On the diameter of Gaussian free field excursion clusters away from criticality

Franco Severo

Université de Genève

Joint work with Subhajit Goswami and Pierre-François Rodriguez

The model

Gaussian Free Field: Let $(\varphi_x : x \in \mathbb{Z}^d)$, $d \ge 3$, be the centered Gaussian field with covariances given by

$$\mathbb{E}[\varphi_{\mathsf{x}}\varphi_{\mathsf{y}}] = g(\mathsf{x},\mathsf{y}),$$
$$g(\mathsf{x},\mathsf{y}) := \sum_{n \ge 0} \mathbf{P}_{\mathsf{x}}[X_n = \mathsf{y}] \quad (\asymp |\mathsf{x} - \mathsf{y}|^{-(d-2)}).$$

The model

Gaussian Free Field: Let $(\varphi_x : x \in \mathbb{Z}^d)$, $d \ge 3$, be the centered Gaussian field with covariances given by

$$\mathbb{E}[\varphi_x \varphi_y] = g(x, y),$$
$$g(x, y) := \sum_{n \ge 0} \mathbf{P}_x[X_n = y] \quad (\asymp |x - y|^{-(d-2)}).$$

Or alternatively:

$$d\mathbb{P}(arphi) \propto \exp\left[-rac{1}{2}\mathcal{E}(arphi,arphi)
ight] darphi, \ \mathcal{E}(f,f) := rac{1}{4d} \sum_{\substack{x,y \in \mathbb{Z}^d \ x \sim y}} (f(y) - f(x))^2.$$

The model

Gaussian Free Field: Let $(\varphi_x : x \in \mathbb{Z}^d)$, $d \ge 3$, be the centered Gaussian field with covariances given by

$$\mathbb{E}[\varphi_x \varphi_y] = g(x, y),$$
$$g(x, y) := \sum_{n \ge 0} \mathbf{P}_x[X_n = y] \quad (\asymp |x - y|^{-(d-2)}).$$

Or alternatively:

$$d\mathbb{P}(arphi) \propto \exp\left[-rac{1}{2}\mathcal{E}(arphi,arphi)
ight] darphi, \ \mathcal{E}(f,f) := rac{1}{4d} \sum_{\substack{x,y \in \mathbb{Z}^d \ x \sim y}} (f(y) - f(x))^2.$$

Level-set percolation: For each fixed $h \in \mathbb{R}$, consider the induced (random) subgraph of \mathbb{Z}^d with vertex set

$$\{\varphi \ge h\} := \{x \in \mathbb{Z}^d : \varphi_x \ge h\}.$$

We wish to study the connective properties of $\{\varphi \geq h\}$ as h varies.

The critical parameter for percolation is defined as

$$h_* = h_*(d) := \inf\{h \in \mathbb{R} : \mathbb{P}[0 \stackrel{\varphi \ge h}{\longleftrightarrow} \infty] = 0\}.$$

We wish to study the connective properties of $\{\varphi \ge h\}$ as h varies.

The critical parameter for percolation is defined as

$$h_* = h_*(d) := \inf\{h \in \mathbb{R} : \mathbb{P}[0 \stackrel{\varphi \ge h}{\longleftrightarrow} \infty] = 0\}.$$

The phase transition is non-trivial for any $d \ge 3$:

• $h_*(d) \ge 0 \quad \forall d \ge 3 \text{ (Bricmont-Lebowitz-Maes'87)}$

Actually $h_*(d) > 0 \quad \forall d \ge 3$ (Drewitz–Prévost–Rodriguez'18)

- $h_*(3) < +\infty$ (Bricmont-Lebowitz-Maes'87)
- $h_*(d) < +\infty \quad \forall d \geq 3 \text{ (Rodriguez-Sznitman'13)}$

It has been recently proved (Duminil-Copin-Goswami-Rodriguez-S. '20) that the phase transition at h_* is sharp.

It has been recently proved (Duminil-Copin-Goswami-Rodriguez-S. '20) that the phase transition at h_* is sharp. More precisely:

• If $h > h_*(d)$, then for $\beta = \beta(d) \in (0,1], c = c(h,d) > 0$

$$\mathbb{P}[0 \stackrel{\varphi \geq h}{\longleftrightarrow} \partial B_N] \leq e^{-c N^{\beta}}.$$

It has been recently proved (Duminil-Copin-Goswami-Rodriguez-S. '20) that the phase transition at h_* is sharp. More precisely:

• If
$$h > h_*(d)$$
, then for $\beta = \beta(d) \in (0, 1]$, $c = c(h, d) > 0$
$$\mathbb{P}[0 \xrightarrow{\varphi \ge h} \partial B_N] \le e^{-c N^{\beta}}.$$

• If $h < h_*(d)$, then for $\beta = \beta(d) \in (0,1], \ c = c(h,d) > 0$

$$\mathbb{P}\left[\begin{array}{c} \text{there is a unique macroscopic} \\ \text{cluster of } \{\varphi \geq h\} \text{ inside } B_N \end{array}\right] \geq 1 - e^{-c N^{\beta}}$$

.

As a simple consequence of sharpness for every $h \neq h_*$, the *(truncated)* one arm probability decays at least stretched exponentially fast:

$$\mathbb{P}[0 \stackrel{\varphi \ge h}{\longleftrightarrow} \partial B_N, 0 \stackrel{\varphi \ge h}{\longleftrightarrow} \infty] \le e^{-cN^{\beta}}. \tag{(\star)}$$

As a simple consequence of sharpness for every $h \neq h_*$, the *(truncated)* one arm probability decays at least stretched exponentially fast:

$$\mathbb{P}[0 \stackrel{\varphi \ge h}{\longleftrightarrow} \partial B_N, 0 \stackrel{\varphi \ge h}{\longleftrightarrow} \infty] \le e^{-cN^{\beta}}. \tag{(\star)}$$

What is the correct rate of decay for the probability in (\star) ?

As a simple consequence of sharpness for every $h \neq h_*$, the *(truncated)* one arm probability decays at least stretched exponentially fast:

$$\mathbb{P}[0 \stackrel{\varphi \ge h}{\longleftrightarrow} \partial B_N, 0 \stackrel{\varphi \ge h}{\longleftrightarrow} \infty] \le e^{-cN^{\beta}}. \tag{(\star)}$$

What is the correct rate of decay for the probability in (\star) ?

Theorem (Popov-Teixeira, Popov-Rath '15)

For $d \ge 4$ and $h > h_*$

$$e^{-C(h)N} \leq \mathbb{P}[0 \stackrel{\varphi \geq h}{\longleftrightarrow} \partial B_N] \leq e^{-c(h)N}$$

For d = 3, $h > h_*$ and any $\varepsilon > 0$

$$e^{-C(h)N} \leq \mathbb{P}[0 \stackrel{\varphi \geq h}{\longleftrightarrow} \partial B_N] \leq \exp\Big[-c(h,\varepsilon) \frac{N}{(\log N)^{3+\varepsilon}}\Big].$$

Theorem (Goswami-Rodriguez-S. '20)

If $\mathbf{d} = \mathbf{3}$, then for every $h \neq h_*$,

$$\lim_{N\to\infty} \frac{\log N}{N} \log \mathbb{P}[0 \stackrel{\varphi \ge h}{\longleftrightarrow} \partial B_N, 0 \stackrel{\varphi \ge h}{\longleftrightarrow} \infty] = -\frac{\pi}{3} (h - h_*)^2.$$
(1)

Theorem (Goswami–Rodriguez–S. '20)

If $\mathbf{d} = \mathbf{3}$, then for every $h \neq h_*$,

$$\lim_{N \to \infty} \frac{\log N}{N} \log \mathbb{P}[0 \stackrel{\varphi \ge h}{\longleftrightarrow} \partial B_N, 0 \stackrel{\varphi \ge h}{\longleftrightarrow} \infty] = -\frac{\pi}{3} (h - h_*)^2.$$
(1)

If $\mathbf{d} \geq \mathbf{4}$, then for every $h \neq h_*$,

$$\mathbb{P}[0 \stackrel{\varphi \ge h}{\longleftrightarrow} \partial B_N, 0 \stackrel{\varphi \ge h}{\longleftrightarrow} \infty] = \exp\left[-\Theta(1)N\right].$$
(2)

Remark 1: As mentioned before, the only previously known case was $d \ge 4$ and $h > h_*$.

Theorem (Goswami–Rodriguez–S. '20)

If $\mathbf{d} = \mathbf{3}$, then for every $h \neq h_*$,

$$\lim_{N \to \infty} \frac{\log N}{N} \log \mathbb{P}[0 \stackrel{\varphi \ge h}{\longleftrightarrow} \partial B_N, 0 \stackrel{\varphi \ge h}{\longleftrightarrow} \infty] = -\frac{\pi}{3} (h - h_*)^2.$$
(1)

If $\mathbf{d} \geq \mathbf{4}$, then for every $h \neq h_*$,

$$\mathbb{P}[0 \stackrel{\varphi \ge h}{\longleftrightarrow} \partial B_N, 0 \stackrel{\varphi \ge h}{\longleftrightarrow} \infty] = \exp\left[-\Theta(1)N\right].$$
(2)

Remark 1: As mentioned before, the only previously known case was $d \ge 4$ and $h > h_*$.

Remark 2: A result analogous to the case d = 3 above for independent percolation is currently unavailable. Actually, that would allow to compute the critical exponent ν for the correlation length.

Capacity

For a finite subset $K \subset \mathbb{Z}^d$, its *capacity* is defined as follows

$$\operatorname{cap}(\mathcal{K}) := \sum_{x \in \partial_{int} \mathcal{K}} \mathbf{P}_x[X_n \notin \mathcal{K} \ \forall n \geq 1].$$

One can also define capacity in the continuum, i.e. for subsets $K \subset \mathbb{R}^d$.

Capacity

For a finite subset $K \subset \mathbb{Z}^d$, its *capacity* is defined as follows

$$\operatorname{cap}(\mathcal{K}) := \sum_{x \in \partial_{int} \mathcal{K}} \mathbf{P}_x[X_n \notin \mathcal{K} \ \forall n \geq 1].$$

One can also define capacity in the continuum, i.e. for subsets $K \subset \mathbb{R}^d$. Some examples:

$$\operatorname{cap}(B_N) \sim rac{\operatorname{cap}([0,1]^d)}{d} N^{d-2} \quad \forall d \geq 3,$$
 $\operatorname{cap}([0,N] \times \{0\}^{d-1}) \sim egin{carrow} rac{2\pi}{3} rac{N}{\log N}, & ext{if } d = 3 \ C_d N, & ext{if } d \geq 4. \end{cases}$

Note the similarity between the our large deviation results and the above asymptotic for $\operatorname{cap}([0, N] \times \{0\}^{d-1})$.

Capacity

For a finite subset $K \subset \mathbb{Z}^d$, its *capacity* is defined as follows

$$\operatorname{cap}(\mathcal{K}) := \sum_{x \in \partial_{int} \mathcal{K}} \mathbf{P}_x[X_n \notin \mathcal{K} \ \forall n \geq 1].$$

One can also define capacity in the continuum, i.e. for subsets $K \subset \mathbb{R}^d$. Some examples:

$$\operatorname{cap}(B_N) \sim rac{\operatorname{cap}([0,1]^d)}{d} N^{d-2} \quad \forall d \geq 3,$$
 $\operatorname{cap}([0,N] \times \{0\}^{d-1}) \sim egin{carrow} rac{2\pi}{3} rac{N}{\log N}, & ext{if } d = 3 \ C_d N, & ext{if } d \geq 4. \end{cases}$

Note the similarity between the our large deviation results and the above asymptotic for $cap([0, N] \times \{0\}^{d-1})$. Before explaining this connection, let us see some other examples of large deviation results for the GFF.

Theorem (Bolthausen-Deuschel-Zeitouni '95)

Let $B_N := \{x \in \mathbb{Z}^d : |x|_\infty \le N\}$, then

$$\lim_{N} \frac{1}{N^{d-2}\log N} \log \mathbb{P}\big[\varphi_{x} \geq 0 \text{ for all } x \in B_{N}\big] = -\frac{2}{d}g(0) \mathrm{cap}([0,1]^{d}).$$

Theorem (Bolthausen-Deuschel-Zeitouni '95)

Let $B_N := \{x \in \mathbb{Z}^d : |x|_\infty \le N\}$, then

$$\lim_{N} \frac{1}{N^{d-2}\log N} \log \mathbb{P}\big[\varphi_{x} \geq 0 \text{ for all } x \in B_{N}\big] = -\frac{2}{d}g(0) \mathrm{cap}([0,1]^{d}).$$

Furthermore, conditionally on the event $\{\varphi_x \ge 0 \text{ for all } x \in B_N\}$, one has

" $\varphi_x \sim 2\sqrt{g(0) \log N}$ w.h.p. on B_N "

Theorem (Bolthausen-Deuschel-Zeitouni '95)

Let $B_N := \{x \in \mathbb{Z}^d : |x|_\infty \le N\}$, then

$$\lim_{N} \frac{1}{N^{d-2}\log N} \log \mathbb{P}\big[\varphi_{x} \geq 0 \text{ for all } x \in B_{N}\big] = -\frac{2}{d}g(0) \mathrm{cap}([0,1]^{d}).$$

Furthermore, conditionally on the event $\{\varphi_x \ge 0 \text{ for all } x \in B_N\}$, one has

$$\phi \, arphi_{ imes} \sim 2 \sqrt{g(0) \log N}$$
 w.h.p. on B_N $''$

Remark: Intuitively, the theorems says that the best strategy for φ to realize the event $\{\varphi_x \ge 0 \text{ for all } x \in B_N\}$ is through a shift of order $2\sqrt{g(0)\log N}$ inside B_N . This phenomenon is called *"entropic repulsion"*.

Theorem (Sznitman '15)

For every $h < h_*$,

$$\lim_{N} \frac{1}{N^{d-2}} \log \mathbb{P}\big[B_N \overset{\varphi \geq h}{\longleftrightarrow} \partial B_{2N} \big] = -\frac{1}{2d} (h_* - h)^2 \mathrm{cap}([0,1]^d).$$

Theorem (Sznitman '15)

For every $h < h_*$,

$$\lim_{N} \frac{1}{N^{d-2}} \log \mathbb{P}\big[B_N \xleftarrow{\varphi \geq h}{\longrightarrow} \partial B_{2N} \big] = -\frac{1}{2d} (h_* - h)^2 \mathrm{cap}([0,1]^d).$$

Theorem (Nitzschner '18)

For every non-empty compact set $A \subset [0,1]^d \subset \mathbb{R}^d$ and $h < h_*$,

$$\lim_{N} \frac{1}{N^{d-2}} \log \mathbb{P} \big[A_N \stackrel{\varphi \geq h}{\longleftrightarrow} \partial B_{2N} \big] = -\frac{1}{2d} (h_* - h)^2 \mathrm{cap}(A).$$

where $A_N := \{x \in \mathbb{Z}^d : x/N \in A\}.$

Theorem (Sznitman '15)

For every $h < h_*$,

$$\lim_{N} \frac{1}{N^{d-2}} \log \mathbb{P}\big[B_N \xleftarrow{\varphi \geq h}{\longrightarrow} \partial B_{2N} \big] = -\frac{1}{2d} (h_* - h)^2 \mathrm{cap}([0, 1]^d).$$

Theorem (Nitzschner '18)

For every non-empty compact set $A \subset [0,1]^d \subset \mathbb{R}^d$ and $h < h_*$,

$$\lim_{N} \frac{1}{N^{d-2}} \log \mathbb{P} \big[A_N \stackrel{\varphi \geq h}{\longleftrightarrow} \partial B_{2N} \big] = -\frac{1}{2d} (h_* - h)^2 \mathrm{cap}(A)$$

where $A_N := \{x \in \mathbb{Z}^d : x/N \in A\}.$

Remark: In these results, lower and upper bounds were expressed in terms of alternative critical parameters h_{**} and \bar{h} , which were later proved to be equal due to sharpness.

Entropic lower bound

 $\bullet~$ If $\tilde{\mathbb{P}}$ is absolutely continuous w.r.t. $\mathbb{P},$ then

$$\mathbb{P}[A] \geq \widetilde{\mathbb{P}}[A] \exp\left[-rac{1}{\widetilde{\mathbb{P}}[A]}\left(\mathcal{H}(\widetilde{\mathbb{P}}|\mathbb{P}) + e^{-1}
ight)
ight],$$

where $H(\tilde{\mathbb{P}}|\mathbb{P}):=\tilde{\mathbb{E}}\Big[\log rac{d\tilde{\mathbb{P}}}{d\mathbb{P}}\Big]$ is the relative entropy.

Entropic lower bound

 $\bullet~$ If $\tilde{\mathbb{P}}$ is absolutely continuous w.r.t. $\mathbb{P},$ then

$$\mathbb{P}[A] \geq ilde{\mathbb{P}}[A] \, \exp\left[-rac{1}{ ilde{\mathbb{P}}[A]} \left(H(ilde{\mathbb{P}}|\mathbb{P}) + e^{-1}
ight)
ight],$$

where $H(\tilde{\mathbb{P}}|\mathbb{P}) := \tilde{\mathbb{E}}\Big[\log \frac{d\tilde{\mathbb{P}}}{d\mathbb{P}}\Big]$ is the relative entropy.

• Given $f:\mathbb{Z}^d \to \mathbb{R}$ with bounded support, let

$$d\tilde{\mathbb{P}}(arphi) := \exp\left[\mathcal{E}(f,arphi) - rac{1}{2}\mathcal{E}(f,f)
ight]d\mathbb{P}(arphi).$$

One can easily verify that

- φ under $\tilde{\mathbb{P}}$ has the same law as $\varphi + f$ under \mathbb{P} ,
- $H(\tilde{\mathbb{P}}|\mathbb{P}) = \frac{1}{2}\mathcal{E}(f,f).$

Entropic lower bound

 $\bullet~$ If $\tilde{\mathbb{P}}$ is absolutely continuous w.r.t. $\mathbb{P},$ then

$$\mathbb{P}[A] \geq ilde{\mathbb{P}}[A] \, \exp\left[-rac{1}{ ilde{\mathbb{P}}[A]} \left(H(ilde{\mathbb{P}}|\mathbb{P}) + e^{-1}
ight)
ight],$$

where $H(\tilde{\mathbb{P}}|\mathbb{P}) := \tilde{\mathbb{E}}\Big[\log \frac{d\tilde{\mathbb{P}}}{d\mathbb{P}}\Big]$ is the relative entropy.

• Given $f:\mathbb{Z}^d \to \mathbb{R}$ with bounded support, let

$$d\tilde{\mathbb{P}}(arphi) := \exp\left[\mathcal{E}(f,arphi) - rac{1}{2}\mathcal{E}(f,f)
ight]d\mathbb{P}(arphi).$$

One can easily verify that

- φ under $\tilde{\mathbb{P}}$ has the same law as $\varphi + f$ under \mathbb{P} ,
- $H(\tilde{\mathbb{P}}|\mathbb{P}) = \frac{1}{2}\mathcal{E}(f,f).$
- The following variational principle is valid

$$\inf_{f\equiv\alpha \text{ on } K} \mathcal{E}(f,f) = \alpha^2 \mathrm{cap}(K).$$

Proposition (Entropic lower bound)

Let $K_N \subset \mathbb{Z}^d$ and $A_N \in \{0,1\}^{K_N}$ be two sequences of domains and events such that $\operatorname{cap}(K_N) \to \infty$ and, for every $h \in J \subset \mathbb{R}$,

$$\mathbb{P}[\{\varphi \geq h\} \in A_N] \to 1.$$

Then for every $h \notin J$, $\liminf_{N} \frac{1}{\operatorname{cap}(K_N)} \log \mathbb{P}[\{\varphi \ge h\} \in A_N] \ge -\frac{1}{2}d(h, J)^2.$

Proposition (Entropic lower bound)

Let $K_N \subset \mathbb{Z}^d$ and $A_N \in \{0,1\}^{K_N}$ be two sequences of domains and events such that $\operatorname{cap}(K_N) \to \infty$ and, for every $h \in J \subset \mathbb{R}$,

$$\mathbb{P}[\{\varphi \geq h\} \in A_N] \to 1.$$

Then for every
$$h \notin J$$
,

$$\liminf_{N} \frac{1}{\operatorname{cap}(K_N)} \log \mathbb{P} \big[\{ \varphi \ge h \} \in A_N \big] \ge -\frac{1}{2} d(h, J)^2.$$

Proof of the lower bound for d = 3 and $h > h_*$: Apply the above proposition for $J = (-\infty, h_*)$ and A_N being the existence of a long crossing inside the "tube" K_N of length N and width $(\log N)^C$. Finally notice that

$$\operatorname{cap}(K_N) \sim \operatorname{cap}([0, N] \times \{0\}^2) \sim \frac{2\pi}{3} \frac{N}{\log N}.$$

An upper bound for harmonic deviations

Markov decomposition of the GFF: For any domain (a box, say) U, one can decompose φ as a sum of two *independent* fields

$$\varphi = h_U + \psi_U,$$

where $h_U(x) := E_x[\varphi_{X_{H_{U^c}}}]$ is the harmonic average of φ in U and ψ_U is the local field in U.

Markov decomposition of the GFF: For any domain (a box, say) U, one can decompose φ as a sum of two *independent* fields

$$\varphi = h_U + \psi_U,$$

where $h_U(x) := E_x[\varphi_{X_{H_{U^c}}}]$ is the harmonic average of φ in U and ψ_U is the local field in U.

Proposition (Sznitman '15)

For every $\alpha > 0$

$$\limsup_{L} \sup_{\mathcal{C}} \sup_{\mathcal{C}} \frac{1}{\operatorname{cap}(\mathcal{C})} \log \mathbb{P}\Big[\bigcap_{B \in \mathcal{C}} \big\{ \sup_{x \in B} h_{U_B}(x) \ge \alpha \big\} \Big] \le -\frac{1}{2}\alpha^2,$$

where the supremum on C runs over "nice" families of "distant" L-boxes B and U_B is some big box containing B.

Remark: The proof of this proposition is based on the Borell-TIS inequality.

We use a "two scale argument":

• Let $L = (\log N)^{1+\delta}$ and say that an L-box B is φ -bad if it is crossed in $\{\varphi \ge h\}.$

We use a "two scale argument":

- Let L = (log N)^{1+δ} and say that an L-box B is φ-bad if it is crossed in {φ ≥ h}.
- Any path from 0 to ∂B_N in $\{\varphi \ge h\}$ induces a family C of L-boxes which are "nice", "distant" and φ -bad. There are at most $C^{N/L}$ such C's.

Note that a φ-bad box is either ψ-bad (i.e. crossed in {ψ_U ≥ h_{*} + ε}) or it is h-bad (i.e. { inf_{x∈B} h_U(x) ≥ α} happens with α = h - h_{*} - ε).

- Note that a φ-bad box is either ψ-bad (i.e. crossed in {ψ_U ≥ h_{*} + ε}) or it is h-bad (i.e. { inf_{x∈B} h_U(x) ≥ α} happens with α = h - h_{*} - ε).
- Bound the cost of ψ-bad boxes by independence and the a priori stretched exponential bound for the one arm probability.

- Note that a φ-bad box is either ψ-bad (i.e. crossed in {ψ_U ≥ h_{*} + ε}) or it is h-bad (i.e. { inf_{x∈B} h_U(x) ≥ α} happens with α = h - h_{*} - ε).
- Bound the cost of ψ-bad boxes by independence and the a priori stretched exponential bound for the one arm probability.
- Bound the cost of *h*-bad boxes using the Proposition from last slide.
 Finally, lower bound the capacity of all C's:

$$\operatorname{cap}(\mathcal{C}) \geq (1 + o(1)) \operatorname{cap}([0, N] \times \{0\}^2) \sim \frac{2\pi}{3} \frac{N}{\log N}.$$

- Note that a φ-bad box is either ψ-bad (i.e. crossed in {ψ_U ≥ h_{*} + ε}) or it is h-bad (i.e. { inf_{x∈B} h_U(x) ≥ α} happens with α = h - h_{*} - ε).
- Bound the cost of ψ-bad boxes by independence and the a priori stretched exponential bound for the one arm probability.
- Bound the cost of *h*-bad boxes using the Proposition from last slide.
 Finally, lower bound the capacity of all C's:

$$\operatorname{cap}(\mathcal{C}) \geq (1 + o(1)) \operatorname{cap}([0, N] \times \{0\}^2) \sim \frac{2\pi}{3} \frac{N}{\log N}.$$

Summing up:

$$\mathbb{P}[0 \stackrel{\varphi \geq h}{\longleftrightarrow} \partial B_N] \leq C^{N/L} \left[\exp\left(-c(\varepsilon)L^{\beta}\frac{N}{L}\right) + \exp\left(-\frac{\pi + o(1)}{3}(h - h_* - \varepsilon)^2\frac{N}{\log N}\right) \right]$$

- Note that a φ-bad box is either ψ-bad (i.e. crossed in {ψ_U ≥ h_{*} + ε}) or it is h-bad (i.e. { inf_{x∈B} h_U(x) ≥ α} happens with α = h - h_{*} - ε).
- Bound the cost of ψ-bad boxes by independence and the a priori stretched exponential bound for the one arm probability.
- Bound the cost of *h*-bad boxes using the Proposition from last slide.
 Finally, lower bound the capacity of all C's:

$$\operatorname{cap}(\mathcal{C}) \geq (1 + o(1)) \operatorname{cap}([0, N] \times \{0\}^2) \sim \frac{2\pi}{3} \frac{N}{\log N}.$$

Summing up:

$$\mathbb{P}[0 \xrightarrow{\varphi \geq h} \partial B_N] \leq C^{N/L} \left[\exp\left(-c(\varepsilon)L^{\beta}\frac{N}{L}\right) + \exp\left(-\frac{\pi + o(1)}{3}(h - h_* - \varepsilon)^2\frac{N}{\log N}\right) \right]$$

Just recall that $L = (\log N)^{1+\delta}$, choose $\delta < rac{\beta}{1-\beta}$ and let arepsilon o 0.

• Prove a corresponding result for the Random Interlacements.

- Prove a corresponding result for the Random Interlacements.
- Obtain similar results for the *volume* of a finite cluster.

- Prove a corresponding result for the Random Interlacements.
- Obtain similar results for the volume of a finite cluster.

Conjecturally, for
$$h \neq h_*$$
:

$$\lim_{N} \frac{1}{N^{(d-2)/d}} \log \mathbb{P}[|\mathcal{C}_0^h| = N] = -\inf \left\{ \frac{1}{2d} \int_{\mathbb{R}^d} |\bigtriangledown f|^2 : f \in C_0^\infty \text{ and } \int_{D(f,h)} \theta(h-f) = 1 \right\},$$

where D(f, h) is the connected component of $\{x \in \mathbb{R}^d : h - f(x) \le h_*\}$ containing the origin 0.

- Prove a corresponding result for the Random Interlacements.
- Obtain similar results for the volume of a finite cluster.

Conjecturally, for
$$h \neq h_*$$
:

$$\lim_{N} \frac{1}{N^{(d-2)/d}} \log \mathbb{P}[|\mathcal{C}_0^h| = N] = -\inf\left\{\frac{1}{2d} \int_{\mathbb{R}^d} |\bigtriangledown f|^2 : f \in C_0^\infty \text{ and } \int_{D(f,h)} \theta(h-f) = 1\right\},$$

where D(f, h) is the connected component of $\{x \in \mathbb{R}^d : h - f(x) \le h_*\}$ containing the origin 0. For the optimal function f, the profile $\theta(h - f)$ and the domain D(f, h) should represent, respectively, the typical density and shape of C_0^h when conditioned on $\{|C_0^h| = N\}$.

- Prove a corresponding result for the Random Interlacements.
- Obtain similar results for the volume of a finite cluster.

Conjecturally, for
$$h \neq h_*$$
:

$$\lim_{N} \frac{1}{N^{(d-2)/d}} \log \mathbb{P}[|\mathcal{C}_0^h| = N] = -\inf \left\{ \frac{1}{2d} \int_{\mathbb{R}^d} |\bigtriangledown f|^2 : f \in C_0^\infty \text{ and } \int_{D(f,h)} \theta(h-f) = 1 \right\},$$

where D(f, h) is the connected component of $\{x \in \mathbb{R}^d : h - f(x) \le h_*\}$ containing the origin 0. For the optimal function f, the profile $\theta(h - f)$ and the domain D(f, h) should represent, respectively, the typical density and shape of C_0^h when conditioned on $\{|C_0^h| = N\}$.

• Study the model at and near the critical point *h*_{*}. This should be more treatable on the cable system.

Thank you!