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The model

Gaussian Free Field: Let (ϕx : x ∈ Zd), d ≥ 3, be the centered Gaussian field

with covariances given by

E[ϕxϕy ] = g(x , y),

g(x , y) :=
∑
n≥0

Px [Xn = y ] (� |x − y |−(d−2)).

Or alternatively:

dP(ϕ) ∝ exp
[
− 1

2
E(ϕ,ϕ)

]
dϕ,

E(f , f ) :=
1

4d

∑
x,y∈Zd

x∼y

(f (y)− f (x))2.

Level-set percolation: For each fixed h ∈ R, consider the induced (random)

subgraph of Zd with vertex set

{ϕ ≥ h} := {x ∈ Zd : ϕx ≥ h}.
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Existence of phase transition

We wish to study the connective properties of {ϕ ≥ h} as h varies.

The critical parameter for percolation is defined as

h∗ = h∗(d) := inf{h ∈ R : P[0
ϕ≥h←→∞] = 0}.

The phase transition is non-trivial for any d ≥ 3:

h∗(d) ≥ 0 ∀d ≥ 3 (Bricmont–Lebowitz–Maes’87)

Actually h∗(d) > 0 ∀d ≥ 3 (Drewitz–Prévost–Rodriguez’18)

h∗(3) < +∞ (Bricmont–Lebowitz–Maes’87)

h∗(d) < +∞ ∀d ≥ 3 (Rodriguez–Sznitman’13)
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Sharpness of the phase transition

It has been recently proved (Duminil-Copin–Goswami–Rodriguez–S. ‘20) that

the phase transition at h∗ is sharp.

More precisely:

If h > h∗(d), then for β = β(d) ∈ (0, 1], c = c(h, d) > 0

P[0
ϕ≥h←→ ∂BN ] ≤ e−c Nβ

.

If h < h∗(d), then for β = β(d) ∈ (0, 1], c = c(h, d) > 0

P

 there is a unique macroscopic

cluster of {ϕ ≥ h} inside BN

 ≥ 1− e−c Nβ

.
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The diameter of a finite cluster

As a simple consequence of sharpness for every h 6= h∗, the (truncated) one

arm probability decays at least stretched exponentially fast:

P[0
ϕ≥h←→ ∂BN , 0

ϕ≥h

6←→ ∞] ≤ e−cNβ

. (?)

What is the correct rate of decay for the probability in (?)?

Theorem (Popov–Teixeira, Popov–Rath ‘15)

For d ≥ 4 and h > h∗

e−C(h)N ≤ P[0
ϕ≥h←→ ∂BN ] ≤ e−c(h)N .

For d = 3, h > h∗ and any ε > 0

e−C(h)N ≤ P[0
ϕ≥h←→ ∂BN ] ≤ exp

[
− c(h, ε)

N

(logN)3+ε

]
.

Franco Severo Large deviation for GFF percolation



The diameter of a finite cluster

As a simple consequence of sharpness for every h 6= h∗, the (truncated) one

arm probability decays at least stretched exponentially fast:

P[0
ϕ≥h←→ ∂BN , 0

ϕ≥h

6←→ ∞] ≤ e−cNβ

. (?)

What is the correct rate of decay for the probability in (?)?

Theorem (Popov–Teixeira, Popov–Rath ‘15)

For d ≥ 4 and h > h∗

e−C(h)N ≤ P[0
ϕ≥h←→ ∂BN ] ≤ e−c(h)N .

For d = 3, h > h∗ and any ε > 0

e−C(h)N ≤ P[0
ϕ≥h←→ ∂BN ] ≤ exp

[
− c(h, ε)

N

(logN)3+ε

]
.

Franco Severo Large deviation for GFF percolation



The diameter of a finite cluster

As a simple consequence of sharpness for every h 6= h∗, the (truncated) one

arm probability decays at least stretched exponentially fast:

P[0
ϕ≥h←→ ∂BN , 0

ϕ≥h

6←→ ∞] ≤ e−cNβ

. (?)

What is the correct rate of decay for the probability in (?)?

Theorem (Popov–Teixeira, Popov–Rath ‘15)

For d ≥ 4 and h > h∗

e−C(h)N ≤ P[0
ϕ≥h←→ ∂BN ] ≤ e−c(h)N .

For d = 3, h > h∗ and any ε > 0

e−C(h)N ≤ P[0
ϕ≥h←→ ∂BN ] ≤ exp

[
− c(h, ε)

N

(logN)3+ε

]
.

Franco Severo Large deviation for GFF percolation



Our result

Theorem (Goswami–Rodriguez–S. ‘20)

If d = 3, then for every h 6= h∗,

lim
N→∞

logN

N
log P[0

ϕ≥h←→ ∂BN , 0
ϕ≥h

6←→ ∞] = −π
3

(h − h∗)
2. (1)

If d ≥ 4, then for every h 6= h∗,

P[0
ϕ≥h←→ ∂BN , 0

ϕ≥h

6←→ ∞] = exp
[
−Θ(1)N

]
. (2)

Remark 1: As mentioned before, the only previously known case was d ≥ 4 and

h > h∗.

Remark 2: A result analogous to the case d = 3 above for independent

percolation is currently unavailable. Actually, that would allow to compute the

critical exponent ν for the correlation length.
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Capacity

For a finite subset K ⊂ Zd , its capacity is defined as follows

cap(K) :=
∑

x∈∂intK

Px [Xn /∈ K ∀n ≥ 1].

One can also define capacity in the continuum, i.e. for subsets K ⊂ Rd .

Some examples:

cap(BN) ∼ cap([0, 1]d)

d
Nd−2 ∀d ≥ 3,

cap
(
[0,N]× {0}d−1) ∼


2π
3

N
log N

, if d = 3

CdN, if d ≥ 4.

Note the similarity between the our large deviation results and the above

asymptotic for cap
(
[0,N]× {0}d−1

)
. Before explaining this connection, let us

see some other examples of large deviation results for the GFF.
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Large deviation and entropic repulsion

Theorem (Bolthausen–Deuschel–Zeitouni ‘95)

Let BN := {x ∈ Zd : |x |∞ ≤ N}, then

lim
N

1

Nd−2 logN
log P

[
ϕx ≥ 0 for all x ∈ BN

]
= − 2

d
g(0)cap([0, 1]d).

Furthermore, conditionally on the event {ϕx ≥ 0 for all x ∈ BN}, one has

“ ϕx ∼ 2
√

g(0) logN w.h.p. on BN
′′

Remark: Intuitively, the theorems says that the best strategy for ϕ to realize

the event {ϕx ≥ 0 for all x ∈ BN} is through a shift of order 2
√

g(0) logN

inside BN . This phenomenon is called “entropic repulsion”.
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Large deviation and entropic repulsion

Theorem (Sznitman ‘15)

For every h < h∗,

lim
N

1

Nd−2
log P

[
BN

ϕ≥h

6←→ ∂B2N

]
= − 1

2d
(h∗ − h)2cap([0, 1]d).

Theorem (Nitzschner ‘18)

For every non-empty compact set A ⊂ [0, 1]d ⊂ Rd and h < h∗,

lim
N

1

Nd−2
log P

[
AN

ϕ≥h

6←→ ∂B2N

]
= − 1

2d
(h∗ − h)2cap(A),

where AN := {x ∈ Zd : x/N ∈ A}.

Remark: In these results, lower and upper bounds were expressed in terms of

alternative critical parameters h∗∗ and h̄, which were later proved to be equal

due to sharpness.
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Entropic lower bound

If P̃ is absolutely continuous w.r.t. P, then

P[A] ≥ P̃[A] exp

[
− 1

P̃[A]

(
H(P̃|P) + e−1

)]
,

where H(P̃|P) := Ẽ
[

log d P̃
dP

]
is the relative entropy.

Given f : Zd → R with bounded support, let

d P̃(ϕ) := exp
[
E(f , ϕ)− 1

2
E(f , f )

]
dP(ϕ).

One can easily verify that

ϕ under P̃ has the same law as ϕ + f under P,

H(P̃|P) = 1
2
E(f , f ).

The following variational principle is valid

inf
f≡α on K

E(f , f ) = α2cap(K).
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Lower bound for d = 3 and h > h∗

Proposition (Entropic lower bound)

Let KN ⊂ Zd and AN ∈ {0, 1}KN be two sequences of domains and events such

that cap(KN)→∞ and, for every h ∈ J ⊂ R,

P[{ϕ ≥ h} ∈ AN ]→ 1.

Then for every h /∈ J,

lim inf
N

1

cap(KN)
log P

[
{ϕ ≥ h} ∈ AN

]
≥ −1

2
d(h, J)2.

Proof of the lower bound for d = 3 and h > h∗: Apply the above proposition

for J = (−∞, h∗) and AN being the existence of a long crossing inside the

“tube” KN of length N and width (logN)C . Finally notice that

cap(KN) ∼ cap
(
[0,N]× {0}2) ∼ 2π

3

N

logN
.
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An upper bound for harmonic deviations

Markov decomposition of the GFF: For any domain (a box, say) U, one can

decompose ϕ as a sum of two independent fields

ϕ = hU + ψU ,

where hU(x) := Ex [ϕXHUc
] is the harmonic average of ϕ in U and ψU is the

local field in U.

Proposition (Sznitman ‘15)

For every α > 0

lim sup
L

sup
C

1

cap(C)
log P

[ ⋂
B∈C

{
sup
x∈B

hUB (x) ≥ α
}]
≤ −1

2
α2,

where the supremum on C runs over “nice” families of “distant” L-boxes B and

UB is some big box containing B.

Remark: The proof of this proposition is based on the Borell-TIS inequality.
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Upper bound for d = 3 and h > h∗

We use a “two scale argument”:

Let L = (logN)1+δ and say that an L-box B is ϕ-bad if it is crossed in

{ϕ ≥ h}.

Any path from 0 to ∂BN in {ϕ ≥ h} induces a family C of L-boxes which

are “nice”, “distant” and ϕ-bad. There are at most CN/L such C’s.

L− boxes

BN

C

∈

ϕ− bad
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Upper bound for d = 3 and h > h∗

Note that a ϕ-bad box is either ψ-bad (i.e. crossed in {ψU ≥ h∗ + ε}) or

it is h-bad (i.e.
{

infx∈B hU(x) ≥ α
}

happens with α = h − h∗ − ε).

Bound the cost of ψ-bad boxes by independence and the a priori stretched

exponential bound for the one arm probability.

Bound the cost of h-bad boxes using the Proposition from last slide.

Finally, lower bound the capacity of all C’s:

cap(C) ≥ (1 + o(1)) cap([0,N]× {0}2) ∼ 2π

3

N

logN
.

Summing up:

P[0
ϕ≥h←→ ∂BN ] ≤ CN/L

[
exp

(
−c(ε)Lβ

N

L

)
+ exp

(
−π + o(1)

3
(h − h∗ − ε)2 N

logN

)]
.

Just recall that L = (logN)1+δ, choose δ < β
1−β and let ε→ 0.
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it is h-bad (i.e.
{

infx∈B hU(x) ≥ α
}

happens with α = h − h∗ − ε).

Bound the cost of ψ-bad boxes by independence and the a priori stretched

exponential bound for the one arm probability.

Bound the cost of h-bad boxes using the Proposition from last slide.

Finally, lower bound the capacity of all C’s:

cap(C) ≥ (1 + o(1)) cap([0,N]× {0}2) ∼ 2π

3

N

logN
.

Summing up:

P[0
ϕ≥h←→ ∂BN ] ≤ CN/L

[
exp

(
−c(ε)Lβ

N

L

)
+ exp

(
−π + o(1)

3
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logN

)]
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Further directions

Prove a corresponding result for the Random Interlacements.

Obtain similar results for the volume of a finite cluster.

Conjecturally, for h 6= h∗:

lim
N

1

N(d−2)/d
log P[|Ch0 | = N] =

− inf

{
1

2d

∫
Rd

| 5 f |2 : f ∈ C∞0 and

∫
D(f ,h)

θ(h − f ) = 1

}
,

where D(f , h) is the connected component of {x ∈ Rd : h − f (x) ≤ h∗}

containing the origin 0. For the optimal function f , the profile θ(h − f )

and the domain D(f , h) should represent, respectively, the typical density

and shape of Ch0 when conditioned on {|Ch0 | = N}.

Study the model at and near the critical point h∗. This should be more

treatable on the cable system.
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Thank you!
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