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Equilibrium statistical mechanics

Statistical ensembles:

1) The microcanonical ensemble is used for the description of an
isolated system such that the energy FE, particle number N, and

volume V are fixed.

2) The canonical ensemble is used for the description of a system
in contact with a heat reservoir at temperature 7. In this case

the system can freely exchange energy with the reservoir and the
variables 7', N, and V' are fixed.

3) The grand canonical ensemble is used for the description of a
system which can exchange energy and particles with a reservoir.

Now, the fixed variables are 7', V' and the chemical potential .
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Statistical mechanics goal is to derive the thermodynamic
properties of macroscopic bodies from the description of their

microscopic components (the constituents atoms, electrons, etc.).

To deal with this problem one needs to find the probability

distribution of the microscopic components in thermal

equilibrium (that is, after a long enough time), and from the

microscopic probability distribution obtain the macroscopic

properties of the system.

Let us then consider a classical Hamiltonian system with 2/V
degrees of freedom enclosed in a box of volume V. The classical

equations of motion can be obtained:

Op; :
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where H is the Hamiltonian, ¢; and p; (¢ = 1,2, ..., N) are the set

of coordinates and momenta of the system.

Let O(q,p) be an observable (arbitrary measurable quantity).
The equilibrium average O is given by

_ 1 i
O = lim - [ Og(r), p(r))dr

=i/®@@@mw@m) (2)

such that o(q, p) is the equilibrium probability.

This function is always positive and satisfies the normalization

condition

/QMPM%le- (3)
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In equilibrium statistical mechanics one may assume that p

follows the canonical distribution

o(q,p) = Z~ " exp[—BH(q,p)),

7 — /dqdpexp[—ﬁH(qap)]

is the, so called, partition function, and 3~' = T corresponds to

the absolute equilibrium temperature.

The entropy of a distribution p is defined as follows:

Slo] = — / dqdpo(q,p)no(q,p) = — < Inp > ©

The entropy is smaller for more ordered systems.

In the case of relativistic quantum statistical systems eq. () will
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be translated for the use of a statistical operator, i.e.,
0 = Z " exp|—B(H — pN]

where H is the Hamiltonian and N is a conserved number
operator. This operator is Hermitian and commutes with the

Hamiltonian /. The parameter 1 is called the chemical potential.

The ensemble average of an operator O will be
< O >=Z'Tr[04] (8)

There Z is the grand canonical partition function of the form

Z = Trexp|—B(H — puN))] €)

Of utmost importance in thermodynamics.
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The average value of the energy may be written from () as

<H>=Tr[H)|=U (10)

the entropy is
S = —Tr[plng] (11)

Egs. (V) and (/) give
S = =Tr[¢o Ing)
= —Tr[o(—InZ — BH + uN)]
= InZ + pU — BuN,

which is equivalent to

(1/8)InZ = U — S/3 — uN.
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One calls

Q= —(1/8)InZ (13)

the grand thermodynamical potential of the grand canonical

ensemble.

When 1 = 0 ( the canonical ensemble) on has, similarly, the

thermodynamic potential /' (or, free energy).

Given by

F —Q = uN. (14)

All standard termodynamic properties may be determined from
the grand partition function Z = Z(V, T, i1). The pressure,

particle number, entropy, and energy (in the infinite volume limit)
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are given by:

E=—-PV4+TS+uN
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Finite-T Quantum Field Theory

A |lattice guantum chromodynamics (QCD)Y simulation s when matter s heated to about 170 megaelectronvalts, or
about 2 trilllon cegrees, it LS ‘k—gluo 2 Pr neutro

below the transitic " g

Blue Indicates ¢




RHIC Heavy lons
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Black Hole

An invisible, massive, spinning black hole
may lie at the center of this galaxy, as shown
in an artist's ilustration. The black hole would
pull in material from a swiring disk of nearby
gas and stars. The extremely high
temperafures and pressures produced near the
black hole would also cause some of the gas
fo be giected, crealing a huge galactic jel
(from center fo fop right).

Institute




Neutron Star

Star
Radius ~ 10 Km  Central Density ~ 10 Baryons/Frh




MQ — 2 — /qu%s,

s = [ar

Or in the phase space

Z = /Dqu ot [t |ivi-Hpo)| (18)

Without going much into the detail the above integral means:

L dt [Z T = }
e | I / dpz dQ’L eh f Pidi (Piqi) . (19)
()
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http://fisteo12.ific.uv.es/~santamar/qapplet/metro.html

Fields

One can promote the coordinates to fields by letting the index

1 — x,p — mand ¢ — ¢ getting:

Z = / DD er I & [ind=Hmo)] (20)

When the Hamiltonian density is quadratic in 7 one can easily

integrate in order to get the more familiar form:

G — /ng ot [diz |L(9)]
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Matsubara prescription

Consist of the following replacement

t - —ir 0< 7 < (3,

and in performing the integral for the fields periodic in S, i.e.,

gb(O, f) — gb(ﬁa f)

With this one has for the partition function:

Z(8) = TrePH = / D e Jo ar [ P Lig) (22)
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One consequence of this replacements is that the Feynman rules

change accordingly. In a scalar field theory, for instance, one has:

2
koﬁ%nzwn. (23)

For a free theory the propagator changes as:

( —
k2 —m? (4m2n2/B) + k2 + m?
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Perturbation Theory

In QFT, when one has an interaction, it is appropriate to use the
”interaction picture”. In this picture the time evolution of
operators is given by Ug(t, to) O Uy(t,tg), where

U(t,ty) = exp|—i Hy(t, to)]|, and the time evolution of the state
vectors is given by |¢(t)) = u(t, tg)|p(tg)), where

u(t,to) — ; %(_@)n /t: dtl.../t: dtn T(H[(tl)...H[(tn)) (25)

or
. rt
—1 dt Hy(t
u(t,tg) = T [e Jig ¢ Hi ))} (26)
These objects may be defined for a complex time, for instance:
—i (P2 dt Hy(t
u(zo,21) = T [e i 1( ))} | (27)
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in this case Hj(z) = e'10?H;(0)e * 40~

The thermal average of a product of scalar field operators is given
by

Tr e ?o(tr), ..., ¢(tn)]
Tr[e—BH] '
Now, following Matsumoto et al. and defining a path C starting

G(ty,....,tn) =

from 7 and ending at 7 — (3 in the complex plane and assuming
that (21, ..., z,) lie on the path C, it is possible to define a
statistical average of the path ordered product on the path by

T [P {(0), e 8
N el ge ] |

G(z1y ey 2n) (28)

Then in the interaction picture

Clor o ay = AToulr — B D)0z, bz

(Tou(t — i, 7))o
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Matsubara revisited




Real time contours: Schwinger,







Thermofield Dynamics

The main idea behind TFD is to construct a ”temperature

dependent vacuum”, |0(/3)), in such a way that the expectation

value of a quantity A cincides with its statistical average:

0 Al0(8)) = 2B Tr | AePH|. (30)

Such a state lies in the direct product of the original Hilbert
space by itself,

0(8)) = Z71B) Y e P F|n) @ |n) (31)

n

Here | n ) is a complete set of energy eigenstates and we have,

Hin)® |n) = Exn)® |n)
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H|n)® |n) = Eqln)® |n)
where H = H®1 and H =1® H, also (n|m) = 6.

For an harmonic oscillator of frequency (), one has

0(8)) = (1 — e PH)/2eP3a%a 0y g |0) (32)

An important point is that |0(f)) and |0) ® |0) are related by a

Bogoliubov transformation,
0(8)) = " ?P@=D)0) g o) (33)

cosh 0(8) = w(B) = (1 — e PH)~1/2
sinh 0(8) = v(B) = (7 — 1)7/2
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One can then define temperature dependent oscillator operators
a(f) = u(B)a — v(B)a' (34)
a(f) = u(B)a — v(B) a' (35)

These operators annihilate the vacuum [0(3)) and the Bogoliubov

transformation preserves the commutation relations, so

Now, in the thermofield approach, it is very easy to calculate

statistical averages of the original operators, such as a'a which is

the familiar Bose-Einstein distribution:

(0(8)]a'all0(B)) = v*(B)
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Dual Path Formulation
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Dual Path Formulation

Quantum Field Theory (QFT) models with constrained

configuration spaces naturally arise within the context of modern

applications, particularly gauge invariant systems (M. Henneaux and C.

Teitelboim) .
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Dual Path Formulation

Quantum Field Theory (QFT) models with constrained

configuration spaces naturally arise within the context of modern

applications, particularly gauge invariant systems (M. Henneaux and C.

Teitelboim) .

More recently, a formulation involving constraints has been also

applied to deal with different kinds of problems:

e The static and dynamical Casimir effects (m. Kardar et a1, C. D.

Fosco et al.) .
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Dual Path Formulation

Quantum Field Theory (QFT) models with constrained
configuration spaces naturally arise within the context of modern
applications, particularly gauge invariant systems (M. Henneaux and C.

Teitelboim) .

More recently, a formulation involving constraints has been also

applied to deal with different kinds of problems:

e The static and dynamical Casimir effects (m. Kardar et a1, C. D.

Fosco et al.) .

e To derive the overlap Dirac operator in a simpler way

(C. D. Fosco et al.).
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In this context:

Fields are used to impose the constraints

0

integrating out the original variables

0

effective model

Where the dynamical fields live on the constrained surface.

Here, we extend that kind of approach to QFT at finite
temperature (7' > 0), in order to deal with the periodicity

constraints in the imaginary time.
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* First a glimpse of the usual QFT at 71" > 0:

T. Matsubara (1955)
H. Ezawa, Y. Tomonaga and H. Umezawa (1957)

This original approach now called Matsubara (or

‘imaginary-time’) formalism has been very successful
( see, for instance, Kapusta, Finite-Temperature Field Theory, Cambridge University Press,

Cambridge (1989)) ,

both in High Energy and Condensed Matter Physics.
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A fundamental property introduced by this formalism is the
imaginary-time periodicity (antiperiodicity) conditions for the
bosonic (fermionic) field configurations in the path integral.

Which can be seen at the level of the partition function

A

2(9) = (e ) = [ dg e lg) = [ da (a.~i510.0).
(36)
The standard path integral construction for the transition

amplitude between different times may be applied, to obtain the

partition function in the Matsubara formalism:

Z(8) = / DpDq el #rlivi=HEo] (37)
q(0)=q(B)
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For a bosonic field theory in d + 1 spacetime dimensions

0

field paths are periodic in the imaginary time

canonical momentum ones are unrestricted

0

Hamiltonian quadratic in the canonical momentum

[ Integrating

model where the dynamical field is defined on S x RY,
(radius of S') x B = 1/T

0

in Fourier space, frequencies become the usual Matsubara ones.
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A characteristic feature of the Matsubara formalism (shared with
the real-time formulation) is that the introduction of a time
dependence for the fields seems to be unavoidable, even if one

limits oneself to the calculation of time independent objects.

e We construct a representation where only static fields are
involved, an alternative way of dealing with 7" > 0 QFT

calculations.

e Inspired by the constrained functional integral

approach used in the Casimir effect (xardar et a1).

e The periodicity conditions are met by Lagrange multipliers

(d-dimensional when the field lives in d 4+ 1 dimensions).

e Integrating the original fields leaves a functional of the

d-dimensional Lagrange multipliers.)
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The method

0.1 The periodicity constraint

We start from the phase-space path integral of Zj, the (zero

temperature) vacuum persistence amplitude:

Zy = /Dqu e~ola(m)p(7)] (38)

where S is the first-order action, S = fj;o dr L, with
L = —ipg+ H(p,q), and H denotes the Hamiltonian, assumed to
be of the form: H(p,q) = T(p) + V(q).
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Zp is the limit of an imaginary-time transition amplitude,

Z() lim <QO7 —iT‘qO, ZT>

T'——+00

(ol Pe 2P = Tim |{gol0) 2239

e |n) are the eigenstates of H,

o H|n) = E,|n), and o, the asymptotic value for gy at

T — 400 (usually, gg = 0).
e F is the energy of |0), the ground state.

Next we obtain an alternative expression for Z(/3).

Starting from Z;, and imposing the appropriate constraints on
the paths.

Coléquio Inter-institucional 36 I. Roditi (CBPF)
Modelos Estocasticos e Aplicagoes 12/08/2009
(CBPF-IMPA-UFRJ)



We first introduce decompositions of the identity at the imaginary

times corresponding to 7 = 0 and 7 = (3, so that we may write:

dga2dqr (qo, —iT'|q2, —i0) (g2, —i0]q1,0) (q1, 0|qo,T") ,
(40)

or, in a path integral representation,

T— o0

q(T)=qo T
2y = lim [ dgdg / DpDq e I8 ¥TF
q(8)=q2

q(8)=q2 q(0)=q1
X / DpDq e Iy drt / DpDq e~ o d“ﬁéll)
q(0)=q1 q(—T)=qo

In short, one obtains a thermal partition function by imposing

periodicity constraints for both phase space variables.
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Indeed, let us introduce an object Z;((3) that results from
imposing those constraints on the Z; path integral, and

extracting a Z factor:

_ J DpDq d(q(B) — q(0)) 6(p(B) — p(0)) e
- | DpDge=S |

Zs(5) (42)

Then, the use of the superposition principle yields:

/ DpDq §(q(B) — ¢(0))5(p(B) — p(0)) e =

dp1dqi [(CIOa —iT|p1, —18) (p1, —28|q1, —18) (g1, —iB|q1,0)

x (q1,0lp1, 0) (p1, Olgo, i) |
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/ DpDq 6(q(B) — q(0))d(p(8) — P(O))e_S — lim e Eo(2T—5)

T—o00

9 / DAL 00]0) 011 ) (a1, ~iBla1. 0) (910} Olao)

T—o0

— lim e FoCT=H) (g0 / dq1 (q1, —18|q1,0).

= Zy x 0 Z(B) = Zy x Tr[e PH-Fo)] (43)

Then we conclude that
Z,(8) = Te[e PH] (44)

where : H : denotes the normal-ordered Hamiltonian operator,

l.e.:
H:= H - E,. (45)
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e So, by imposing periodicity on both phase space variables,
and discarding [-independent factors (since they would be canceled by

the normalization constant) we Obtain Zs(ﬁ)

e the partition function corresponding to the original

Hamiltonian, the ground state energy redefined to zero.

e The subtraction of the vacuum energy is usually irrelevant
(except in some known situations), as 1t is Wlped out When taklng

derivatives of the free energy to calculate physical quantities.

Periodicity constraints for both variables is not in contradiction
with the usual representation, (), where they only apply to q,
since they corresponds to different sets of paths. These constraints

get rid of the unwelcome factors coming from paths which are

OutSide Of the [O, ﬁ] intel"val (Which are absent from the standard approach) .
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Summarizing, we have shown that a way to extract the partition
tunction from the 7" = 0 partition function Zj, is to impose
periodicity constraints for both the coordinate and its canonical

momentum, a procedure that yields a Z; factor times the thermal

partition function, Z;(3).

Coléquio Inter-institucional 41 I. Roditi (CBPF)
Modelos Estocasticos e Aplicagoes 12/08/2009
(CBPF-IMPA-UFRJ)



0.2 Rephrasing with auxiliary fields

The two o-functions require the introduction of two auxiliary

fields, &1 and &.

Using ()1 = q and ()2 = p, we have

ﬁ{ )—Qq(0 )]} _ /(dieiiﬁlfa [Qa(ﬁ)—Qa(O)] . (46)

27)?

Using this representation for the constraints we have:

win i [ [

< S(Q)+1 f A1je(T)Qa(T)

Y
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where N = Z;, and we have introduced the notation:

Ja(T) =& [0(7 — B) — 8(7)] - (48)

The phase-space measure has been written in terms of ():

DQ — H dQ(TZ);i-p(T) . (49)

For the particular case of a harmonic oscillator with unit mass
and frequency w, we have

/ T i QR . (50)

— 00
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where the 2 X 2 operator matrix /E, given by:

2 - d
w @E

- d
—’L% 1

Thus the integral over () is a Gaussian; it may therefore be

written as follows:

i o — d°C e e
Z,(8) = 2r N7 (detK) /(%)2 e~ 38 Marly

with
©2(04) +Q(0-) (8) — Q(=0),

where:
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Such that:

i
ZSgn(T) e—wh‘]

(95)

(sgn = sign function).

Equation (") can be used in (), to see that:

M = (56)

where
(57)

1S the Bose-Einstein dlStI‘lbutlon funCtion (the zero of energy set at the

ground state) 5
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Finally, note that N cancels the (det /6)_ factor, and thus we
arrive to a sort of ‘dual’ description for the partition function, as

an integral over the &, variables:

d2§ wTledtwes
2,0) = [ G TR (58)

2T

This integral is over two real variables &,, which are O-dimensional

fields, one dimension less than the 0 + 1 dimensional original

theory.
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Evaluating the partition function in the classical

(high-temperature) limit we can see that Z,(3) becomes:

where:

1
H(&,&) = 5(5% + WQSS) :

Such that (') corresponds exactly to the classical partition
function for a harmonic oscillator, when the identifications: & = p
(classical momentum), and & = ¢ (classical coordinate) are made

Z.(8) ~ dg—fe—ﬁé(p““f) (8 <<1). (61)
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On the other hand, had the exact form of the integral been kept
(no approximation), we could still have written an expression

similar to the classical partition function, albeit with an ‘effective
Hamiltonian’ Her¢(&1,&2):

z8) = [LEepraas), 62

2T

= % (nB(w) — 1)_1 (w_l &2 + w {%) . (63)

This shows that the quantum partition function may also be
written as a classical one, by using a (J-dependent Hamiltonian,

which tends to its classical counterpart in the high-temperature

limit.
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By integrating out the auxiliary fields in the (exact) expression

for the partition function (%), we obtain:

1

np(Ww) +1 = —— (64)

which is the usual result.
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0.3 Interacting theories

When the action § is not quadratic, we may still give a formal
expression for the alternative representation. Indeed, denoting by
Z(J) the zero-temperature generating functional of correlation

functions of the canonical variables:

Z(J) = /DQ o~ S(Q)+ 2, dTJa(T)Qa(7) (65)

and by WW(.J) the corresponding functional for connected ones, we
see that

d2¢
(2m)?

where, with our normalization conventions, Z(0) = Z; (the

exp{W|ij(7)]}, (66)

Z,(8) = [2(0)]" /

vacuum functional for the interacting case).
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Thus, a possible way to derive the effective Hamiltonian in the
interacting case is to obtain first VV[.J|, and then to replace the
(arbitrary) source J(7) by 2[7(7)], where j(7) is the function of
the auxiliary field defined in (~). Of course, YV cannot be
obtained exactly, except in very special cases. Otherwise, a
suitable perturbative expansion can be used. In any case, V can

be functionally expanded in powers of the source J(7):

00 1 :
WC(Lb)(7_17 Tt 77—71)‘]&1 (7_1) 560 Jan (Tn)

(67)

where each coefficient W™ is the n-point connected correlation

function. The expansion above yields an expansion for fH.;s in

powers of the auxiliary fields. Not necessarily a perturbative

€Xpansion.
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Indeed, the strength of each term is controlled by W) which

could even be exact (non-perturbative) in a coupling constant. To
fix ideas, let us see what happens when one keeps only up to the
n = 4 term, assuming also that there is 9, — — 9, symmetry in

S. Then, we first see that the ¥V[0] is cancelled by the A factor,
and on the other hand we obtain

2
gz ) (68)

vx§?22(7177?)ja1(71)ja2(7?)

y%§322a3a4(71772773774)ja1(71)ja2(TQ)ja3(73)ja4(74)

(&)
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Using the explicit form of j,(7) in terms of the auxiliary fields, we
see that:

Hepp = Hg)f + 7Y 4

X (70)

where

H = sMEGs

HY, —wﬂwgg&&

2k
HE) = G o o (7)

where the explicit forms of the coefficients M (?*) in terms of
W) may be found, after some algebra.
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For example M?) is a diagonal matrix:

0
M2 = [ @ (72)

OCQ

Ca = % /% (1— e_i”ﬁ) Waa (V) el

(where the tilde denotes Fourier transform). ¢; plays the role of
an effective coefficient for the kinetic term (oc p?) in the effective
Hamiltonian, while ¢y does introduce an effective quadratic
potential. Note that they will, in general, depend on (3, w, and on

any additional coupling constant the system may have. For the
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harmonic oscillator case we have the rather simple form:

C1

(74)

- ng(w)+1"

The quartic term involves MY which may be written in terms of

the connected 4-point function:

1
ME:IL))cd — [—W(gid(0,0,0,0) + 4W bcd(ﬂ 6 57 )

(0}

p

— W' (8,8,0,0) + 4WY) (8,0,0,0) — W (0,0,0,0)
sym

(75)
where the sym suflix denotes symmetrization under simultaneous

interchange of time arguments and discrete indices.
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Scalar field

The extension of the harmonic oscillator results to the QFT of a
real scalar field ¢ in d + 1 (Euclidean) dimensions is quite
straightforward. Let ¢(z) = (7, %) where z = (7,x) € R(¢+1)

7 € R and x € R¥,

0.4 Free partition function

The free Euclidean action in terms of the phase-space variables

8o, is in this case given by:

So = /ddHaj {— im0 + Ho(m, )| (76)
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1
Ho(m,¢) = 5 ™ + [Vl + m?p?| . W

We then have to implement the periodic boundary conditions

both for ¢(7,x) and its canonical momentum 7 (7, x)

0(3,x) = 0(0,x), ©(8,x)=x(0,x), Yx eRY  (78)

which requires the introduction of two time-independent
Lagrange multiplier fields: &,(x), a = 1, 2. Defining a
two-component field ® = (®,), a = 1, 2, such that ®; = ¢ and
®y = 7, an analogous procedure to the one followed for the

harmonic oscillator yields, for the free partition function Zy((3):

Zo(B) = N7 / DE /Dq) g3 AT e ®aKap®y +i [ dHzja®a
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where jqo(2) = & (x)[0(T — 8) — &(7)] and:

e (80)
or

72 o)
h ’Lm
1

where we have introduced h = v/—V2 + m2, the first-quantized
energy operator for massive scalar particles. Performing the
integral over @, yields the partition function in terms of the

Lagrange multipliers:

2,(8) — / De o3 S 40 [ a0 KTl ) (g1)
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So, we see that:

Which gives:
Zo(B) = det (ﬁB + 1)

and can be evaluated in the basis of eigenstates of momentum to

yield:

H np(Ex) + 1] (88)

k

where Fy. = vk2 4+ m2.
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The free-energy density, Fy(5), is:

d
Fo(B) = %/(Zﬂljd In (1 — e™P¥x) . (89)

In the classical, high-temperature limit, the path integral for the

partition function becomes:

Z(5) = [ Dge MO, (90)

1

- 5/ d'z [ (%) + Vo) + m*&x)| . (91)

This is, again, the usual classical expression for the partition
function, with the Lagrange multipliers playing the role of phase

space variables.
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0.5 Self-interacting real scalar field

When field self-interactions are included, instead of the free

action Sp, we must consider instead
S = 50+ 51, (92)

where the free action Sy, has already been defined in ('), while

St is a self-interaction term. We shall assume it to be of the type:

Sr = /dde Vip), (93)

V(¢) being an even polynomial in ¢, with only one (trivial)
minimum. Proceeding along similar lines to the ones followed for

the free field case in the preceding section, the partition function
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for the interacting system can be written in the form:

Z(8) = N / Dg / D ¢~ S@)Fi[d ain®e - (gy)

where ®, as well as the ‘current’ j, have already been defined for
the free case, in the previous subsection. The constant N is
introduced to satisfy Z(co) = 1. On the other hand, since the
fields are assumed to tend to zero at infinity, / — oo implies that

the term involving 7 vanishes in this limit. This means that
N = / D¢ /Dcp e 5(®) (95)

There are many different paths one could follow from now on in
order to evaluate the partition function. We choose to adopt a
procedure that makes contact with quantities defined for QFT at
T'= 0, in such a way that the 7" = 0 theory is built ‘on top of it’.
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Indeed, recalling the definition of the generating functional for

connected correlation functions, VY, we may write:

N /D(I) exp [S(CI)) +i/ dd+1xjacl>a] = ¢ WU) (96)

so that the partition function Z(3) becomes:

/ DE e WU) (97)

We use the small ;7 to denote the 2-component current which is a
function of the Lagrange multipliers, as defined in (). A capital
J shall be reserved to denote a completely arbitrary 2-component

source, so that:

N / D exp [S(CI))+i / dd“a:Jacba] = WU (98)
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Defining H.r¢(), the ‘effective Hamiltonian’ for £, by means of

the expression:

Hopp(€) = %W(y‘), (99)

we see that the partition function is given by:

2(9) = [ DE expl-BH.15(6)) (100)

This yields the path integral for the quantum partition function
as a classical-looking functional integral, involving an effective
Hamiltonian which takes into account all the 7" = 0 quantum

effects.
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Dirac field

The final example we consider is a massive Dirac field in d + 1
spacetime dimensions. The procedure will be essentially the same

as for the real scalar field, once the relevant kinematical

differences are taken into account. The action S(J; for the free case
is given by S/ = [ d¥aah(P + m)y where @ = ~,0,, 'yL = 7, and

{'Yua Yo} = 20-

We then impose antiperiodic conditions for both fields:

b (6,x) = = (0,%x) , ¥(8,x) = v (0,x) (101)

as constraints on the Grassmann fields.
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Those conditions lead to the introduction of the two 0 —functions:
2{(®) = [ DUDEI((8.x) +6(0.%)) §(3(5. %) + (0. %)
x exp | - SJ(Pv)] (102)

Those auxiliary fields, denoted by x(x) and Y (x) must be

time-independent Grassmann spinors. The resulting expression
for Zg (8) is then

Z3(6) = N7 / DXDXDYDP e~ 5 B)+i [ e +in) - (103)

where 7 and 7 are (Grassmann) sources depending on y and Y

through the relations:

X(x)[6(r — B) +d(1)] ,
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Integrating out 1, 1), we arrive to:

21(8) = /DXDX eXP[—ﬂﬂeff(f(,X)} (105)

/ d'z / dyx(x)H® (x,y)x(y) (106)

H?(x,y) = (x,0/(2+m)"[y,0) + (x, 81(? +m) |y, 8)
+(x,0(2 +m) " |y, B) + (x, B|(# +m) [y, 0)

_ % 25;(0,x —y) +8(8,x —y) + 5¢(— Bx—y)|. (107)

On the last line, Sy, denotes the Dirac propagator. It is possible
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to show that
(108)

A —1
where np = (1 -+ 65”) is the Fermi-Dirac distribution function,

written in terms of iz, the energy operator (defined identically to
its real scalar field counterpart); @ is a unitary operator, defined
as A

. hp

U = T hp=v-V+m. )

Then we verify that:

2J(8) = deta det™[(1 —ap) 1], )
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(I = identity matrix in the representation of Dirac’s algebra)

v

z{(8) = {II[1+e 7@

—

. P

\

0

/

rd

(111)

with F(p) = v/p? + m? and r; = dimension of the representation

(we have used the fact that detu = 1).

Again, the procedure has produced the right result for the

partition function, with a normal-ordered Hamiltonian.
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1 Conclusions

e We have shown that, by introducing the periodicity
conditions as constraints for the paths in the Euclidean path
integral for the 7" = 0 vacuum functional, one can obtain a

representation for a thermal partition function.

These constraints should be applied on fields and canonical
momenta, and when they are represented by means of
auxiliary fields, they lead to an alternative, ‘dual’

representation for the corresponding thermal observable.

The resulting representation for the partition function may be
thought of as a dimensionally reduced path integral over
phase space, similar to the one of a classical thermal field

theory, with the auxiliary fields playing the role of canonical
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variables, but with an effective Hamiltonian, H.rr, which

reduces to the classical one in the corresponding

(high-temperature) limit.

The effective Hamiltonian can be constructed by assuming
the knowledge of the corresponding 7" = 0 generating
functional of connected correlation functions. If this
knowledge is perturbative, one recovers the perturbative

expansion for the thermal partition function.
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e We believe that the most important applications of this
formalism are to be found in the case of having

non-perturbative information about the 7" = 0 correlation

functions: here, it is possible to incorporate that knowledge

into the formalism, and to compute thermal corrections from
it.
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e We believe that the most important applications of this
formalism are to be found in the case of having
non-perturbative information about the 7" = 0 correlation
functions: here, it is possible to incorporate that knowledge

into the formalism, and to compute thermal corrections from
it.

Thank You!
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