How does the chromatic number of a random graph vary?

Oliver Riordan
University of Oxford

COLMEA, PUC-Rio, Gávea

22 November 2023

Joint work (and slides!) with Annika Heckel.

Graphs

A graph consists of a set V of vertices (nodes) and a set E of edges (links), where an edge is just a pair of distinct vertices.

The data defining a graph G is: what are its vertices, and which pairs of vertices are adjacent, i.e., joined by an edge.
Given a set V of n vertices, there are thus $2\binom{n}{2}$ possible graphs on V.

What is a colouring?

Colouring of G : Colour vertices so that neighbours get different colours.

Chromatic number $\chi(G)$: Minimum number of colours we need.

Sounds like a game..., but important in applications.

Chromatic numbers

What can we say about the chromatic numbers of all graphs on a set V of size n ?

Range of values is 1 to n :

What is the typical value? What is the typical spread?

Chromatic number of random graphs

Pick a graph on $V=\{1,2, \ldots, n\}$ uniformly at random. Or,
Consider $G_{n, 1 / 2}$: choose a graph on V by including each possible edge independently with probability $1 / 2$.

What can we say about $\chi\left(G_{n, p}\right)$?

Value?

Upper and lower bounds?

Concentration?

How much does $\chi\left(G_{n, p}\right)$ vary?
Upper and lower bounds?

Independent set

An independent set in G is a set of vertices spanning no edges.

Colouring is the same as partitioning into independent sets.

Independence number

The independence number $\alpha(G)$ is the size of a largest independent set in G.

What do we expect $\alpha\left(G_{n, 1 / 2}\right)$ to be?

For each k, consider the random variable

$$
X_{k}=\text { number of } k \text {-vertex independent sets in } G_{n, 1 / 2}
$$

$$
\mathbb{E} X_{k}=\binom{n}{k}(1-p)^{\binom{k}{2}}=\binom{n}{k} 2^{-\binom{k}{2}} .
$$

$$
\begin{aligned}
& \mathbb{E} X_{k}=\binom{n}{k} 2^{-\binom{k}{2}} \approx n^{k} 2^{-k^{2} / 2} \\
& \log _{2}\left(\mathbb{E} X_{k}\right) \approx k \log _{2} n-k^{2} / 2
\end{aligned}
$$

Sad parabola!

Up to some size $\alpha(n) \approx 2 \log _{2} n$ we have $\mathbb{E}\left[X_{k}\right] \geqslant 1$, and usually $\mathbb{E}\left[X_{k}\right]$ very large.
For $k>\alpha(n)$ we have $\mathbb{E}\left[X_{k}\right]<1$, and usually very small.
For k near the crossing point we have $\mathbb{E}\left[X_{k+1}\right] / \mathbb{E}\left[X_{k}\right] \approx n^{-1}$.

Usually $\mathbb{E}\left[X_{\alpha+1}\right]$ is small, so whp (with high probability) no independent sets of this size.
Usually $\mathbb{E}\left[X_{\alpha}\right]$ is large... does that mean X_{α} is?

Consider the second moment or variance of X_{α}.
Involves summing over pairs S, S^{\prime} of sets of size α.
Only relevant parameter: $r=\left|S \cap S^{\prime}\right|$.

Easy calculation: $\operatorname{var}\left[X_{\alpha}\right] \approx \mathbb{E}\left[X_{\alpha}\right]$, and in fact close to Poisson distribution.

Conclusion: (usually) whp $\alpha\left(G_{n, 1 / 2}\right)=\alpha(n)$ for a known value $\alpha \approx 2 \log _{2} n$.

In a colouring with c colours, $n \leqslant \alpha c$. Thus whp

$$
\chi\left(G_{n, 1 / 2}\right) \geqslant(1-o(1)) \frac{n}{2 \log _{2} n} .
$$

Further bounds

Grimmett + McDiarmid 1975:

$$
(1-o(1)) \frac{n}{2 \log _{2} n} \leqslant \chi\left(G_{n, \frac{1}{2}}\right) \leqslant(1+o(1)) \frac{n}{\log _{2} n} \text { whp. }
$$

Bollobás 1987:

$$
\chi\left(G_{n, \frac{1}{2}}\right) \sim \frac{n}{2 \log _{2} n} \text { whp. }
$$

Improvements: McDiarmid '90, Panagiotou \& Steger '09, Fountoulakis, Kang \& McDiarmid '10. Heckel 2016:

$$
\chi\left(G_{n, \frac{1}{2}}\right)=\frac{n}{2 \log _{2} n-2 \log _{2} \log _{2} n-2}+o\left(\frac{n}{\log ^{2} n}\right) \text { whp. }
$$

Explicit interval of length $\circ\left(\frac{n}{\log ^{2} n}\right)$ which contains $\chi\left(G_{n, \frac{1}{2}}\right)$ whp.

Idea

Directly study the random variable $X=$ number of colourings.

Calculate $\mathbb{E} X$ and $\operatorname{var}[X]$.

The first is (relatively) easy:

One partition

Two partitions

Two partitions

Complications?

What about other edge probabilities p ?

In general, p can vary with n, and we expect very different behaviour if $p \rightarrow 1$ or $p \rightarrow 0$.

What about constant $p \in(0,1)$? Surely the same?

NO! Annika showed $p>1-1 / e^{2} \approx 0.865$ is different!

Recent developements

Theorem (Heckel, Panagiotou 23)
If $\mu_{\alpha} \geqslant n^{0.1}$, whp

$$
\chi_{\alpha-1}\left(G_{n, \frac{1}{2}}\right)=\mathbf{k}_{\alpha-1}+O\left(n^{0.99}\right) .
$$

- $\chi\left(G_{n, 1 / 2}\right)$ and $\chi_{\alpha-1}\left(G_{n, 1 / 2}\right)$ differ by at most about μ_{α}
\rightarrow This gets us sharper upper and lower bounds for $\chi\left(G_{n, 1 / 2}\right)$.

Proof is clever and complicated!

What can we say about $\chi\left(G_{n, p}\right)$?

Value?

Upper and lower bounds?

Concentration?

How much does $\chi\left(G_{n, p}\right)$ vary?
Upper and lower bounds?

Concentration?

Shamir, Spencer 1987: For any function $p=p(n), \chi\left(G_{n, p}\right)$ is whp contained in a sequence of intervals of length about \sqrt{n}.

Proof uses martingales!

Martingales

Informally: a sequence of random variables $\left(M_{t}\right)$ where the expected value of M_{t+1} 'at time t ' is M_{t}.
E.g., total winnings after a sequence of fair bets: $M_{t+1}=M_{t}+S_{t} W_{t+1}$, where S_{t} (amount bet) depends on what's happened so far, but conditional on the past, W_{t+1} is ± 1 with equal probability.

Formally, $\mathcal{F}_{0} \subset \mathcal{F}_{1} \subset \cdots \subset \mathcal{F}_{n}$ a sequence of σ-algebras (information available at time t), and

- M_{t} is \mathcal{F}_{t}-measurable (known at time t),
- $\mathbb{E}\left[M_{t+1} \mid \mathcal{F}_{t}\right]=M_{t}$.
(We are in a finite probabliity space here, so no problems with integrability.)

Martingales

Key property: a martingale 'behaves much like' a sum of independent random variables. In particular

Theorem (Hoeffding, Azuma)

Let $\left(M_{t}\right)_{t=0}^{n}$ be a martingale such that $\left|M_{t+1}-M_{t}\right| \leqslant C$ for every t. Then for any x

$$
\mathbb{P}\left(\left|M_{n}-M_{0}\right| \geqslant x\right) \leqslant e^{-x^{2} /\left(2 C^{2} n\right)} .
$$

In other words, similar Gaussian tails to sum of n independent RV s with variance C^{2}, whose sum has variance $C^{2} n$.

Lipschitz functions

A function defined on graphs is 1-(vertex)-Lipschitz if, whenever $G-v=G^{\prime}-v$, then $\left|f(G)-f\left(G^{\prime}\right)\right| \leqslant 1$.
E.g., chromatic number! We have

$$
\begin{aligned}
& \chi(G-v) \leqslant \chi(G) \leqslant \chi(G-v)+1 \\
& \chi(G-v) \leqslant \chi\left(G^{\prime}\right) \leqslant \chi(G-v)+1
\end{aligned}
$$

So $\left|\chi(G)-\chi\left(G^{\prime}\right)\right| \leqslant 1$.

Vertex exposure martingales

Let $f: \mathcal{G} \rightarrow \mathbb{R}$ be a function defined on graphs. Let $G=G_{n, p}$ be random.
Let \mathcal{F}_{t} be the information describing which edges among vertices $1, \ldots, t$ are present. Then $\left(\mathcal{F}_{t}\right)$ is a filtration, so $M_{t}:=\mathbb{E}\left[f(G) \mid \mathcal{F}_{t}\right]$ is a martingale!

Called the 'vertex exposure martingale'.
Note that $M_{0}=\mathbb{E}[f(G)]$ (no information), while $M_{n}=f(G)$: complete information.

If f is 1 -Lipschitz, $\left|M_{t+1}-M_{t}\right| \leqslant 1$. (Easy argument.) Shamir-Spencer follows!

Concentration?

Shamir, Spencer 1987: For any function $p=p(n), \chi\left(G_{n, p}\right)$ is whp contained in a sequence of intervals of length about \sqrt{n}.

$$
\begin{gathered}
p=1-\frac{1}{10 n}: \text { not concentrated on fewer than } \Theta(\sqrt{n}) \text { values } \\
p \leqslant \frac{1}{2}: \text { slight improvement to } \frac{\sqrt{n}}{\log n} \text { (Alon) }
\end{gathered}
$$

(Clever idea: use $f(G)$ minimum number of vertices to delete until can colour with k colours, for suitable k.)

$$
\begin{aligned}
p<n^{-\frac{1}{2}-\varepsilon}: & 2 \text { values ('two-point concentration') } \\
& \text { (Alon, Krivelevich 97, Łuczak 91) } \\
& \rightarrow \chi\left(G_{n, p}\right) \text { behaves almost deterministically }
\end{aligned}
$$

The opposite question

Question (Bollobás, Erdős)
Can we show that $\chi\left(G_{n, \frac{1}{2}}\right)$ is not concentrated on 100 consecutive values?
Any non-trivial examples of non-concentration?
"even the weakest results claiming lack of concentration would be of interest"

The opposite question

Theorem (Heckel 2019)

$\chi\left(G_{n, \frac{1}{2}}\right)$ is not contained whp in any sequence of intervals of length $n^{1 / 4-\varepsilon}$ for any fixed $\varepsilon>0$.

More formally:

Theorem (Heckel 2019)

Let $\varepsilon>0$, and let $\left[s_{n}, t_{n}\right]$ be a sequence of intervals such that $\chi\left(G_{n, 1 / 2}\right) \in\left[s_{n}, t_{n}\right]$ whp. Then there are infinitely many values n such that

$$
t_{n}-s_{n} \geqslant n^{1 / 4-\varepsilon}
$$

Intuition

Intuition: An optimal colouring of $G_{n, \frac{1}{2}}$ contains all or almost all independent α-sets as colour classes.
$\chi\left(G_{n, \frac{1}{2}}\right)$ should vary at least as much as X_{α} (roughly).

$$
X_{\alpha}=\# \text { independent } \alpha \text {-sets }
$$

$$
X_{\alpha} \underset{\text { roughly }}{\sim} \operatorname{Po}(\mu) \rightarrow \text { varies by } \pm \sqrt{\mu}
$$

where

$$
\mu=n^{\theta}, \quad 0 \leqslant \theta(n) \leqslant 1
$$

Proof idea
Plant an extra independent α-set:

Starting from $G=G_{n-\alpha, 1 / 2}$, obtain a new random graph G^{\prime}, with $\chi\left(G^{\prime}\right) \leqslant \chi(G)+1$.

Hide the hole

Does G^{\prime} look like $G_{n, 1 / 2}$? Not quite - it has a hole. Hide the hole! Shuffle the vertices.

Distribution of $G^{\prime \prime}$

For a possible outcome H (graph on n vertices), what is $\mathbb{P}\left(G^{\prime \prime}=H\right)$?
S must get mapped to an independent set in H of size α.
There are $X_{\alpha}(H)$ of these.
Given any one,

$$
\mathbb{P}\left(G^{\prime \prime}=H \text { with } S \text { mapped here }\right)=\frac{1}{\binom{n}{\alpha}}(1 / 2)^{\binom{n}{2}-\binom{\alpha}{2} .}
$$

KEY: $\mathbb{P}\left(G^{\prime \prime}=H\right)$ is proportional to $X_{\alpha}(H)$.

Size-biased distribution

Given any random variable Z, and size parameter $s(Z)$, the size-biased distribtuion Z^{*} has

$$
\mathbb{P}\left(Z^{*}=z\right)=\frac{\mathbb{P}(Z=z) s(z)}{\mathbb{E s}(Z)}
$$

Common in various statistics contexts.

Our $G^{\prime \prime}$ has distribution of $G_{n, 1 / 2}$ size-biased by X_{α}.

Easy check: since X_{α} is concentrated, size-biasing makes little difference:

$$
d_{\mathrm{TV}}\left(G^{\prime \prime}, G_{n, 1 / 2}\right) \leqslant \frac{1}{2} \mathbb{E}\left[\frac{\left|X_{\alpha}-\mu\right|}{\mu}\right]=O\left(\frac{1}{\sqrt{\mu}}\right)
$$

where $\mu=\mathbb{E}\left[X_{\alpha}\right]$.

Key Lemma

$$
d_{\mathrm{TV}}\left(G_{n, \frac{1}{2}}, G^{\prime \prime}\right)=O\left(\frac{1}{\sqrt{\mu}}\right),
$$

where $\mu=\mathbb{E}\left[X_{\alpha}\right]$.
Proof:

$$
\begin{aligned}
d_{\mathrm{TV}}\left(G_{n, \frac{1}{2}}, G^{\prime \prime}\right) & =\frac{1}{2} \sum_{G}\left|\mathbb{P}\left(G^{\prime \prime}=G\right)-\mathbb{P}\left(G_{n, \frac{1}{2}}=G\right)\right| \\
& =\frac{1}{2} \sum_{G}\left|\frac{X_{\alpha}(G)}{\binom{n}{\alpha}}\left(\frac{1}{2}\right)^{\binom{n}{2}-\binom{\alpha}{2}}-\left(\frac{1}{2}\right)^{\binom{n}{2}}\right| \\
& \left.=\frac{1}{2} \sum_{G}\left(\frac{1}{2}\right)^{\binom{n}{2}} \frac{\left|X_{\alpha}(G)-\binom{n}{\alpha}\left(\frac{1}{2}\right)^{\binom{\alpha}{2}}\right|}{\binom{n}{\alpha}\left(\frac{1}{2}\right)^{\binom{\alpha}{2}}} \right\rvert\, \\
& =\frac{1}{2} \mathbb{E}\left[\frac{\left|X_{\alpha}-\mu\right|}{\mu}\right]=O\left(\frac{1}{\sqrt{\mu}}\right)
\end{aligned}
$$

Coupling

Outcome: can couple $G_{n-\alpha, 1 / 2}$ and $G_{n, 1 / 2}$ so that

$$
\chi\left(G_{n, 1 / 2}\right) \leqslant \chi\left(G_{n-\alpha, 1 / 2}\right)+1
$$

with failure probability $O(1 / \sqrt{\mu})$.

For r up to around $\sqrt{\mu}$ can chain: there is a coupling so that

$$
\chi\left(G_{n+r \alpha, 1 / 2}\right) \leqslant \chi\left(G_{n, 1 / 2}\right)+r
$$

with failure probability $\leqslant 0.1$, say.

The coupling result

Coupling of $G_{n, 1 / 2}$ and $G_{n^{\prime}, 1 / 2}$ with $n^{\prime}=n+\alpha r$ so that

$$
\mathbb{P}\left(\chi\left(G_{n^{\prime}, 1 / 2}\right) \leqslant \chi\left(G_{n, 1 / 2}\right)+r\right)>0.9 .
$$

Proof ingredients

Ingredient 1: A (weak) concentration type result

$$
\left|\chi\left(G_{n, 1 / 2}\right)-f(n)\right| \leqslant \Delta(n) \text { whp }
$$

where $f(n)$ is some function with slope

$$
\frac{\mathrm{d}}{\mathrm{~d} n} f(n)>\frac{1}{\alpha}+\delta .
$$

Ingredient 2: A coupling result
Couple $G_{n, 1 / 2}$ and $G_{n^{\prime}, 1 / 2}$ with $n^{\prime}=n+\alpha r$ (same α as above) so that

$$
\mathbb{P}\left(\chi\left(G_{n^{\prime}, 1 / 2}\right) \leqslant \chi\left(G_{n, 1 / 2}\right)+r\right)>0.9 .
$$

Trick: Suppose that $\chi\left(G_{n, \frac{1}{2}}\right) \in\left[s_{n}, t_{n}\right]$ whp.

Ingredient 2: A coupling result

Couple $G_{n, 1 / 2}$ and $G_{n^{\prime}, 1 / 2}$ with $n^{\prime}=n+\alpha r$ (same α as above) so that

$$
\mathbb{P}\left(\chi\left(G_{n^{\prime}, 1 / 2}\right) \leqslant \chi\left(G_{n, 1 / 2}\right)+r\right)>0.9 .
$$

Trick: Suppose that $\chi\left(G_{n, \frac{1}{2}}\right) \in\left[s_{n}, t_{n}\right]$ whp.

Why? Because with probability at least 0.8 ,

$$
s_{n^{\prime}} \leqslant \chi\left(G_{n^{\prime}, 1 / 2}\right) \leqslant \chi\left(G_{n, 1 / 2}\right)+r \leqslant t_{n}+r .
$$

But $s_{n^{\prime}}$ and t_{n} are not random.

If all intervals short: Contradiction!
So there is at least one long interval. (Length $\approx \alpha \delta r$)

Ingredient 1: The (weak) concentration type result Want:

$$
\begin{gathered}
\chi\left(G_{n, \frac{1}{2}}\right)=f(n) \pm \Delta(n) \\
\frac{\mathrm{d} f}{\mathrm{~d} n} \geqslant \frac{1}{\alpha}+\delta
\end{gathered}
$$

Heckel 2016:

$$
\chi\left(G_{n, \frac{1}{2}}\right)=\underbrace{\frac{n}{2 \log _{2} n-2 \log _{2} \log _{2} n-2}}_{f(n)}+\underbrace{o\left(\frac{n}{\log ^{2} n}\right)}_{\Delta(n)} \text { whp. }
$$

then (unless μ_{α} is very close to n)

$$
\frac{\mathrm{d} f}{\mathrm{~d} n} \geqslant \frac{1}{\alpha}+\underbrace{\Theta\left(\frac{1}{\log ^{2} n}\right)}_{\delta(n)}
$$

Remark: something very odd about this proof!

Theorem (Heckel, R. 2021)

Let $\varepsilon>0$, and let $\left[s_{n}, t_{n}\right]$ be a sequence of intervals such that $\chi\left(G_{n, 1 / 2}\right) \in\left[s_{n}, t_{n}\right]$ whp. Then there are infinitely many values n such that

$$
t_{n}-s_{n} \geqslant n^{1 / 2-\varepsilon}
$$

Same idea, but (quite a bit) more calculation. With even more (+Heckel-Panagiotou):

Theorem (Heckel, R. 2021/3)

Concentration interval length of $\chi\left(G_{n, 1 / 2}\right)$ is at least

$$
C \frac{n^{1 / 2} \log \log n}{\log ^{3} n}
$$

for infinitely many n.

What going on? Number of α-sets

$$
X_{\alpha}=\# \text { independent } \alpha \text {-sets }
$$

$$
\begin{aligned}
& X_{\alpha} \underset{\text { roughly }}{\sim} \operatorname{Po}\left(\mu_{\alpha}\right) \\
& \mu_{\alpha}=n^{\theta}, \quad 0 \leqslant \theta(n) \leqslant 1 .
\end{aligned}
$$

Benefit per α-set: $\quad \approx 1 / \log n$ colours.
Conjecture 1: $\chi\left(G_{n, \frac{1}{2}}\right)$ is not concentrated on fewer than $n^{\theta / 2} / \log n$ values.

Theorem(Heckel, R. 2021)

Suppose that $\chi\left(G_{n, \frac{1}{2}}\right) \in\left[s_{n}, t_{n}\right]$ whp for some sequence $\left[s_{n}, t_{n}\right]$ of intervals. Then for every n with $\theta(n)<1-\varepsilon$, there is some $n^{*} \sim n$ such that

$$
t_{n^{*}}-s_{n^{*}} \geqslant C(\varepsilon) \cdot \frac{\left(n^{*}\right)^{\theta\left(n^{*}\right) / 2}}{\log n^{*}}
$$

How about $(\alpha-1)$-sets?

$$
\begin{aligned}
& X_{\alpha-1}=\# \text { independent }(\alpha-1) \text {-sets } \\
& X_{\alpha-1} \underset{\text { roughly }}{\sim} \operatorname{Po}\left(\mu_{\alpha-1}\right) \\
& \mu_{\alpha-1}=n^{1+\theta+o(1)}, \quad 0 \leqslant \theta(n) \leqslant 1 .
\end{aligned}
$$

New heuristic: The chromatic number is close to (or at least varies like) the first moment threshold (smallest k so that expected number of k-colourings $\geqslant 1$).
Benefit per $(\alpha-1)$-set: $\frac{n}{\mu_{\alpha-1} \log ^{3} n}$
Conjecture 2: $\chi\left(G_{n, \frac{1}{2}}\right)$ is not concentrated on fewer than

$$
\sqrt{\mu_{\alpha-1}} \cdot \frac{n}{\mu_{\alpha-1} \log ^{3} n} \approx \frac{n^{(1-\theta) / 2}}{\log ^{5 / 2} n}
$$

values.

Conjectured lower bounds on concentration

From α-sets: $n^{\theta / 2+o(1)}$
From $(\alpha-1)$-sets: $n^{(1-\theta) / 2+o(1)}$
\log (interval length)

Is that all? $\chi\left(G_{n, 1 / 2}\right) \approx \frac{n}{\alpha_{0}-3.89}$, so what about $(\alpha-2)$-sets, $(\alpha-3)$-sets, ...?

Bounded colourings: Two-point concentration

$\chi_{t}(G): t$-bounded chromatic number - all colour classes $\leqslant t$ vertices

Theorem (Heckel, Panagiotou 23)
Let $m=\left\lfloor\frac{1}{2}\binom{n}{2}\right\rfloor$. There is some integer $k(n)$ so that, whp,

$$
\chi_{\alpha-2}\left(G_{n, m}\right) \in\{k(n), k(n)+1\}
$$

\mathbf{k}_{t} : t-bounded first moment threshold - smallest k so that expected number of t-bounded colourings is $\geqslant 1$

$$
k(n) \in\left\{\mathbf{k}_{\alpha-2}-1, \mathbf{k}_{\alpha-2}\right\}
$$

The Zigzag Conjecture
Recall $\mu_{\alpha}=n^{\theta}, 0 \leqslant \theta \leqslant 1$.
Conjecture 3 (Bollobás, Heckel, Morris, Panagiotou, R., Smith): Let

$$
\lambda=\max \left(\frac{\theta}{2}, \frac{1-\theta}{2}\right)
$$

then the correct concentration interval length for $\chi\left(G_{n, \frac{1}{2}}\right)$ is $n^{\lambda+o(1)}$.

Peaks and valleys

$\underline{\log (\text { interval length) }}$

Conjecture 4: The top of the zigzag is of order $\frac{n^{1 / 2} \log \log n}{\log ^{3} n}$.

Conjecture 5: The bottom of the zigzag is of order $\frac{n^{1 / 4}}{\log ^{7 / 4} n}$.

Asymptotic distribution

Conjecture 6: Gaussian limiting distribution.
(And we can read out a formula for the conjectured standard deviation from our heuristics.)

Open questions

- The proof only finds some n^{*} near n where the chromatic number is not too concentrated. Can we prove something for every n ?
- Does the correct concentration interval length zigzag between $n^{1 / 4+o(1)}$ and $n^{1 / 2+o(1)}$? What about the other conjectures?
- Alon's upper bound: $\frac{\sqrt{n}}{\log n}$. Our lower bound: $\frac{\sqrt{n} \log \log n}{\log ^{3} n}$. Show that this is optimal?
- Other ranges of p ?
$p<n^{-\frac{1}{2}-\varepsilon}$: two-point concentration. How "far down" does non-concentration go?
$p \rightarrow 1$: Infinitely many 'jumps' in concentration behaviour? (Recent conjecture by Surya and Warnke 2022)

Thank you!

