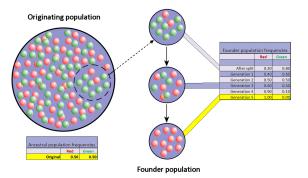
Fixation in Finite Populations Discrete and Continuous Views

Max Souza Joint work with FACC Chalub (UNL)

maxsouza@id.uff.br

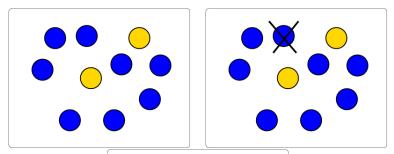
COLMEA - UFF - 20th September 2017

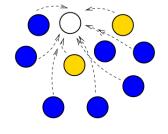
Why Fixation?



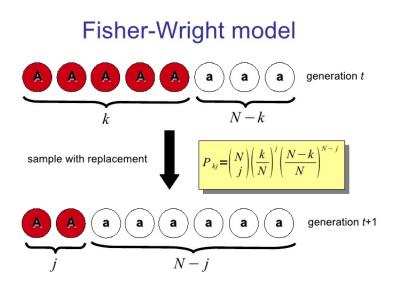
Discrete Views

Moran Process





Wright Fisher Model



Moran & Wright-Fisher processes

and their transition probabilities

Moran

$$M_{ij} = \begin{cases} \frac{i}{N} (1 - p_i), & i = j + 1, \\ \frac{i}{N} p_i + \frac{N - i}{N} (1 - p_i), & i = j, \\ \frac{N - i}{N} p_i, & i = j - 1, \\ 0, & |i - j| > 1. \end{cases}$$

Wright & Fisher

$$M_{ij} = inom{N}{j} p_i^j (1-p_i)^{N-j} \; .$$

•
$$M_{ij}, i, j = 0, ..., N;$$

•
$$M_{ij}, i, j = 0, ..., N;$$

•
$$M_{ij} = M(i, j, \mathbf{p}, N); \ \mathbf{p} \in \mathbb{R}^{N+1}$$

- $M_{ij}, i, j = 0, ..., N;$
- $M_{ij} = M(i, j, \mathbf{p}, N); \ \mathbf{p} \in \mathbb{R}^{N+1}$
- *p_j* ∈ [0, 1] describes the probability of a type A individual being selected for reproduction, with the chain in state *j*. We will term **p** the vector of *type selection probabilities* (TSP)

►

$$\blacktriangleright M_{ij}, i, j = 0, \ldots, N;$$

•
$$M_{ij} = M(i, j, \mathbf{p}, N); \ \mathbf{p} \in \mathbb{R}^{N+1}$$

- *p_j* ∈ [0, 1] describes the probability of a type A individual being selected for reproduction, with the chain in state *j*. We will term **p** the vector of *type selection probabilities* (TSP)
- Absence of mutation:

$$M_{0i} = \begin{cases} 1, & i = 0 \\ 0, & i = 1, \dots, N \end{cases} \text{ and } M_{Ni} = \begin{cases} 0, & i = 0, \dots, N-1 \\ 1, & i = N \end{cases}$$

▶ Reproductive fitness: $\varphi^{(\mathbb{A},\mathbb{B})}$: $\{0, 1, \dots, N\} \rightarrow \mathbb{R}_+$

$$\mathbf{p}_i = rac{i arphi^{(\mathbb{A})}(i)}{i arphi^{(\mathbb{A})}(i) + (N-i) arphi^{(\mathbb{B})}(i)}.$$

The Kimura class

Definition

Let **M** be a $(N + 1) \times (N + 1)$ stochastic matrix. We say that **M** is *Kimura* (**M** $\in \mathcal{K}$), if

$$\mathbf{M} = \begin{pmatrix} 1 & \mathbf{0} & \mathbf{0} \\ \widetilde{\mathbf{a}}^{\dagger} & \widetilde{\mathbf{M}} & \widetilde{\mathbf{b}}^{\dagger} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix}, \tag{1}$$

- $\widetilde{\mathbf{M}}$ is a $(N-1) \times (N-1)$ sub-stochastic irreducible matrix;
- **0** is the zero vector in \mathbb{R}^{N-1} ;
- ▶ $\tilde{\mathbf{a}}$ and $\tilde{\mathbf{b}}$ non-zero, non-negative vectors in \mathbb{R}^{N-1} .

Fixation

Proposition

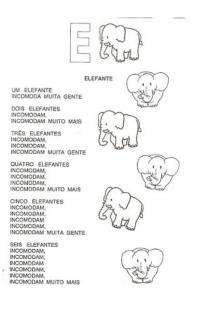
Let $\mathbf{M} \in \mathcal{K}$. Then, there exists a unique vector $\mathbf{\widetilde{F}} \in \mathbb{R}^{N-1}$, with $0 < \mathbf{\widetilde{F}}_i < 1$, such that $\mathbf{F}^= \begin{pmatrix} 0 & \mathbf{\widetilde{F}} & 1 \end{pmatrix}$, with $\mathbf{MF}^{\dagger} = \mathbf{F}^{\dagger}$ and

$$\widetilde{\mathbf{F}}^{\dagger} = \left(\mathbf{I} - \widetilde{\mathbf{M}}\right)^{-1} \widetilde{\mathbf{b}}^{\dagger}.$$

Definition (Admissible fixation vector)

A fixation vector **F** satisfying $0 < F_i < 1$, i = 1, ..., N - 1, is termed admissible.

The more the merrier?



Kimura Birth-Death processes

Fixation given explicitly by

$$F_i = c^{-1} \sum_{l=1}^i \prod_{k=1}^l \frac{M_{k-1,k}}{M_{k+1,k}}, \quad c = \sum_{l=1}^N \prod_{k=1}^{l-1} \frac{M_{k-1,k}}{M_{k+1,k}}.$$

 Hence fixation KBD processes are always strictly increasing. Regular and weakly-regular processes

Definition

An evolution process such that the transition matrix belongs to the Kimura class is said to be **regular** (**weakly regular**), if the associated fixation vector is increasing (non-decreasing, respect.).

Questions

- Is every model regular?
- Otherwise, is every relevant model regular?
- If not, what are the important irregular processes?
- Can we characterise regular/irregular processes?

Stochastic orderering

Definition (Vector stochastic ordering)

We say that two vectors $\mathbf{u}, \mathbf{v} \in \Delta^N := {\mathbf{x} \in \mathbb{R}^{N+1} | x_i \ge 0, \sum_i x_i = 1}$ are *stochastically ordered*, $\mathbf{u} \succ \mathbf{v}$, if for all n = 1, ..., N, we have that $\sum_{i=n}^{N} u_i \ge \sum_{i=n}^{N} v_i$. If all inequalities are strict, then we say $\mathbf{u} \succ \mathbf{v}$.

Definition (Ordered matrices)

Consider a $N \times N$ matrix **A**. We say that **A** is *stochastically* ordered (SO, $\mathbf{A} \in \text{StO}_N$) if all row vectors are stochastically ordered, i.e., if for all i > j, we have that $\mathbf{A}_{i,.} \succ \mathbf{A}_{j,.}$. We say that **A** is *strictly stochastically ordered* (SSO, $\mathbf{A} \in \text{St}^2O_N$) if for all i > j, we have that $\mathbf{A}_{i,.} \rightarrowtail \mathbf{A}_{j,..}$

SO/ESO => Weakly-Regular

Definition

We say that a $N \times N$ matrix **A** is *eventually strictly stochastically* ordered (stochastically ordered) if there exists $k_0 \in \mathcal{N}$ such A^k is strictly stochastically ordered (stochastically ordered, respect.) for $k \ge k_0$.

SO/ESO => Weakly-Regular

Definition

We say that a $N \times N$ matrix **A** is *eventually strictly stochastically* ordered (stochastically ordered) if there exists $k_0 \in \mathcal{N}$ such A^k is strictly stochastically ordered (stochastically ordered, respect.) for $k \ge k_0$.

Proposition

Let **M** be a $(N + 1) \times (N + 1)$ Kimura matrix. If **M** is eventually stochastically ordered then **M** is weakly-regular.

SO/ESO => Weakly-Regular

Definition

We say that a $N \times N$ matrix **A** is *eventually strictly stochastically* ordered (stochastically ordered) if there exists $k_0 \in \mathcal{N}$ such A^k is strictly stochastically ordered (stochastically ordered, respect.) for $k \ge k_0$.

Proposition

Let **M** be a $(N + 1) \times (N + 1)$ Kimura matrix. If **M** is eventually stochastically ordered then **M** is weakly-regular.

ESO is sufficient to guarantee the process is weakly-regular. Is it necessary?

Not really Let

$$\mathbf{M} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ \frac{1}{8} & \frac{1}{2} & \frac{1}{4} & \frac{1}{8} \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Then

• $\mathbf{F} = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} & 1 \end{pmatrix}$; hence **M** is weakly-regular. • We check directly that

$$\mathbf{M}^{\kappa} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ \alpha_{\kappa} & \delta_{\kappa} & \gamma_{\kappa} & \alpha_{\kappa} \\ \beta_{\kappa} & 2\gamma_{\kappa} & \delta_{\kappa} & \beta_{\kappa} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

In particular,

$$lpha_{\kappa+1} = rac{1}{8} + rac{2lpha_\kappa + eta_\kappa}{4} \;, \quad eta_{\kappa+1} = rac{lpha_\kappa + eta_\kappa}{2} \;.$$

▶ It is easily verified by induction in κ that $\alpha_{\kappa}, \beta_{\kappa} < 1/2$. On the other hand,

$$\alpha_{\kappa+1} - \beta_{\kappa+1} = \frac{1 - 2\beta_{\kappa}}{8} > 0 ,$$

Regularity in Kimura matrices

However for regularity, ESSO is equivalent to regularity:

Theorem Let **M** be a $(N + 1) \times (N + 1)$ Kimura matrix. Then **M** is regular if, and only if, it is eventually strictly stochastically ordered.

The WF process

Theorem

Let **M** be the transition matrix of the Wright Fisher process associated to the type selection probability vector \mathbf{p} . The three conditions below are equivalent.

- 1. The process **M** is regular.
- 2. The matrix **M** is strictly stochastically ordered.
- 3. The vector **p** is increasing.

Proposition

If fitnesses functions are positive and affine, then the type selection probability vector ${\bf p}$ is increasing.

A non-regular three-player game

- Let φ^(A)(x) = 15 − 24x + 10x² and φ^(B)(x) = 1 + 14x², which are strictly positive in the interval [0, 1];
- Can be obtained from 3-player game theory, with $a_0 = 15$, $a_1 = 3$, $a_2 = 1$, $b_0 = 1$, $b_1 = 1$, $b_2 = 15$, where a_k (b_k) is the pay-off of a type \mathbb{A} (\mathbb{B} , respectively) player against k other players;
- Then p_i given by reproductive fitness is not increasing;
- Note that the relative fitness Ψ^(A)/Ψ^(B) = φ^(A)/φ^(B) is decreasing and is associated to coexistence games (i.e., Ψ^(A)/Ψ^(B) > 1 for *x* near zero, and Ψ^(A)/Ψ^(B) < 1 for *x* near one).

Universality of Moran processes

Tell me your fixation and I will tell who you are

Theorem

Let **F** be an admissible fixation vector. Then **F** is the fixation vector of some Moran process if, and only if, **F** is increasing. Moreover, in the latter case, the type fixation probabilities of the Moran process that realises such a vector are given by

$$p_i = \frac{i(F_i - F_{i-1})}{i(F_i - F_{i-1}) + (N - i)(F_{i+1} - F_i)} \in (0, 1), \quad i = 1, \dots, N-1.$$

Universality of Wright-Fisher

Tell me your fixation and I will tell who you could be

We already have seen that are non-regular WF processes.

Universality of Wright-Fisher

Tell me your fixation and I will tell who you could be

- We already have seen that are non-regular WF processes.
- It turns out that WF fixation can be almost anything:

Universality of Wright-Fisher

Tell me your fixation and I will tell who you could be

- We already have seen that are non-regular WF processes.
- It turns out that WF fixation can be almost anything:

Theorem

Let **F** be an admissible fixation vector. Then there exists at least one WF matrix that has **F** as a fixation vector. In addition, if **F** is increasing, then such WF matrix is unique.

Time inhomogeneous processes

The Gillespie class

Definition

We say that a matrix **A** is totally indecomposable if there are no permutation matrices **P** and **Q** such that $PAQ = \begin{pmatrix} B & 0 \\ C & D \end{pmatrix}$, with **B**, **D** non-trivial square matrices and **0** the null matrix. We say that a Kimura transition matrix **M** is a *Gillespie* matrix if \widetilde{M} is totally indecomposable. The Gillespie class will be denoted by \mathcal{G} .

Proposition

The class of Gillespie matrices is a convex set and it is closed by multiplication. In particular, it is a convex semigroup.

Fixation

Lemma

The intersection of the set of banded stochastically ordered matrices with the set of regular Gillespie matrices is a convex semigroup. Furthermore, let \mathcal{R} be one of the following set of matrices:

- 1. WF matrices with increasing **p** (or, equivalently, regular WF matrices).
- 2. *M matrices with increasing* **p**.
- 3. *M* matrices with $\mathbf{p} \in (\epsilon_N, 1 \epsilon_N)$, $\epsilon_N = 1/(N+1)$.

4. The union of any two of the previous sets or of all three.

Then the set generated by convex combinations and finite products of elements of \mathcal{R} is a convex sub-semigroup of regular Gillespie matrices.

Non-regularity

Parrondo-like paradox in evolution

Let

$$\mathbf{p}_1 = \left(0, \frac{1}{7}, \frac{6}{7}, 1\right)$$
 and $\mathbf{p}_2 = \left(0, \frac{6}{7}, \frac{1}{7}, 1\right)$

with corresponding Moran matrices:

$$\mathbf{M}_{1} = \underbrace{\begin{pmatrix} 1 & 0 & 0 & 0\\ 2 & \frac{131}{2} & \frac{2}{21} & 0\\ 0 & \frac{2}{2} & \frac{13}{21} & \frac{2}{7}\\ 0 & 0 & 0 & 1 \end{pmatrix}}_{\text{Summer only}} \mathbf{M}_{2} = \underbrace{\begin{pmatrix} 1 & 0 & 0 & 0\\ \frac{1}{21} & \frac{8}{21} & \frac{4}{7} & 0\\ 0 & \frac{4}{7} & \frac{8}{21} & \frac{1}{21}\\ 0 & 0 & 0 & 1 \end{pmatrix}}_{\text{Winter only}}.$$

Let

$$\mathbf{M}_3 = \mathbf{M}_1 \mathbf{M}_2 = \underbrace{\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ \frac{23}{147} & \frac{128}{441} & \frac{172}{441} & \frac{8}{49} \\ \frac{8}{49} & \frac{172}{441} & \frac{128}{441} & \frac{23}{147} \\ 0 & 0 & 0 & 1 \end{pmatrix}}_{\mathbf{N}_3},$$

Summer and Winter

and let \mathbf{F}_i , i = 1, 2, 3, then we have:

$$\begin{split} & F_1 = \left(0, \frac{1}{5}, \frac{4}{5}, 1\right)^{\dagger} \\ & F_2 = \left(0, \frac{12}{25}, \frac{13}{25}, 1\right)^{\dagger} \end{split}$$

Summary

- Axiomatisation of evolutionary processes in finite populations;
- Qualitative study of fixation in finite populations;
- Identification and characterisation of regularity;
- Study of time-inhomogeneous processes (including mixtures);
- Not presented:
 - Regular fixation in large populations;
 - Alternative processes (pairwise comparison; generalised Eldon-Wakeley; generalised Λ₁)
 - Processes in periodic and random environments.

FACC Chalub & MO Souza, On the stochastic evolution of finite populations. J. Math. Biol Online, 2017.

Continuous Views

Suitable Birth-Death Processes (SBD)

Population of fixed size N with two types \mathbb{A} and \mathbb{B} . Transition probabilities given by:

$$egin{split} T_N^\pm(x) &= x(1-x)\Delta^\pm \left(\Psi_N^\mathbb{A}, \Psi_N^\mathbb{B}
ight).\ T_N^0(x) &= 1 - T_N^+(x) - T_N^-(x) \ . \end{split}$$

- $\Delta^{\pm} : \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}^+$ models natural selection.
- Fitnesses given by $\Psi_N^{\mathbb{A}}, \Psi_N^{\mathbb{B}} : [0, 1] \to \mathbb{R}^+$.
- Write $\Delta_N^{\pm}(x) = \Delta^{\pm} \left(\Psi_N^{\mathbb{A}}(x), \Psi_N^{\mathbb{B}}(x) \right).$
- Similar class studied by Assaf & Mobilia (2010).

Examples

- Frequency dependent Moran process (Nowak et al. 2004);
- Linear Moran process (Traulsen et al. 2006);
- Local update rule (Traulsen et al. 2006);
- Fermi process (Szabo & Hauert 2002; Altrock & Traulsen 2009).

Fixation Probability

$$\Phi_N(x) := c_N^{-1} \sum_{s \in [1/N, x]_N} \prod_{r \in [1/N, s^{-1/N}]_N} \frac{\Delta_N^-(r)}{\Delta_N^+(r)},$$

(2)

with c_N chosen such that $\Phi_N(1) = 1$.

Notation: For $a, b \in N^{-1}\mathbb{N}_0 = \mathbb{N} \cup \{0\}$

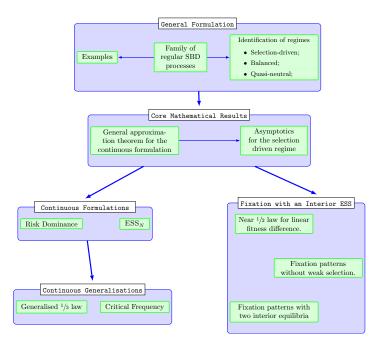
$$[a,b]_N := \left\{a,a+\frac{1}{N},a+\frac{2}{N},\ldots,b\right\}$$
.

Interested in large N

"Winwood Reade is good upon the subject," said Holmes. "He remarks that, while the individual man is an insoluble puzzle, in the aggregate he becomes a mathematical certainty.

Sherlock Holmes

-The Sign of the Four



Prelims

I fear that I bore you with these details, but I have to let you see my little difficulties, if you are to understand the situation.

Sherlock Holmes

-A Scandal in Bohemia

Definition (Generalised log relative fitness) We define the *generalised log difference of fitness* as

$$\Theta_N(x) := \log\left(rac{\Delta_N^-(x)}{\Delta_N^+(x)}
ight)$$

Asume that

$$\lim_{\mathsf{N}\to\infty}\|\Theta_{\mathsf{N}}\|_{\infty}=\xi.$$

weak selection If $\xi = 0$; moderate selection If $\xi \ll 1$.

Formal infinite population limit

A family, indexed by population size, of frequency dependent SBD processes with log difference fitness Θ_N has a formal infinite population limit, if

- 1. If $\|\Theta_N\|_{\infty}$ is uniformly bounded;
- 2. There exists $\theta \in C^0([0, 1])$, with $\|\theta\|_{\infty} = 1$ such that

$$\lim_{N\to\infty}\epsilon_N=0,\quad \epsilon_N=\left\|\frac{\Theta_N}{\|\Theta_N\|_{\infty}}-\theta\right\|_{\infty};$$

3. θ has finitely many zeros.

Fitness potential

Define the fitness potential as

$$\mathcal{F}(\boldsymbol{s}) = -\int_0^{\boldsymbol{s}} \theta(\boldsymbol{r}) \,\mathrm{d}\boldsymbol{r}.$$

Interior potential global maximum of \mathcal{F} over [0,1] is only attained at the interior;

Boundary potential otherwise.

The continuous approximation

Let

$$\kappa_N^{-1} = N \|\Theta_N\|_{\infty}.$$

$$\phi_N(x) = d_N^{-1} \int_0^x \exp\left(\kappa_N^{-1} \mathcal{F}(s)\right) \, \mathrm{d}s,$$

 $d_N = \int_0^1 \exp\left(\kappa_N^{-1} \mathcal{F}(s)\right) \, \mathrm{d}s.$

Regular SBD processes

A family, indexed by population size, of frequency dependent SBD processes with log difference fitness Θ_N is regular, if

1. Θ_N is C^1 and it has a formal infinite population limit $\theta \in C^2([0, 1])$.

2. If

$$\lim_{N\to\infty}\kappa_N^{-1}=\infty,$$

then we also require that

$$\lim_{N\to\infty}\kappa_N^{-1}\epsilon_N=0.$$

The approximation theorem

- Assume a regular family of SBD processes, such that the formal infinite population limit, θ, does not vanish at the boundaries.
- Then, for sufficient large N, the fixation probability can be approximated as follows:

$$\Phi_N(x) = \phi_N(x) + O\left(\kappa_N^{-1}\epsilon_N, \kappa_N\xi_N^2, \kappa_N^{1-b}\xi_N^2\right), \quad (3)$$

where $\xi_N = \|\Theta_N\|_{\infty}$, b = 1 if \mathcal{F} is a boundary potential, and b = 0 otherwise, and

Furthermore, the left hand side in Equation (3) is exponentially small if, and only if, both terms in the right hand side of (3) are exponentially small.

The approximation theorem

• If κ_N^{-1} has a limit when $N \to \infty$, then the approximation can be made uniform:

$$\Phi_N(x) = \phi_N(x) \left[1 + O\left(\kappa_N^{-1} \epsilon_N, \kappa_N \xi_N^2, N^{-1}\right) \right], \quad x \in [1/N, 1]_N.$$

Finally, let x ∈ [1/N, 1]_N be the smallest frequency such that φ_N(x) ≥ 1/N. Then, provided that either *F* is an interior potential, or that *F* is a boundary potential, and κ_N⁻¹ = O (N^α), with α < 1/2, we have the uniform approximation

$$\Phi_N(\boldsymbol{x}) = \phi_N(\boldsymbol{x}) \left[1 + O\left(\kappa_N^{-1} \epsilon_N, \kappa_N \xi_N^2, \kappa_N^{1-b} \xi_N\right) \right], \quad \boldsymbol{x} \in [\boldsymbol{x}, 1]_N.$$

Different regimes

(Chalub & Souza 2009; Chalub & Souza 2014)

κ_{∞}^{-1}	Infinite population	Large finite population	Infinite population dynamics
∞	Deterministic	Selection- driven	for certain scalings with weak-selection: replicator dynamics
O(1)	Balanced	Balanced	Replicator-diffusion
0	Neutral	Quasi- neutral	Pure diffusion

In the sequel: assume N is large and write

$$\kappa := \kappa_{N} \quad \phi_{\kappa} := \phi_{N}.$$

Selection driven fixation asymptotics

Dominance by \mathbb{A} here, $\theta(x) > 0$ and

$$\phi_{\kappa}(x) = 1 - \exp(-\theta(0)x/\kappa). \tag{4}$$

Dominance by \mathbb{B} here, $\theta(x) < 0$ and

$$\phi_{\kappa}(\mathbf{x}) = \exp(\theta(1)(1-\mathbf{x})/\kappa). \tag{5}$$

From now on: assume θ has an unique interior zero.

Fixation asymptotics

Coexistence

Let $|\mathcal{F}(1)| \sim \kappa$ and

$$\mathcal{C} = \exp(\mathcal{F}(1)/\kappa)$$
 and $\gamma = rac{| heta(1)|}{ heta(0)}$

Then the asymptotic approximation is given by

$$\phi_{\kappa}(x) = \frac{C}{C+\gamma} \underbrace{\exp(\theta(1)(1-x)/\kappa)}_{\text{dominance by }\mathbb{B}} + \frac{\gamma}{C+\gamma} \underbrace{(1-\exp(-\theta(0)x/\kappa))}_{\text{dominance by }\mathbb{A}},$$
(6)
with $\theta(0) > 0 > \theta(1)$.

Fixation asymptotics

Coordination

$$\phi_{\kappa}(\boldsymbol{x}) = \frac{\mathcal{N}\left(\sqrt{\frac{\theta'(\boldsymbol{x}^*)}{\kappa}}(\boldsymbol{x} - \boldsymbol{x}^*)\right) - \mathcal{N}\left(-\sqrt{\frac{\theta'(\boldsymbol{x}^*)}{\kappa}}\boldsymbol{x}^*\right)}{\mathcal{N}\left(\sqrt{\frac{\theta'(\boldsymbol{x}^*)}{\kappa}}(1 - \boldsymbol{x}^*)\right) - \mathcal{N}\left(-\sqrt{\frac{\theta'(\boldsymbol{x}^*)}{\kappa}}\boldsymbol{x}^*\right)}, \quad (7)$$

where $\mathcal{N}(x)$ is the normal cumulative distribution. For $x^* \gg \sqrt{\kappa}$, and $1 - x^* \gg \sqrt{k}$ then (7) can be simplified to

$$\phi_{\kappa}(\mathbf{x}) = \mathcal{N}\left(\sqrt{\frac{\theta'(\mathbf{x}^*)}{\kappa}}(\mathbf{x} - \mathbf{x}^*)\right).$$
(8)

Thus, for x^* far from the endpoints we have the interesting result that

$$\phi_\kappa(x^*) = rac{1}{2}.$$

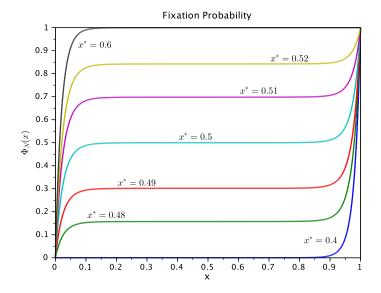
The near $\frac{1}{2}$ law

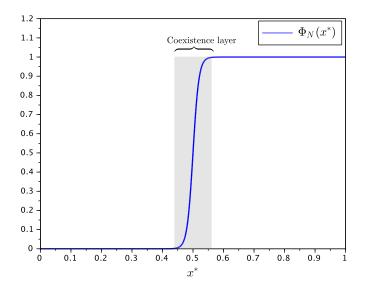
Assume the we are in the coexistence case, selection-driven regime, with weak selection, and that we have linear limiting fitness differences, i.e.,

$$\theta(x) = \bar{\gamma}(x^* - x), \quad x^* \in (0, 1), \quad \bar{\gamma} := \frac{1}{\max\{x^*, 1 - x^*\}}$$

Then there are values $0 < x_1 < y_1 < \frac{1}{2} < y_2 < x_2 < 1$, with x_1 near zero, x_2 near one, y_1 , y_2 near $\frac{1}{2}$ such that:

- $x^* < y_1$ Then, for all $x < x_2$, the fixation probability of \mathbb{B} is near unity.
- $x^* = 1/2$ Then, for all $x \in (x_1, x_2)$, we have near $\frac{1}{2}$ probability of fixation for both types.
 - $x^* > y_2$ Then, for all $x > x_1$, we have that the fixation probability of \mathbb{A} is near unity.



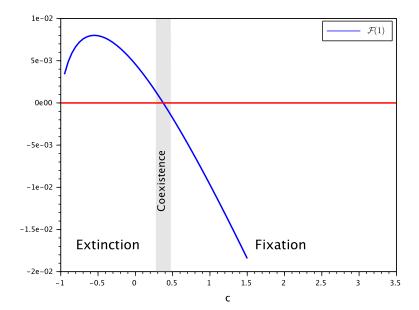


When there is no weak-selection

Consider the payoff matrix of Hawk and Dove game:

	A	$\mathbb B$
A	1+c	50.075+c
$\mathbb B$	1.025+c	50+c

for c > -1. Then, for any vale of c, the equilibrium is $x^* = 3/4$.



ESS in finite populations

(Nowak et al. 2004; Nowak 2006)

Definition (ESS_N)

Consider a SBD process with a population size *N*, with Φ_N denoting the probability of fixation of \mathbb{A} . We say that strategy \mathbb{B} is an ESS_{*N*} if the following is satisfied:

1.
$$\Theta_N(1/N) < 0;$$

2. $\Phi_N(1/N) < 1/N;$

A continuous ESS_N definition

-for large populations

Theorem

Consider a family of regular SBD processes with generalised log relative fitness Θ_N and let ϕ_κ be the continuous approximation to the fixation probability. Then, for sufficiently large N, \mathbb{B} is an ESS_N if, and only if, we have that

1.
$$\phi_{\kappa}''(0) > 0;$$

2. $\phi_{\kappa}(1/N) < 1/N$.

Quasi-neutral fixation asymptotics

Consider a regular family of SBD processes in the quasi-neutral regime. Then we have that

$$\begin{split} \phi_{\kappa}(x) = & x + \kappa^{-1} \left[x \int_0^1 (1-s)\theta(s) \, \mathrm{d}s - \int_0^x (x-s)\theta(s) \, \mathrm{d}s \right] + \\ & \kappa^{-2} x \mathcal{R}(x;\kappa) + \mathrm{O}\left(\kappa^{-3}\right), \end{split}$$

with $\mathcal{R} = O(1)$ and smooth. Moreover, its derivatives are also order one.

ESS_N in the quasi-neutral regime

Assume that we are in the quasi-neutral regime with $\kappa^{-1} = o(1/N)$, and that we are in the coordination case. Then strategy \mathbb{B} is an ESS_N if, and only if,

1.
$$\theta(0) \ll -N^{-1}$$

2.
$$\int_0^1 (1-s)\theta(s) \,\mathrm{d}s < \frac{\theta(0)}{2N} + \mathrm{o}\left(\frac{1}{N}\right).$$

For large *N*, and if looking only for sufficient conditions: $\theta(0) < 0$, and

$$\int_0^1 (1-s)\theta(s)\,\mathrm{d} s < 0.$$

Consider the case that θ is linear, i.e., $\theta(x) = \gamma(x - x^*)$, and assume that we are in the quasi-neutral regime. Then

$$\int_0^1 (1-s)\theta(s)\,\mathrm{d}s = \frac{\gamma}{2}\left[\frac{1}{3}-x^*\right]$$

Hence, strategy \mathbb{B} is an ESS_N if, and only if, $x^* > 1/3 + O(1/N, \kappa^{-1}).$

Generalised one-third law for *d*-player games

(Kurokawa & Ihara 2009; Gokhale & Traulsen 2010; Lessard 2011)

Consider a *d*-player game, in a large population. Then

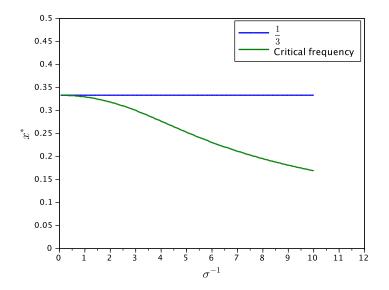
$$\theta(x) = \gamma \sum_{k=0}^{d-1} {d-1 \choose k} x^k (1-x)^{d-1-k} (a_k - b_k),$$

We have that \mathbb{B} is an ESS_N, if $a_0 - b_0 < 0$, and if

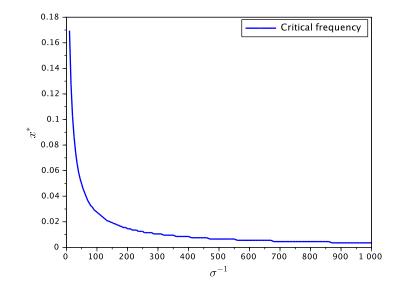
$$\sum_{k=0}^{d-1} (d-k)a_k > \sum_{k=0}^{d-1} (d-k)b_k$$

Beyond the quasi-neutral limit

2 player games parametrised by $\sigma^2 = \kappa/\gamma$ and x^*



Far beyond the quasi-neutral limit



- Defined a class of evolutionary processes that can be well approximated by a continuous representation.
- Proof uses the idea of inverse numerical analysis—as in Chalub & Souza (2009).
- New asymptotics for coexistence and slightly improved asymptotics for coordination.
- Asymptotics in the quasi-neutral regime.

continued

- New insights in the fixation in the presence of a mixed ESS.
- Continuous definition of an ESS_N ,
- Generalised one third-law: contains previous cases in the literature.
- For linear θ, critical frequency extends the 1/3 law outside the quasi-neutral regime.

other stuff

 Risk dominance: under weak selection A is risk dominant if, and only if,

$$\mathcal{F}(1) < 0.$$

- Fixation patterns with two interior equilibria. In particular, may have
 - Evolution blocking if ordering is unstable-stable
 - Evolution tunnelling if ordering is stable-unstable.

FACC Chalub & MO Souza, Fixation in large populations: a continuous view of a discrete problem. J. Math. Biol 72(1-2):283–330, 2016.

other stuff

► Risk dominance: under weak selection A is risk dominant if, and only if,

$$\mathcal{F}(1) < 0.$$

- Fixation patterns with two interior equilibria. In particular, may have
 - Evolution blocking if ordering is unstable-stable
 - Evolution tunnelling if ordering is stable-unstable.

FACC Chalub & MO Souza, Fixation in large populations: a continuous view of a discrete problem. J. Math. Biol 72(1-2):283–330. 2016.

Thanks for listening!