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Why Fixation?
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Fixation



Discrete Views



Moran Process



Wright Fisher Model



Moran & Wright-Fisher processes
and their transition probabilities

Moran

Mij =


i
N (1− pi) , i = j + 1 ,
i
N pi + N−i

N (1− pi) , i = j ,
N−i

N pi , i = j − 1 ,
0 , |i − j | > 1 .

Wright & Fisher

Mij =

(
N
j

)
pj

i (1− pi)
N−j .



Framework

I Mij , i , j = 0, . . . ,N;

I Mij = M(i , j ,p,N); p ∈ RN+1

I pj ∈ [0,1] describes the probability of a type A individual
being selected for reproduction, with the chain in state j .
We will term p the vector of type selection probabilities
(TSP)

I Absence of mutation:

M0i =

{
1, i = 0
0, i = 1, . . . ,N and MNi =

{
0, i = 0, . . . ,N − 1
1, i = N .

I Reproductive fitness: ϕ(A,B) : {0,1, . . . ,N} → R+

I

pi =
iϕ(A)(i)

iϕ(A)(i) + (N − i)ϕ(B)(i)
.
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The Kimura class

Definition
Let M be a (N + 1)× (N + 1) stochastic matrix. We say that M
is Kimura (M ∈ K), if

M =

 1 0 0
ã† M̃ b̃†

0 0 1

 , (1)

I M̃ is a (N − 1)× (N − 1) sub-stochastic irreducible matrix;
I 0 is the zero vector in RN−1;
I ã and b̃ non-zero, non-negative vectors in RN−1.

.



Fixation

Proposition
Let M ∈ K. Then, there exists a unique vector F̃ ∈ RN−1, with
0 < F̃i < 1, such that F=

(
0 F̃ 1

)
, with MF† = F† and

F̃† =
(

I− M̃
)−1

b̃†.

Definition (Admissible fixation vector)
A fixation vector F satisfying 0 < Fi < 1, i = 1, . . . ,N − 1, is
termed admissible.



The more the merrier?



Kimura Birth-Death processes

I Fixation given explicitly by

Fi = c−1
i∑

l=1

l∏
k=1

Mk−1,k

Mk+1,k
, c =

N∑
l=1

l−1∏
k=1

Mk−1,k

Mk+1,k
.

I Hence fixation KBD processes are always strictly
increasing.



Regular and weakly-regular processes

Definition
An evolution process such that the transition matrix belongs to
the Kimura class is said to be regular (weakly regular), if the
associated fixation vector is increasing (non-decreasing,
respect.).



Questions

I Is every model regular?
I Otherwise, is every relevant model regular?
I If not, what are the important irregular processes?
I Can we characterise regular/irregular processes?



Stochastic orderering

Definition (Vector stochastic ordering)
We say that two vectors
u,v ∈ ∆N := {x ∈ RN+1|xi ≥ 0,

∑
i xi = 1} are stochastically

ordered, u � v, if for all n = 1, . . . ,N, we have that∑N
i=n ui ≥

∑N
i=n vi . If all inequalities are strict, then we say

u �� v.

Definition (Ordered matrices)
Consider a N × N matrix A. We say that A is stochastically
ordered (SO, A ∈ StON ) if all row vectors are stochastically
ordered, i.e., if for all i > j , we have that Ai,· � Aj,·. We say that
A is strictly stochastically ordered (SSO, A ∈ St2ON ) if for all
i > j , we have that Ai,· �� Aj,·.



SO/ESO => Weakly-Regular

Definition
We say that a N ×N matrix A is eventually strictly stochastically
ordered (stochastically ordered) if there exists k0 ∈ N such Ak

is strictly stochastically ordered (stochastically ordered,
respect.) for k ≥ k0.

Proposition
Let M be a (N + 1)× (N + 1) Kimura matrix. If M is eventually
stochastically ordered then M is weakly-regular.

I ESO is sufficient to guarantee the process is
weakly-regular. Is it necessary?
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Not really
Let

M =


1 0 0 0
1
8

1
2

1
4

1
8

0 1
2

1
2 0

0 0 0 1

 .

Then
I F =

(
0

1
2

1
2

1
)

; hence M is weakly-regular.
I We check directly that

Mκ =


1 0 0 0
ακ δκ γκ ακ

βκ 2γκ δκ βκ
0 0 0 1


I In particular,

ακ+1 =
1
8
+

2ακ + βκ
4

, βκ+1 =
ακ + βκ

2
.

I It is easily verified by induction in κ that ακ, βκ < 1/2. On the other hand,

ακ+1 − βκ+1 =
1 − 2βκ

8
> 0 ,



Regularity in Kimura matrices

I However for regularity, ESSO is equivalent to regularity:

Theorem
Let M be a (N + 1)× (N + 1) Kimura matrix. Then M is regular
if, and only if, it is eventually strictly stochastically ordered.



The WF process

Theorem
Let M be the transition matrix of the Wright Fisher process
associated to the type selection probability vector p. The three
conditions below are equivalent.

1. The process M is regular.

2. The matrix M is strictly stochastically ordered.

3. The vector p is increasing.

Proposition
If fitnesses functions are positive and affine, then the type
selection probability vector p is increasing.



A non-regular three-player game

I Let ϕ(A)(x) = 15− 24x + 10x2 and ϕ(B)(x) = 1 + 14x2,
which are strictly positive in the interval [0,1];

I Can be obtained from 3-player game theory, with a0 = 15,
a1 = 3, a2 = 1, b0 = 1, b1 = 1, b2 = 15, where ak (bk ) is
the pay-off of a type A (B, respectively) player against k
other players;

I Then pi given by reproductive fitness is not increasing;
I Note that the relative fitness Ψ(A)/Ψ(B) = ϕ(A)/ϕ(B) is

decreasing and is associated to coexistence games (i.e.,
Ψ(A)/Ψ(B) > 1 for x near zero, and Ψ(A)/Ψ(B) < 1 for x
near one).



Universality of Moran processes
Tell me your fixation and I will tell who you are

Theorem
Let F be an admissible fixation vector. Then F is the fixation
vector of some Moran process if, and only if, F is increasing.
Moreover, in the latter case, the type fixation probabilities of the
Moran process that realises such a vector are given by

pi =
i(Fi − Fi−1)

i(Fi − Fi−1) + (N − i)(Fi+1 − Fi)
∈ (0,1), i = 1, . . . ,N−1.



Universality of Wright-Fisher
Tell me your fixation and I will tell who you could be

I We already have seen that are non-regular WF processes.

I It turns out that WF fixation can be almost anything:

Theorem
Let F be an admissible fixation vector. Then there exists at least
one WF matrix that has F as a fixation vector. In addition, if F is
increasing, then such WF matrix is unique.
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Time inhomogeneous processes
The Gillespie class

Definition
We say that a matrix A is totally indecomposable if there are no
permutation matrices P and Q such that PAQ =

(
B 0
C D

)
, with B,

D non-trivial square matrices and 0 the null matrix. We say that
a Kimura transition matrix M is a Gillespie matrix if M̃ is totally
indecomposable. The Gillespie class will be denoted by G.

Proposition
The class of Gillespie matrices is a convex set and it is closed
by multiplication. In particular, it is a convex semigroup.



Fixation

Lemma
The intersection of the set of banded stochastically ordered
matrices with the set of regular Gillespie matrices is a convex
semigroup. Furthermore, let R be one of the following set of
matrices:

1. WF matrices with increasing p (or, equivalently, regular WF
matrices).

2. M matrices with increasing p.
3. M matrices with p ∈ (εN ,1− εN), εN = 1/(N + 1).
4. The union of any two of the previous sets or of all three.

Then the set generated by convex combinations and finite
products of elements of R is a convex sub-semigroup of regular
Gillespie matrices.



Non-regularity
Parrondo-like paradox in evolution

Let
p1 =

(
0, 1

7 ,
6
7 ,1
)

and p2 =
(
0, 6

7 ,
1
7 ,1
)

with corresponding Moran matrices:

M1 =


1 0 0 0
2
7

13
21

2
21 0

0 2
21

13
21

2
7

0 0 0 1


︸ ︷︷ ︸

Summer only

M2 =


1 0 0 0
1

21
8
21

4
7 0

0 4
7

8
21

1
21

0 0 0 1


︸ ︷︷ ︸

Winter only

.

Let

M3 = M1M2 =


1 0 0 0
23

147
128
441

172
441

8
49

8
49

172
441

128
441

23
147

0 0 0 1


︸ ︷︷ ︸

Summer and Winter

,

and let Fi , i = 1,2,3, then we have:

F1 =
(
0, 1

5 ,
4
5 ,1
)†

F2 =
(
0, 12

25 ,
13
25 ,1

)†
F3 =

(
0, 244

485 ,
241
485 ,1

)†
.



Summary

I Axiomatisation of evolutionary processes in finite
populations;

I Qualitative study of fixation in finite populations;
I Identification and characterisation of regularity;
I Study of time-inhomogeneous processes (including

mixtures);
I Not presented:

I Regular fixation in large populations;
I Alternative processes (pairwise comparison; generalised

Eldon-Wakeley; generalised Λ1)
I Processes in periodic and random environments.

FACC Chalub & MO Souza, On the stochastic evolution of finite populations. J. Math. Biol Online, 2017.



Continuous Views



Suitable Birth-Death Processes (SBD)

Population of fixed size N with two types A and B.
Transition probabilities given by:

T±N (x) = x(1− x)∆±
(

ΨA
N ,Ψ

B
N

)
.

T 0
N(x) = 1− T+

N (x)− T−N (x) .

I ∆± : R+ × R+ → R+ models natural selection.
I Fitnesses given by ΨA

N ,Ψ
B
N : [0,1]→ R+.

I Write ∆±N (x) = ∆±
(
ΨA

N(x),ΨB
N(x)

)
.

I Similar class studied by Assaf & Mobilia (2010).



Examples

I Frequency dependent Moran process (Nowak et al. 2004);
I Linear Moran process (Traulsen et al. 2006);
I Local update rule (Traulsen et al. 2006);
I Fermi process (Szabo & Hauert 2002; Altrock & Traulsen

2009).



Fixation Probability

ΦN(x) := c−1
N

∑
s∈[1/N,x ]N

∏
r∈[1/N,s−1/N]N

∆−N (r)

∆+
N (r)

, (2)

with cN chosen such that ΦN(1) = 1.

Notation: For a,b ∈ N−1N0 = N ∪ {0}

[a,b]N :=

{
a,a +

1
N
,a +

2
N
, . . . ,b

}
.



Interested in large N

"Winwood Reade is good upon the subject," said Holmes. "He
remarks that, while the individual man is an insoluble puzzle,
in the aggregate he becomes a mathematical certainty.

Sherlock Holmes
—The Sign of the Four



General Formulation

Core Mathematical Results

Continuous Formulations

Continuous Generalisations

Fixation with an Interior ESS

Family of
regular SBD

processes

Identification of regimes

• Selection-driven;

• Balanced;

• Quasi-neutral;

Examples

Asymptotics
for the selection
driven regime

General approxima-
tion theorem for the

continuous formulation

Near 1/2 law for linear
fitness difference.

Fixation patterns
without weak selection.

Fixation patterns with
two interior equilibria

ESSNRisk Dominance

Generalised 1/3 law Critical Frequency



Prelims

I fear that I bore you with these details, but I have to let you see
my little difficulties, if you are to understand the situation.

Sherlock Holmes
—A Scandal in Bohemia



Definition (Generalised log relative fitness)
We define the generalised log difference of fitness as

ΘN(x) := log

(
∆−N (x)

∆+
N (x)

)
.

Asume that
lim

N→∞
‖ΘN‖∞ = ξ.

weak selection If ξ = 0;
moderate selection If ξ � 1.



Formal infinite population limit

A family, indexed by population size, of frequency dependent
SBD processes with log difference fitness ΘN has a formal
infinite population limit, if

1. If ‖ΘN‖∞ is uniformly bounded;

2. There exists θ ∈ C0([0,1]), with ‖θ‖∞ = 1 such that

lim
N→∞

εN = 0, εN =

∥∥∥∥ ΘN

‖ΘN‖∞
− θ
∥∥∥∥
∞

;

3. θ has finitely many zeros.



Fitness potential

Define the fitness potential as

F(s) = −
∫ s

0
θ(r) dr .

Interior potential global maximum of F over [0,1] is only
attained at the interior;

Boundary potential otherwise.



The continuous approximation

Let
κ−1

N = N‖ΘN‖∞.

φN(x) = d−1
N

∫ x

0
exp

(
κ−1

N F(s)
)

ds,

dN =

∫ 1

0
exp

(
κ−1

N F(s)
)

ds .



Regular SBD processes

A family, indexed by population size, of frequency dependent
SBD processes with log difference fitness ΘN is regular, if

1. ΘN is C1 and it has a formal infinite population limit
θ ∈ C2([0,1]).

2. If
lim

N→∞
κ−1

N =∞,

then we also require that

lim
N→∞

κ−1
N εN = 0.



The approximation theorem

I Assume a regular family of SBD processes, such that the
formal infinite population limit, θ, does not vanish at the
boundaries.

I Then, for sufficient large N, the fixation probability can be
approximated as follows:

ΦN(x) = φN(x) + O
(
κ−1

N εN , κNξ
2
N , κ

1−b
N ξ2

N

)
, (3)

where ξN = ‖ΘN‖∞, b = 1 if F is a boundary potential, and
b = 0 otherwise, and

I Furthermore, the left hand side in Equation (3) is
exponentially small if, and only if, both terms in the right
hand side of (3) are exponentially small.



The approximation theorem
Continued

I If κ−1
N has a limit when N →∞, then the approximation can

be made uniform:

ΦN(x) = φN(x)
[
1 + O

(
κ−1

N εN , κNξ
2
N ,N

−1
)]
, x ∈ [1/N,1]N .

I Finally, let x ∈ [1/N,1]N be the smallest frequency such that
φN(x) ≥ 1/N. Then, provided that either F is an interior
potential, or that F is a boundary potential, and
κ−1

N = O (Nα), with α < 1/2, we have the uniform
approximation

ΦN(x) = φN(x)
[
1 + O

(
κ−1

N εN , κNξ
2
N , κ

1−b
N ξN

)]
, x ∈ [x,1]N .



Different regimes
(Chalub & Souza 2009; Chalub & Souza 2014)

κ−1
∞ Infinite

population
Large finite
population

Infinite population
dynamics

∞ Deterministic Selection-
driven

for certain scalings
with weak-selection:
replicator dynamics

O (1) Balanced Balanced Replicator-diffusion
0 Neutral Quasi-

neutral
Pure diffusion

In the sequel: assume N is large and write

κ := κN φκ := φN .



Selection driven fixation asymptotics
Dominance

Dominance by A here, θ(x) > 0 and

φκ(x) = 1− exp(−θ(0)x/κ). (4)

Dominance by B here, θ(x) < 0 and

φκ(x) = exp(θ(1)(1− x)/κ). (5)

From now on: assume θ has an unique interior zero.



Fixation asymptotics
Coexistence

Let |F(1)| ∼ κ and

C = exp(F(1)/κ) and γ =
|θ(1)|
θ(0)

Then the asymptotic approximation is given by

φκ(x) =
C

C + γ
exp(θ(1)(1− x)/κ)︸ ︷︷ ︸

dominance by B

+
γ

C + γ
(1− exp(−θ(0)x/κ))︸ ︷︷ ︸

dominance by A

,

(6)
with θ(0) > 0 > θ(1).



Fixation asymptotics
Coordination

φκ(x) =

N
(√

θ′(x∗)
κ (x − x∗)

)
−N

(
−
√

θ′(x∗)
κ x∗

)
N
(√

θ′(x∗)
κ (1− x∗)

)
−N

(
−
√

θ′(x∗)
κ x∗

) , (7)

where N (x) is the normal cumulative distribution.
For x∗ �

√
κ, and 1− x∗ �

√
k then (7) can be simplified to

φκ(x) = N

(√
θ′(x∗)
κ

(x − x∗)

)
. (8)

Thus, for x∗ far from the endpoints we have the interesting
result that

φκ(x∗) =
1
2
.



The near
1
2

law

Assume the we are in the coexistence case, selection-driven
regime, with weak selection, and that we have linear limiting
fitness differences, i.e.,

θ(x) = γ̄(x∗ − x), x∗ ∈ (0,1), γ̄ :=
1

max{x∗,1− x∗}
.

Then there are values 0 < x1 < y1 < 1/2 < y2 < x2 < 1, with x1
near zero, x2 near one, y1, y2 near 1/2 such that:

x∗ < y1 Then, for all x < x2, the fixation probability of B is
near unity.

x∗ = 1/2 Then, for all x ∈ (x1, x2), we have near 1⁄2
probability of fixation for both types.

x∗ > y2 Then, for all x > x1, we have that the fixation
probability of A is near unity.







When there is no weak-selection

Consider the payoff matrix of Hawk and Dove game:

A B
A 1+c 50.075+c
B 1.025+c 50+c

for c > −1. Then, for any vale of c, the equilibrium is x∗ = 3/4.





ESS in finite populations
(Nowak et al. 2004; Nowak 2006)

Definition (ESSN)
Consider a SBD process with a population size N, with ΦN
denoting the probability of fixation of A. We say that strategy B
is an ESSN if the following is satisfied:

1. ΘN(1/N) < 0;
2. ΦN(1/N) < 1/N;



A continuous ESSN definition
—for large populations

Theorem
Consider a family of regular SBD processes with generalised
log relative fitness ΘN and let φκ be the continuous
approximation to the fixation probability. Then, for sufficiently
large N, B is an ESSN if, and only if, we have that

1. φ′′κ(0) > 0;
2. φκ(1/N) < 1/N.



Quasi-neutral fixation asymptotics

Consider a regular family of SBD processes in the quasi-neutral
regime. Then we have that

φκ(x) =x + κ−1

[
x
∫ 1

0
(1− s)θ(s) ds −

∫ x

0
(x − s)θ(s) ds

]
+

κ−2xR(x ;κ) + O
(
κ−3

)
,

with R = O (1) and smooth. Moreover, its derivatives are also
order one.



ESSN in the quasi-neutral regime

Assume that we are in the quasi-neutral regime with
κ−1 = o (1/N), and that we are in the coordination case. Then
strategy B is an ESSN if, and only if,

1. θ(0)� −N−1

2. ∫ 1

0
(1− s)θ(s) ds <

θ(0)

2N
+ o

(
1
N

)
.

For large N, and if looking only for sufficient conditions:
θ(0) < 0, and ∫ 1

0
(1− s)θ(s) ds < 0.



One-third law

Consider the case that θ is linear, i.e., θ(x) = γ(x − x∗), and
assume that we are in the quasi-neutral regime. Then∫ 1

0
(1− s)θ(s) ds =

γ

2

[
1
3
− x∗

]
.

Hence, strategy B is an ESSN if, and only if,
x∗ > 1/3 + O

(
1/N, κ−1).



Generalised one-third law for d-player games
(Kurokawa & Ihara 2009; Gokhale & Traulsen 2010; Lessard 2011)

Consider a d-player game, in a large population. Then

θ(x) = γ

d−1∑
k=0

(
d − 1

k

)
xk (1− x)d−1−k (ak − bk ),

We have that B is an ESSN , if a0 − b0 < 0, and if

d−1∑
k=0

(d − k)ak >

d−1∑
k=0

(d − k)bk



Beyond the quasi-neutral limit
2 player games parametrised by σ2 = κ/γ and x∗



Far beyond the quasi-neutral limit



Discussion

I Defined a class of evolutionary processes that can be well
approximated by a continuous representation.

I Proof uses the idea of inverse numerical analysis—as in
Chalub & Souza (2009).

I New asymptotics for coexistence and slightly improved
asymptotics for coordination.

I Asymptotics in the quasi-neutral regime.



Discussion
continued

I New insights in the fixation in the presence of a mixed
ESS.

I Continuous definition of an ESSN ,
I Generalised one third-law: contains previous cases in the

literature.
I For linear θ, critical frequency extends the 1/3 law outside

the quasi-neutral regime.



Discussion
other stuff

I Risk dominance: under weak selection A is risk dominant
if, and only if,

F(1) < 0.

I Fixation patterns with two interior equilibria. In particular,
may have

I Evolution blocking if ordering is unstable-stable
I Evolution tunnelling if ordering is stable-unstable.

FACC Chalub & MO Souza, Fixation in large populations: a continuous view of a discrete problem. J. Math. Biol

72(1-2):283–330, 2016.

Thanks for listening!
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