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Graphs

A graph consists of a set V of vertices (nodes) and a set E of edges (links),
where an edge is just a pair of distinct vertices.

The data defining a graph G is: what are its vertices, and which pairs of vertices
are adjacent, i.e., joined by an edge.

Given a set V of n vertices, there are thus 2(n
2) possible graphs on V .
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What is a colouring?

Colouring of G : Colour vertices so that neighbours get different colours.

Chromatic number χ(G ): Minimum number of colours we need.

Sounds like a game..., but important in applications.
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Chromatic numbers

What can we say about the chromatic numbers of all graphs on a set V of size n?

Range of values is 1 to n:

What is the typical value? What is the typical spread?
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Chromatic number of random graphs

Pick a graph on V = {1, 2, . . . , n} uniformly at random. Or,

Consider Gn,1/2 : choose a graph on V by including each possible edge
independently with probability 1/2.

What can we say about χ(Gn,p)?

Value? Concentration?

Upper and lower bounds? How much does χ(Gn,p) vary?
Upper and lower bounds?
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An independent set in G is a set of vertices spanning no edges.

Colouring is the same as partitioning into independent sets.
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Independence number

The independence number α(G ) is the size of a largest independent set in G .

What do we expect α(Gn,1/2) to be?

For each k, consider the random variable

Xk = number of k-vertex independent sets in Gn,1/2.
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EXk =

(
n

k

)
(1 − p)(k

2) =

(
n

k

)
2−(k

2).
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EXk =

(
n

k

)
2−(k

2) ≈ nk2−k2/2

log2(EXk) ≈ k log2 n − k2/2.

Sad parabola!
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Up to some size α(n) ≈ 2 log2 n we have E[Xk ] ⩾ 1, and usually E[Xk ] very large.

For k > α(n) we have E[Xk ] < 1, and usually very small.

For k near the crossing point we have E[Xk+1]/E[Xk ] ≈ n−1.

Usually E[Xα+1] is small, so whp (with high probability) no independent sets of
this size.
Usually E[Xα] is large... does that mean Xα is?
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Consider the second moment or variance of Xα.

Involves summing over pairs S ,S ′ of sets of size α.

Only relevant parameter: r = |S ∩ S ′|.

Easy calculation: var[Xα] ≈ E[Xα], and in fact close to Poisson distribution.
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Conclusion: (usually) whp α(Gn,1/2) = α(n) for a known value α ≈ 2 log2 n.

In a colouring with c colours, n ⩽ αc . Thus whp

χ(Gn,1/2) ⩾ (1 − o(1))
n

2 log2 n
.
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Further bounds

Grimmett + McDiarmid 1975:

(1 − o(1))
n

2 log2 n
⩽ χ(Gn, 12

) ⩽ (1 + o(1))
n

log2 n
whp.

Bollobás 1987: χ(Gn, 12
) ∼ n

2 log2 n
whp.

Improvements: McDiarmid ’90, Panagiotou & Steger ’09, Fountoulakis, Kang & McDiarmid ’10.

Heckel 2016:

χ
(
Gn, 12

)
=

n

2 log2 n − 2 log2 log2 n − 2
+ o

(
n

log2 n

)
whp.

Explicit interval of length o

(
n

log2 n

)
which contains χ(Gn, 12

) whp.
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Idea

Directly study the random variable X = number of colourings.

Calculate EX and var[X ].

The first is (relatively) easy:
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One partition
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Two partitions
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Two partitions
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Complications?

What about other edge probabilities p?

In general, p can vary with n, and we expect very different behaviour if p → 1 or
p → 0.

What about constant p ∈ (0, 1)? Surely the same?

NO! Annika showed p > 1 − 1/e2 ≈ 0.865 is different!
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Recent developements

Theorem (Heckel, Panagiotou 23)

If µα ⩾ n0.1, whp
χα−1(Gn, 12

) = kα−1 + O(n0.99).

χ(Gn,1/2) and χα−1(Gn,1/2) differ by at most about µα

→ This gets us sharper upper and lower bounds for χ(Gn,1/2).

Proof is clever and complicated!
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What can we say about χ(Gn,p)?

Value? Concentration?

Upper and lower bounds? How much does χ(Gn,p) vary?
Upper and lower bounds?
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Concentration?

Shamir, Spencer 1987: For any function p = p(n), χ(Gn,p) is whp contained
in a sequence of intervals of length about

√
n.

Proof uses martingales!
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Martingales

Informally: a sequence of random variables (Mt) where the expected value of
Mt+1 ‘at time t’ is Mt .

E.g., total winnings after a sequence of fair bets: Mt+1 = Mt + StWt+1, where St
(amount bet) depends on what’s happened so far, but conditional on the past,
Wt+1 is ±1 with equal probability.

Formally, F0 ⊂ F1 ⊂ · · · ⊂ Fn a sequence of σ-algebras (information available at
time t), and

Mt is Ft-measurable (known at time t),

E[Mt+1 | Ft ] = Mt .

(We are in a finite probabliity space here, so no problems with integrability.)
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Martingales

Key property: a martingale ‘behaves much like’ a sum of independent random
variables. In particular

Theorem (Hoeffding, Azuma)

Let (Mt)
n
t=0 be a martingale such that |Mt+1 −Mt | ⩽ C for every t. Then for any

x
P(|Mn −M0| ⩾ x) ⩽ e−x2/(2C 2n).

In other words, similar Gaussian tails to sum of n independent RVs with variance
C 2, whose sum has variance C 2n.
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Lipschitz functions

A function defined on graphs is 1-(vertex)-Lipschitz if, whenever G − v = G ′ − v ,
then |f (G ) − f (G ′)| ⩽ 1.

E.g., chromatic number! We have

χ(G − v) ⩽ χ(G ) ⩽ χ(G − v) + 1.

χ(G − v) ⩽ χ(G ′) ⩽ χ(G − v) + 1.

So |χ(G ) − χ(G ′)| ⩽ 1.
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Vertex exposure martingales

Let f : G → R be a function defined on graphs. Let G = Gn,p be random.

Let Ft be the information describing which edges among vertices 1, . . . , t are
present. Then (Ft) is a filtration, so Mt := E[f (G ) | Ft ] is a martingale!

Called the ‘vertex exposure martingale’.

Note that M0 = E[f (G )] (no information), while Mn = f (G ): complete
information.

If f is 1-Lipschitz, |Mt+1 −Mt | ⩽ 1. (Easy argument.)
Shamir–Spencer follows!
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Concentration?

Shamir, Spencer 1987: For any function p = p(n), χ(Gn,p) is whp contained
in a sequence of intervals of length about

√
n.

p = 1 − 1

10n
: not concentrated on fewer than Θ(

√
n) values

p ⩽
1

2
: slight improvement to

√
n

log n
(Alon)

(Clever idea: use f (G ) minimum number of vertices to delete until can colour
with k colours, for suitable k.)

p < n−
1
2−ε: 2 values (‘two-point concentration’)

(Alon, Krivelevich 97,  Luczak 91)

→ χ(Gn,p) behaves almost deterministically
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The opposite question

Question (Bollobás, Erdős)

Can we show that χ(Gn, 12
) is not concentrated on 100 consecutive values?

Any non-trivial examples of non-concentration?

“even the weakest results claiming lack of concentration would be of interest”
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The opposite question

Theorem (Heckel 2019)

χ(Gn, 12
) is not contained whp in any sequence of intervals of length n1/4−ε for any

fixed ε > 0.

More formally:

Theorem (Heckel 2019)

Let ε > 0, and let [sn, tn] be a sequence of intervals such that χ(Gn,1/2) ∈ [sn, tn]
whp. Then there are infinitely many values n such that

tn − sn ⩾ n1/4−ε.
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Intuition

Intuition: An optimal colouring of Gn, 12
contains all or almost all independent

α-sets as colour classes.

χ(Gn, 12
) should vary at least as much as Xα (roughly).

Xα = # independent α-sets

Xα ∼
roughly

Po(µ) → varies by ±√
µ

where µ = nθ, 0 ⩽ θ(n) ⩽ 1.
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Proof idea

Plant an extra independent α-set:

Starting from G = Gn−α,1/2, obtain a new random graph G ′, with
χ(G ′) ⩽ χ(G ) + 1.
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Hide the hole

Does G ′ look like Gn,1/2? Not quite - it has a hole.
Hide the hole! Shuffle the vertices.
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Distribution of G ′′

For a possible outcome H (graph on n vertices), what is P(G ′′ = H)?

S must get mapped to an independent set in H of size α.

There are Xα(H) of these.

Given any one,

P(G ′′ = H with S mapped here) =
1(
n
α

) (1/2)(n
2)−(α

2).

KEY: P(G ′′ = H) is proportional to Xα(H).
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Size-biased distribution

Given any random variable Z , and size parameter s(Z ), the size-biased
distribtuion Z∗ has

P(Z∗ = z) =
P(Z = z)s(z)

Es(Z )
.

Common in various statistics contexts.

Our G ′′ has distribution of Gn,1/2 size-biased by Xα.

Easy check: since Xα is concentrated, size-biasing makes little difference:

dTV(G ′′,Gn,1/2) ⩽
1

2
E

[
|Xα − µ|

µ

]
= O

(
1
√
µ

)
where µ = E[Xα].
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Key Lemma

dTV

(
Gn, 12

,G ′′
)

= O

(
1
√
µ

)
,

where µ = E[Xα].

Proof:

dTV

(
Gn, 12

,G ′′
)

=
1

2

∑
G

∣∣∣P (G ′′ = G ) −P
(
Gn, 12

= G
)∣∣∣

=
1

2

∑
G

∣∣∣∣∣Xα(G )(
n
α

) (
1

2

)(n
2)−(α

2)
−
(

1

2

)(n
2)
∣∣∣∣∣

=
1

2

∑
G

(
1

2

)(n
2)

∣∣∣∣Xα(G ) −
(
n
α

) (
1
2

)(α
2)
∣∣∣∣(

n
α

) (
1
2

)(α
2)

=
1

2
E

[
|Xα − µ|

µ

]
= O

(
1
√
µ

)

34 / 50



Coupling

Outcome: can couple Gn−α,1/2 and Gn,1/2 so that

χ(Gn,1/2) ⩽ χ(Gn−α,1/2) + 1

with failure probability O(1/
√
µ).

For r up to around
√
µ can chain: there is a coupling so that

χ(Gn+rα,1/2) ⩽ χ(Gn,1/2) + r

with failure probability ⩽ 0.1, say.
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The coupling result

Coupling of Gn,1/2 and Gn′,1/2 with n′ = n + αr so that

P
(
χ(Gn′,1/2) ⩽ χ(Gn,1/2) + r

)
> 0.9.

G ′: n′ vertices
G : n vertices

plant r random α-sets

normal Gn, 12
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Proof ingredients
Ingredient 1: A (weak) concentration type result

|χ(Gn,1/2) − f (n)| ⩽ ∆(n) whp

where f (n) is some function with slope

d

dn
f (n) >

1

α
+ δ.

Ingredient 2: A coupling result

Couple Gn,1/2 and Gn′,1/2 with n′ = n + αr (same α as above) so that

P
(
χ(Gn′,1/2) ⩽ χ(Gn,1/2) + r

)
> 0.9.

Trick: Suppose that χ(Gn, 12
) ∈ [sn, tn] whp.
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Ingredient 2: A coupling result

Couple Gn,1/2 and Gn′,1/2 with n′ = n + αr (same α as above) so that

P
(
χ(Gn′,1/2) ⩽ χ(Gn,1/2) + r

)
> 0.9.

Trick: Suppose that χ(Gn, 12
) ∈ [sn, tn] whp.

Why? Because with probability at least 0.8,

sn′ ⩽ χ(Gn′,1/2) ⩽ χ(Gn,1/2) + r ⩽ tn + r .

But sn′ and tn are not random.
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n

f (n)

f (n) ± ∆(n)

Slope >
1

α
+ δ

sn

tn sn′

tn′

αr

⩽ r

Slope ⩽
1

α

︸ ︷︷ ︸ }

If all intervals short: Contradiction!

So there is at least one long interval. (Length ≈ αδr)

39 / 50



Ingredient 1: The (weak) concentration type result
Want:

χ(Gn, 12
) = f (n) ± ∆(n)

df

dn
⩾

1

α
+ δ

Heckel 2016:

χ
(
Gn, 12

)
=

n

2 log2 n − 2 log2 log2 n − 2︸ ︷︷ ︸
f (n)

+ o

(
n

log2 n

)
︸ ︷︷ ︸

∆(n)

whp.

then (unless µα is very close to n)

df

dn
⩾

1

α
+ Θ

(
1

log2 n

)
︸ ︷︷ ︸

δ(n)
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Remark: something very odd about this proof!

Theorem (Heckel, R. 2021)

Let ε > 0, and let [sn, tn] be a sequence of intervals such that χ(Gn,1/2) ∈ [sn, tn]
whp. Then there are infinitely many values n such that

tn − sn ⩾ n1/2−ε.

Same idea, but (quite a bit) more calculation. With even more
(+Heckel–Panagiotou):

Theorem (Heckel, R. 2021/3)

Concentration interval length of χ(Gn,1/2) is at least

C
n1/2 log log n

log3 n

for infinitely many n.

41 / 50



What going on? Number of α-sets

Xα = # independent α-sets

Xα ∼
roughly

Po(µα)

µα = nθ, 0 ⩽ θ(n) ⩽ 1.

log n

θ(n)
Xα ∼ Po(nθ), varies by ±nθ/2

α jumps up
to next integer

α jumps up
to next integer

α jumps up
to next integer

1

0
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log n

θ(n)
Xα ∼ Po(nθ), varies by ±nθ/2

α jumps up
to next integer

α jumps up
to next integer

α jumps up
to next integer

1

0

Benefit per α-set: ≈ 1/ log n colours.

Conjecture 1: χ(Gn, 12
) is not concentrated on fewer than nθ/2/ log n values.

Theorem(Heckel, R. 2021)

Suppose that χ(Gn, 12
) ∈ [sn, tn] whp for some sequence [sn, tn] of intervals. Then

for every n with θ(n) < 1 − ε, there is some n∗ ∼ n such that

tn∗ − sn∗ ⩾ C (ε) · (n∗)θ(n
∗)/2

log n∗
.
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How about (α− 1)-sets?

Xα−1 = # independent (α− 1)-sets

Xα−1 ∼
roughly

Po(µα−1)

µα−1 = n1+θ+o(1), 0 ⩽ θ(n) ⩽ 1.

New heuristic: The chromatic number is close to (or at least varies like) the first
moment threshold (smallest k so that expected number of k-colourings ⩾ 1).

Benefit per (α− 1)-set:
n

µα−1 log3 n

Conjecture 2: χ(Gn, 12
) is not concentrated on fewer than

√
µα−1 ·

n

µα−1 log3 n
≈ n(1−θ)/2

log5/2 n

values.
44 / 50



Conjectured lower bounds on concentration

From α-sets: nθ/2+o(1)

From (α− 1)-sets: n(1−θ)/2+o(1)

log(interval length)

log n

log n

1

2

1

4

0

Is that all? χ(Gn,1/2) ≈ n

α0 − 3.89
, so what about (α− 2)-sets, (α− 3)-sets, ...?
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Bounded colourings: Two-point concentration

χt(G ): t-bounded chromatic number — all colour classes ⩽ t vertices

Theorem (Heckel, Panagiotou 23)

Let m =
⌊1

2

(
n

2

)⌋
. There is some integer k(n) so that, whp,

χα−2(Gn,m) ∈ {k(n), k(n) + 1}

kt : t-bounded first moment threshold — smallest k so that expected number
of t-bounded colourings is ⩾ 1

k(n) ∈ {kα−2 − 1, kα−2}
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The Zigzag Conjecture
Recall µα = nθ, 0 ⩽ θ ⩽ 1.

Conjecture 3 (Bollobás, Heckel, Morris, Panagiotou, R., Smith):
Let

λ = max
(θ

2
,

1 − θ

2

)
,

then the correct concentration interval length for χ(Gn, 12
) is nλ+o(1).

log(interval length)

log n

log n

λ1

2

1

4

0
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Peaks and valleys
log(interval length)

log n

log n

1

2

1

4

0

Conjecture 4: The top of the zigzag is of order
n1/2 log log n

log3 n
.

Conjecture 5: The bottom of the zigzag is of order
n1/4

log7/4 n
.
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Asymptotic distribution

log(interval length)

log n

log n

1

2

1

4

0

Conjecture 6: Gaussian limiting distribution.

(And we can read out a formula for the conjectured standard deviation from our
heuristics.)
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Open questions

The proof only finds some n∗ near n where the chromatic number is not too
concentrated. Can we prove something for every n?

Does the correct concentration interval length zigzag between n1/4+o(1) and
n1/2+o(1)? What about the other conjectures?

Alon’s upper bound:

√
n

log n
. Our lower bound:

√
n log log n

log3 n
. Show that this is

optimal?

Other ranges of p?

p < n−
1
2−ε: two-point concentration. How “far down” does

non-concentration go?
p → 1: Infinitely many ‘jumps’ in concentration behaviour? (Recent
conjecture by Surya and Warnke 2022)

Thank you!
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