]$ is a martingale!

Called the 'vertex exposure martingale'.

Note that $M_0 = \mathbb{E}[f(G)]$ (no information), while $M_n = f(G)$: complete information.

If f is 1-Lipschitz, $|M_{t+1} - M_t| \le 1$. (Easy argument.) Shamir–Spencer follows!

Concentration?

Shamir, Spencer 1987: For any function p = p(n), $\chi(G_{n,p})$ is whp contained in a sequence of intervals of length about \sqrt{n} .

 $p = 1 - \frac{1}{10n}$: not concentrated on fewer than $\Theta(\sqrt{n})$ values

$$p \leqslant rac{1}{2}$$
: slight improvement to $rac{\sqrt{n}}{\log n}$ (Alon)

(Clever idea: use f(G) minimum number of vertices to delete until can colour with k colours, for suitable k.)

 $p < n^{-\frac{1}{2}-\varepsilon}$: 2 values ('two-point concentration') (Alon, Krivelevich 97, Łuczak 91) $\rightarrow \chi(G_{n,p})$ behaves almost deterministically

The opposite question

Question (Bollobás, Erdős)

Can we show that $\chi(G_{n,\frac{1}{2}})$ is not concentrated on 100 consecutive values?

Any non-trivial examples of non-concentration?

"even the weakest results claiming lack of concentration would be of interest"

The opposite question

Theorem (Heckel 2019)

 $\chi(G_{n,\frac{1}{2}})$ is not contained whp in any sequence of intervals of length $n^{1/4-\varepsilon}$ for any fixed $\varepsilon > 0$.

More formally:

Theorem (Heckel 2019)

Let $\varepsilon > 0$, and let $[s_n, t_n]$ be a sequence of intervals such that $\chi(G_{n,1/2}) \in [s_n, t_n]$ whp. Then there are infinitely many values n such that

$$t_n-s_n \geqslant n^{1/4-\varepsilon}.$$

Intuition

Intuition: An optimal colouring of $G_{n,\frac{1}{2}}$ contains all or almost all independent α -sets as colour classes.

 $\chi({\it G}_{n,\frac{1}{2}})$ should vary at least as much as X_{α} (roughly).

 $X_{\alpha} = \#$ independent α -sets

$$X_{lpha} \underset{ ext{roughly}}{\sim} \operatorname{Po}(\mu) \to ext{varies by } \pm \sqrt{\mu}$$

where $\mu = n^{\theta}$, $0 \leq \theta(n) \leq 1$.

$\overline{\langle}$	\bigotimes
G _{n,}	<12
≪	<

Proof idea

Plant an extra independent α -set:

Starting from $G = G_{n-\alpha,1/2}$, obtain a new random graph G', with $\chi(G') \leq \chi(G) + 1$.

Hide the hole

Does G' look like $G_{n,1/2}$? Not quite - it has a hole. Hide the hole! Shuffle the vertices.

Distribution of G''

For a possible outcome *H* (graph on *n* vertices), what is $\mathbb{P}(G'' = H)$?

S must get mapped to an independent set in H of size α .

There are $X_{\alpha}(H)$ of these.

Given any one,

$$\mathbb{P}(G'' = H \text{ with } S \text{ mapped here}) = \frac{1}{\binom{n}{\alpha}} (1/2)^{\binom{n}{2} - \binom{\alpha}{2}}.$$

KEY: $\mathbb{P}(G'' = H)$ is proportional to $X_{\alpha}(H)$.

Size-biased distribution

Given any random variable Z, and size parameter s(Z), the size-biased distribution Z^* has

$$\mathbb{P}(Z^*=z)=rac{\mathbb{P}(Z=z)s(z)}{\mathbb{E}s(Z)}.$$

Common in various statistics contexts.

Our G'' has distribution of $G_{n,1/2}$ size-biased by X_{α} .

Easy check: since X_{α} is concentrated, size-biasing makes little difference:

$$d_{\mathrm{TV}}(G'',G_{n,1/2})\leqslant rac{1}{2}\mathbb{E}\left[rac{|X_lpha-\mu|}{\mu}
ight]=O\left(rac{1}{\sqrt{\mu}}
ight)$$

where $\mu = \mathbb{E}[X_{\alpha}]$.

Key Lemma

$$d_{\mathrm{TV}}\left(G_{n,\frac{1}{2}},G''
ight)=O\left(rac{1}{\sqrt{\mu}}
ight),$$

where $\mu = \mathbb{E}[X_{\alpha}]$.

Proof:

$$d_{\mathrm{TV}}\left(G_{n,\frac{1}{2}},G''\right) = \frac{1}{2}\sum_{G} \left| \mathbb{P}\left(G''=G\right) - \mathbb{P}\left(G_{n,\frac{1}{2}}=G\right) \right|$$
$$= \frac{1}{2}\sum_{G} \left| \frac{X_{\alpha}(G)}{\binom{n}{\alpha}} \left(\frac{1}{2}\right)^{\binom{n}{2} - \binom{\alpha}{2}} - \left(\frac{1}{2}\right)^{\binom{n}{2}} \right|$$
$$= \frac{1}{2}\sum_{G} \left(\frac{1}{2}\right)^{\binom{n}{2}} \frac{\left|X_{\alpha}(G) - \binom{n}{\alpha}\left(\frac{1}{2}\right)^{\binom{\alpha}{2}}\right|}{\binom{n}{\alpha}\left(\frac{1}{2}\right)^{\binom{\alpha}{2}}}$$
$$= \frac{1}{2}\mathbb{E}\left[\frac{|X_{\alpha} - \mu|}{\mu} \right] = O\left(\frac{1}{\sqrt{\mu}}\right)$$

Coupling

Outcome: can couple $G_{n-\alpha,1/2}$ and $G_{n,1/2}$ so that

$$\chi(G_{n,1/2}) \leqslant \chi(G_{n-\alpha,1/2}) + 1$$

with failure probability $O(1/\sqrt{\mu})$.

For r up to around $\sqrt{\mu}$ can chain: there is a coupling so that

$$\chi(G_{n+r\alpha,1/2}) \leqslant \chi(G_{n,1/2}) + r$$

with failure probability ≤ 0.1 , say.

The coupling result

Coupling of $G_{n,1/2}$ and $G_{n',1/2}$ with $n' = n + \alpha r$ so that

$$\mathbb{P}\Big(\chi(G_{n',1/2}) \leqslant \chi(G_{n,1/2}) + \mathbf{r}\Big) > 0.9.$$

Proof ingredients

Ingredient 1: A (weak) concentration type result

$$|\chi(G_{n,1/2}) - f(n)| \leqslant \Delta(n)$$
 whp

where f(n) is some function with slope

$$\frac{\mathrm{d}}{\mathrm{d}n}f(n)>\frac{1}{\alpha}+\delta.$$

Ingredient 2: A coupling result

Couple $G_{n,1/2}$ and $G_{n',1/2}$ with $n' = n + \alpha r$ (same α as above) so that $\mathbb{P}\Big(\chi(G_{n',1/2}) \leq \chi(G_{n,1/2}) + r\Big) > 0.9.$

Trick: Suppose that $\chi(G_{n,\frac{1}{2}}) \in [s_n, t_n]$ whp.

Ingredient 2: A coupling result

Couple $G_{n,1/2}$ and $G_{n',1/2}$ with $n' = n + \alpha r$ (same α as above) so that

$$\mathbb{P}\Big(\chi(G_{n',1/2}) \leqslant \chi(G_{n,1/2}) + r\Big) > 0.9.$$

Trick: Suppose that $\chi(G_{n,\frac{1}{2}}) \in [s_n, t_n]$ whp.

Why? Because with probability at least 0.8,

$$s_{n'} \leq \chi(G_{n',1/2}) \leq \chi(G_{n,1/2}) + r \leq t_n + r.$$

But $s_{n'}$ and t_n are not random.

If all intervals short: Contradiction!

So there is at least one long interval. (Length $\approx \alpha \delta r$)

Ingredient 1: The (weak) concentration type result Want:

 $\chi(G_{n,\frac{1}{2}}) = f(n) \pm \Delta(n)$ $\frac{\mathrm{d}f}{\mathrm{d}n} \ge \frac{1}{\alpha} + \delta$

Heckel 2016:

$$\chi\left(G_{n,\frac{1}{2}}\right) = \underbrace{\frac{n}{2\log_2 n - 2\log_2\log_2 n - 2}}_{f(n)} + \underbrace{o\left(\frac{n}{\log^2 n}\right)}_{\Delta(n)} \text{ whp.}$$

then (unless μ_{α} is very close to *n*)

$$\frac{\mathrm{d}f}{\mathrm{d}n} \ge \frac{1}{\alpha} + \underbrace{\Theta\left(\frac{1}{\log^2 n}\right)}_{\delta(n)}$$

Remark: something very odd about this proof!

Theorem (Heckel, R. 2021)

Let $\varepsilon > 0$, and let $[s_n, t_n]$ be a sequence of intervals such that $\chi(G_{n,1/2}) \in [s_n, t_n]$ whp. Then there are infinitely many values n such that

$$t_n-s_n \geqslant n^{1/2-\varepsilon}.$$

Same idea, but (quite a bit) more calculation. With even more (+Heckel-Panagiotou):

Theorem (Heckel, R. 2021/3)

Concentration interval length of $\chi(G_{n,1/2})$ is at least

$$C \, \frac{n^{1/2} \log \log n}{\log^3 n}$$

for infinitely many n.

What going on? Number of α -sets

$$X_{lpha} = \#$$
 independent α -sets

$$egin{aligned} X_lpha & \sim \ ext{roughly} & ext{Po}(\mu_lpha) \ \ \mu_lpha &= n^ heta, \qquad 0 \leqslant heta(n) \leqslant 1. \end{aligned}$$

Benefit per α -set: $\approx 1/\log n$ colours.

Conjecture 1: $\chi(G_{n,\frac{1}{2}})$ is not concentrated on fewer than $n^{\theta/2}/\log n$ values.

Theorem (Heckel, R. 2021)

Suppose that $\chi(G_{n,\frac{1}{2}}) \in [s_n, t_n]$ whp for some sequence $[s_n, t_n]$ of intervals. Then for every n with $\theta(n) < 1 - \varepsilon$, there is some $n^* \sim n$ such that

$$t_{n^*} - s_{n^*} \ge C(\varepsilon) \cdot \frac{(n^*)^{\theta(n^*)/2}}{\log n^*}.$$

How about $(\alpha - 1)$ -sets?

$$X_{\alpha-1} = \#$$
 independent $(\alpha - 1)$ -sets

$$egin{aligned} &X_{lpha-1} & \underset{ ext{roughly}}{\sim} \operatorname{Po}(\mu_{lpha-1}) \ &\mu_{lpha-1} &= n^{1+ heta+o(1)}, & 0 \leqslant heta(n) \leqslant 1. \end{aligned}$$

New heuristic: The chromatic number is close to (or at least varies like) the **first moment threshold** (smallest k so that expected number of k-colourings ≥ 1).

Benefit per
$$(\alpha - 1)$$
-set: $\frac{n}{\mu_{\alpha-1} \log^3 n}$

Conjecture 2: $\chi(G_{n,\frac{1}{2}})$ is not concentrated on fewer than

$$\sqrt{\mu_{\alpha-1}} \cdot \frac{n}{\mu_{\alpha-1} \log^3 n} \quad \approx \quad \frac{n^{(1-\theta)/2}}{\log^{5/2} n}$$

values.

Conjectured lower bounds on concentration

From α -sets: $n^{\theta/2+o(1)}$

From $(\alpha - 1)$ -sets: $n^{(1-\theta)/2+o(1)}$

Is that all? $\chi(G_{n,1/2}) \approx \frac{n}{\alpha_0 - 3.89}$, so what about $(\alpha - 2)$ -sets, $(\alpha - 3)$ -sets, ...?

Bounded colourings: Two-point concentration

 $\chi_t(G)$: *t*-bounded chromatic number — all colour classes $\leqslant t$ vertices

Theorem (Heckel, Panagiotou 23) Let $m = \lfloor \frac{1}{2} \binom{n}{2} \rfloor$. There is some integer k(n) so that, whp, $\chi_{\alpha-2}(G_{n,m}) \in \{k(n), k(n) + 1\}$

k_t: *t*-bounded first moment threshold — smallest *k* so that expected number of *t*-bounded colourings is ≥ 1

$$k(n) \in \{\mathbf{k}_{\alpha-2} - 1, \, \mathbf{k}_{\alpha-2}\}$$

The Zigzag Conjecture

Recall $\mu_{\alpha} = n^{\theta}$, $0 \leq \theta \leq 1$.

Conjecture 3 (Bollobás, Heckel, Morris, Panagiotou, R., Smith): Let

$$\lambda = \max\left(\frac{\theta}{2}, \frac{1-\theta}{2}\right),$$

then the correct concentration interval length for $\chi(G_{n,\frac{1}{2}})$ is $n^{\lambda+o(1)}$.

Peaks and valleys

Asymptotic distribution

Conjecture 6: Gaussian limiting distribution.

(And we can read out a formula for the conjectured standard deviation from our heuristics.)

Open questions

- The proof only finds some *n*^{*} near *n* where the chromatic number is not too concentrated. Can we prove something for every n?
- Does the correct concentration interval length zigzag between $n^{1/4+o(1)}$ and $n^{1/2+o(1)}$? What about the other conjectures?
- Alon's upper bound: $\frac{\sqrt{n}}{\log n}$. Our lower bound: $\frac{\sqrt{n}\log\log n}{\log^3 n}$. Show that this is optimal?
- Other ranges of *p*?

 $p < n^{-\frac{1}{2}-\varepsilon}$: two-point concentration. How "far down" does non-concentration go? $p \rightarrow 1$: Infinitely many 'jumps' in concentration behaviour? (Recent conjecture by Surya and Warnke 2022)

Thank you!