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Graphs

A graph consists of a set V of vertices (nodes) and a set E of edges (links),
where an edge is just a pair of distinct vertices.

i 2 ‘

The data defining a graph G is: what are its vertices, and which pairs of vertices
are adjacent, i.e., joined by an edge.

Given a set V of n vertices, there are thus 2(5) possible graphs on V.
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What is a colouring?

Colouring of G: Colour vertices so that neighbours get different colours.

Chromatic number x(G):  Minimum number of colours we need.

Sounds like a game..., but important in applications.
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Chromatic numbers

What can we say about the chromatic numbers of all graphs on a set V of size n?

Range of values is 1 to n:

What is the typical value? What is the typical spread?
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Chromatic number of random graphs
Pick a graph on V = {1,2,..., n} uniformly at random. Or,

Consider G, 15 : choose a graph on V' by including each possible edge
independently with probability 1/2.

What can we say about x(G,p)?

\

Value? Concentration?

Upper and lower bounds? How much does x(Gp,p) vary?
Upper and lower bounds?
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Colouring is the same as partitioning into independent sets.
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Independence number

The independence number «(G) is the size of a largest independent set in G.
What do we expect a(Gp1/2) to be?

For each k, consider the random variable

Xy = number of k-vertex independent sets in G, 1 /5.
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EX, — (Z)z—(é) ~ kK2

log,(EXy) ~ klog, n — k?/2.

| AR
{ tl'%m\

Sad parabolal!
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Up to some size a(n) ~ 2log, n we have E[X,] > 1, and usually E[X,] very large.
For k > a(n) we have E[X,] < 1, and usually very small.

For k near the crossing point we have E[Xy1]/E[Xk] ~ n~'.

Usually E[X,+1] is small, so whp (with high probability) no independent sets of
this size.
Usually E[X,] is large... does that mean X, is?
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Consider the second moment or variance of X,,.
Involves summing over pairs S, S’ of sets of size a.

Only relevant parameter: r = |S N S|

N Vertices |

f
|

Easy calculation: var[X,] ~ E[X,], and in fact close to Poisson distribution.
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Conclusion: (usually) whp (G, 1/2) = a(n) for a known value a ~ 2log, n.

In a colouring with ¢ colours, n < ac. Thus whp

n

X(Gni2) = (1 - 0(1))2 logy 1
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Further bounds

Grimmett + McDiarmid 1975:

n
1-o(1 < j) < (I+o(l
(1= o ))2Iog2n X(Gny) < (140 ))|0g2”
Bollobas 1987: X(Gy 1) ~ 2log, n

Improvements: McDiarmid '90, Panagiotou & Steger '09, Fountoulakis, Kang & McDiarmid '10.

Heckel 2016:

X(Gnl): . +o( =
2 2log, n — 2log, logy n — 2 log® n

Explicit interval of length o (I ,72 > which contains x(G, 1) whp.
og n
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Idea

Directly study the random variable X = number of colourings.

Calculate EX and var[X].

The first is (relatively) easy:
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Two partitions
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Two partitions



Complications?

What about other edge probabilities p?

In general, p can vary with n, and we expect very different behaviour if p — 1 or
p — 0.

What about constant p € (0,1)? Surely the same?

NO! Annika showed p > 1 — 1/e® ~ 0.865 is different!
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Recent developements

Theorem (Heckel, Panagiotou 23)

If po > %t whp

on—l(Gn,%) = ka—l L O(n0.99).

® X(Gn,1/2) and Xa—1(Gp,1/2) differ by at most about s

— This gets us sharper upper and lower bounds for x (G, 1/2).

Proof is clever and complicated!

19/50



What can we say about x(G,p)?

\

Value? Concentration?

Upper and lower bounds? How much does x(G, ) vary?
Upper and lower bounds?
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Concentration?

Shamir, Spencer 1987: For any function p = p(n), x(G, ) is whp contained
in a sequence of intervals of length about \/n. J

Proof uses martingales!
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Martingales

Informally: a sequence of random variables (M;) where the expected value of
M1 ‘at time t' is M.

E.g., total winnings after a sequence of fair bets: M; 1 = M; + 5; W, 1, where S;
(amount bet) depends on what's happened so far, but conditional on the past,
Wit is £1 with equal probability.

Formally, Fo C F1 C -+ C F, a sequence of o-algebras (information available at
time t), and

e M, is Fi-measurable (known at time t),
(] E[Mt+1 ‘ ]:t] = Mt-

(We are in a finite probabliity space here, so no problems with integrability.)
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Martingales

Key property: a martingale ‘behaves much like' a sum of independent random
variables. In particular

Theorem (Hoeffding, Azuma)

Let (M;){_, be a martingale such that |M;;1 — M;| < C for every t. Then for any
X

P(|M, — Mg| > x) < e /@),

In other words, similar Gaussian tails to sum of n independent RVs with variance
C?, whose sum has variance C?n.
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Lipschitz functions
A function defined on graphs is 1-(vertex)-Lipschitz if, whenever G — v = G’ — v,
then |f(G) — f(G')| < 1.

E.g., chromatic number! We have

X(6 = v) <x(6) <x(6G—v)+1.

X(G—v) <x(G)<x(G—v)+1.
So [x(G) —x(G) < 1.
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Vertex exposure martingales

Let f : G — R be a function defined on graphs. Let G = G, , be random.

Let F; be the information describing which edges among vertices 1,...,t are
present. Then (F;) is a filtration, so M, := E[f(G) | F¢] is a martingale!

Called the ‘vertex exposure martingale’.

Note that My = E[f(G)] (no information), while M, = f(G): complete
information.

If f is 1-Lipschitz, |M11 — M| < 1. (Easy argument.)
Shamir—Spencer follows!
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Concentration?

Shamir, Spencer 1987: For any function p = p(n), x(G, ) is whp contained
in a sequence of intervals of length about /n. J

p=1- Ton: not concentrated on fewer than ©(+/n) values
n

1

n
p < 2: slight improvement to v/

Al
log n (Alon)

(Clever idea: use f(G) minimum number of vertices to delete until can colour
with k colours, for suitable k.)

1

p < n~27: 2 values (‘two-point concentration’)
(Alon, Krivelevich 97, tuczak 91)

— X(G,,p) behaves almost deterministically
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The opposite question

Question (Bollobas, Erdés)
Can we show that X(Gn,%) is not concentrated on 100 consecutive values?

Any non-trivial examples of non-concentration?

“even the weakest results claiming lack of concentration would be of interest”
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The opposite question

Theorem (Heckel 2019)

X(Gn,%) is not contained whp in any sequence of intervals of length n'/*=¢ for any
fixed € > 0.

More formally:

Theorem (Heckel 2019)

Let € > 0, and let [s, t;] be a sequence of intervals such that x(Gj,1/2) € [sn, tn]
whp. Then there are infinitely many values n such that

t, — s, = nt/4E.
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Intuition

Intuition: An optimal colouring of G,

1 contains all or almost all independent
a-sets as colour classes.

X(G,,,%) should vary at least as much as X, (roughly).
X, = # independent a-sets
© @
A
"z

©

Xy ~ Po(u) — varies by £/
roughly

Gn
©

where p=n’  0<6(n) <1

29/50



Proof idea

Plant an extra independent a-set:

n vedtices
TN T0TAL

Q,

Kondom  edqes NO EP6ES

Starting from G = G,_,,1/2, obtain a new random graph G’, with
x(G") <x(G)+ 1.
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Hide the hole

Does G’ look like Gp,1/27 Not quite - it has a hole.
Hide the hole! Shuffle the vertices.
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Distribution of G”

For a possible outcome H (graph on n vertices), what is P(G” = H)?
S must get mapped to an independent set in H of size a.
There are X, (H) of these.

Given any one,
1

o (1/2)®)-6).

P(G"” = H with S mapped here) =

KEY: P(G"” = H) is proportional to X, (H).
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Size-biased distribution

Given any random variable Z, and size parameter s(Z), the size-biased
distribtuion Z* has B(Z 15(2)
=2Z)s\z
]P> Z>‘< = = ——
(27 =2) Es(Z)

Common in various statistics contexts.
Our G” has distribution of G, 1/, size-biased by X,.

Easy check: since X, is concentrated, size-biasing makes little difference:

" Lo [Xa = I} ( 1 )
drv(G”, Gr1ja) < = o—
v ( 1/2) [ m N

l\)

where 1 = E[X,].
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Key Lemma




Coupling

Outcome: can couple G,_, 1/ and G, 1,5 so that

X(Gn,1/2) < X(Gn—a,1/2) +1
with failure probability O(1//p).

For r up to around /it can chain: there is a coupling so that

X(Gn+ro¢,1/2) < X(Gn,1/2) +r

with failure probability < 0.1, say.
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The coupling result

Coupling of G, 15 and G 1/» with n = n+ ar so that
IP(X(Gn’,lﬂ) < X(Gn,1/2) + f) > 0.9.

G’: n’ vertices

: G: n vertices ‘

I

normal Gn’%

\ ]
plant r random a-sets
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Proof ingredients
Ingredient 1: A (weak) concentration type result

IX(Gn,1/2) — f(n)| < A(n) whp

where f(n) is some function with slope
d 1
—f —+0.
dn () > e +
Ingredient 2: A coupling result

Couple Gy, 1/ and G,y 1/> with n’ = n+ ar (same « as above) so that

IP><X(Gn’,1/2) < X(Gnyl/g) + r) > 0.9.
Trick: Suppose that x(G, 1) € [s, ta] whp.

1
2

Sv\ .Ev\ Sw cw
—>
L0
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Ingredient 2: A coupling result

Couple G, 1/2 and G 12 with " = n+ ar (same « as above) so that

P(x(Gr1/2) < X(Garja) +7) > 09,

Trick: Suppose that x(G, 1) € [s,, t,] whp.

1
2

Sv\ .Ev\ Sw cw
—
L0

Why? Because with probability at least 0.8,
s < X(Gpr1/2) < X(Gpaj2) +r <ty +r.

But s, and t, are not random.
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If all intervals short: Contradiction!

So there is at least one long interval. (Length =~ «dr)
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Ingredient 1: The (weak) concentration type result
Want:

(G, 3) = F(n) + A(n)

af > 1 +9
dn” a
Heckel 2016:
n n
c _ hp.
X( n,%) 2|og2n—2|ogzlog2n—2+o(Iog2n) e
F(n) An)

then (unless p, is very close to n)

df _ 1 1
—=>—-+0 >
dn”~ « log n

————
&(n)
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Remark: something very odd about this proof!

Theorem (Heckel, R. 2021)

Let € > 0, and let [s,, t;] be a sequence of intervals such that x(Gj,1/2) € [sn, tn]

whp. Then there are infinitely many values n such that

th,—Sp = n

1/2—¢

Same idea, but (quite a bit) more calculation. With even more

(+Heckel-Panagiotou):
Theorem (Heckel, R. 2021/3)

Concentration interval length of x(G, 1/2) is at least

for infinitely many n.

n'/2loglog n

Iog3 n
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What going on? Number of a-sets

X, = # independent a-sets @ @
G

X, ~ Po(ia) e

roughly

,ua:no, 0<0(n)<1. @

. 2
Xo ~ Po(ne), varies by +nf/
o jumps up o jumps up o jumps up
to next integer to next integer to next integer |Og n
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Xao ~ Po(ne), varies by +nf/2

@ jumps up @ jumps up @ jumps up Iog n
to next integer to next integer to next integer

Benefit per a-set: = 1/log n colours.

Conjecture 1:  x(G, 1) is not concentrated on fewer than n’/2 /log n values. J

Theorem(Heckel, R. 2021)
Suppose that x(G, 1) € [sp, t,] whp for some sequence [sy, t,] of intervals. Then

1
’2
for every n with 6(n) < 1 — ¢, there is some n* ~ n such that

(n*)G(n*)/2

tne = s > C(e) - log n*
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How about (o — 1)-sets?
Xo—1 = # independent (o — 1)-sets

Xa—l ~ PO(,UJa—l)

roughly
fia_q = ntt0Fe®) 0<6(n) < 1.

New heuristic: The chromatic number is close to (or at least varies like) the first
moment threshold (smallest k so that expected number of k-colourings > 1). J

Benefit per (« — 1)-set: !

fa—1log® n

Conjecture 2: (G

n,1) is not concentrated on fewer than

n - n(l_a)/2

/J/a,]_ 5/2

Po—1 Iog3 n log> < n

values.

447750



Conjectured lower bounds on concentration
p0/2+0(1)

From (o — 1)-sets: n(1=0)/2+0(1)

log(interval length)

log n

log n

Is that all? x(Gp1/2) = so what about (a — 2)-sets, (o — 3)-sets, ...?

"
g — 3.89'
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Bounded colourings: Two-point concentration

Xt(G): t-bounded chromatic number — all colour classes < t vertices

Theorem (Heckel, Panagiotou 23)

1
Let m = b (g)J There is some integer k(n) so that, whp,

Xa—2(Gn,m) € {k(n), k(n) + 1}

k:: t-bounded first moment threshold — smallest k so that expected number
of t-bounded colourings is > 1

k(n) € {ka—2 — 1, ka—2} J
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The Zigzag Conjecture

Recall po, = n’, 0<0<1.

Conjecture 3 (Bollobas, Heckel, Morris, Panagiotou, R., Smith):
Let

0 1-0
A= max(—, —) ,
2" 2
then the correct concentration interval length for x(G,, 1) is n* o)
log(interval length)
log n
1 A
2
1 N
4
0

log n
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Peaks and valleys

log(interval length)

log n

Conjecture 4: The top of the zigzag is of order

log

n

n'/2loglog n
—_—

log n

Conjecture 5: The bottom of the zigzag is of order

n1/4

7/4 n

log
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Asymptotic distribution

log(interval length)

log n

log n

Conjecture 6: Gaussian limiting distribution.

(And we can read out a formula for the conjectured standard deviation from our
heuristics.)
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Open questions

@ The proof only finds some n* near n where the chromatic number is not too
concentrated. Can we prove something for every n?

1/4+0(1)

@ Does the correct concentration interval length zigzag between n and

n'/2+°()?2 What about the other conjectures?

log |
@ Alon’s upper bound: ﬁ Our lower bound: m

3 . Show that this is
log n log™ n

optimal?
@ Other ranges of p?

p < nTimE two-point concentration. How “far down" does
non-concentration go?

p — 1: Infinitely many ‘jumps’ in concentration behaviour? (Recent
conjecture by Surya and Warnke 2022)

Thank you!
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