

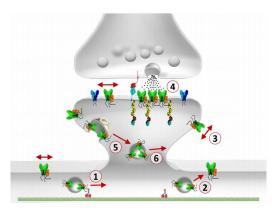
Stability analysis of a bulk-surface model for membrane protein clustering

Lucas Stolerman

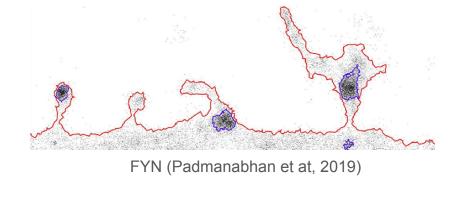
Laboratory for Computational Cellular Mechanobiology UCSD

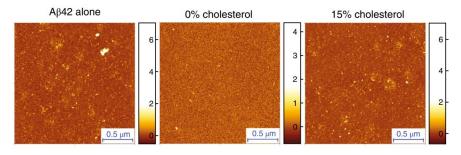
COLMEA 24/09/2020

Introduction



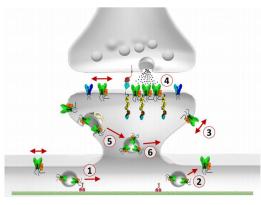
AMPAR (D.Choquet, 2018)



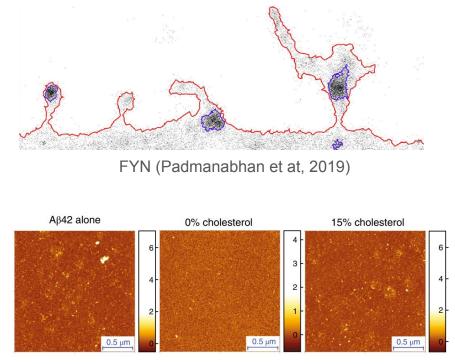


Amyloid - β (Habchi et al, 2018)

Introduction



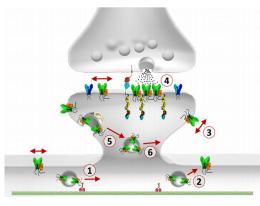
AMPAR (D.Choquet, 2018)



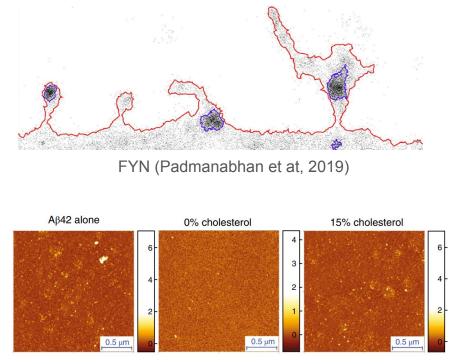
Amyloid - β (Habchi et al, 2018)

• Central Question: What spatial patterns can emerge on the plasma membrane *solely* through <u>protein-protein</u> interaction and <u>diffusion</u>?

Introduction



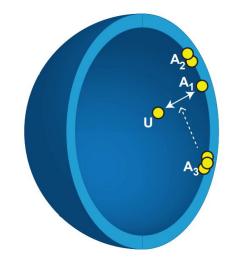
AMPAR (D.Choquet, 2018)



Amyloid - β (Habchi et al, 2018)

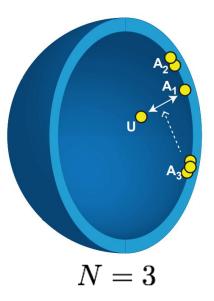
• Central Question: What spatial patterns can emerge on the plasma membrane *solely* through <u>protein-protein</u> interaction and <u>diffusion</u>? What is the simplest mathematical model that exhibits heterogeneous protein distribution?

 $\bullet~U$ volume component



- $\bullet~U$ volume component
- \mathbf{A}_j membrane oligomer of size j

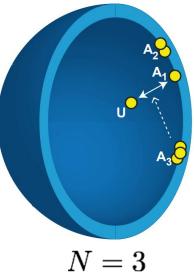
$$j = 1, 2, \cdots, N$$



- $\bullet~U$ volume component
- \mathbf{A}_j membrane oligomer of size j

$$j = 1, 2, \cdots, N$$

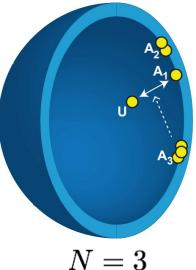
• Chemical reactions: $\mathbf{U} \stackrel{f}{\longleftrightarrow} \mathbf{A}_1$ (membrane binding/unbinding) $\mathbf{A}_{j-1} + \mathbf{A}_1 \stackrel{f}{\longleftrightarrow} \mathbf{A}_j$ (reversible oligomerization)



- U volume component
- \mathbf{A}_j membrane oligomer of size j

$$j = 1, 2, \cdots, N$$

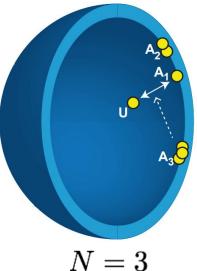
- Chemical reactions: $\mathbf{U} \stackrel{f}{\longleftrightarrow} \mathbf{A}_1$ (membrane binding/unbinding) $\mathbf{A}_{j-1} + \mathbf{A}_1 \stackrel{f}{\longleftrightarrow} \mathbf{A}_j$ (reversible oligomerization)
- Ω bounded region (cellular domain) with smooth boundary $\Gamma=\partial\Omega$



- U volume component
- \mathbf{A}_j membrane oligomer of size j

$$j = 1, 2, \cdots, N$$

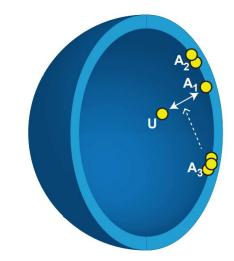
- Chemical reactions: $\mathbf{U} \stackrel{f}{\longleftrightarrow} \mathbf{A}_1$ (membrane binding/unbinding) $\mathbf{A}_{j-1} + \mathbf{A}_1 \stackrel{f}{\longleftrightarrow} \mathbf{A}_j$ (reversible oligomerization)
- $\,\,\Omega\,$ bounded region (cellular domain) with smooth boundary $\,\,\Gamma=\partial\Omega\,$
- Concentration variables: $u(x,t): \Omega \times (0,T] \to \mathbb{R}$
 - $a_j(x,t): \Gamma \times (0,\mathcal{T}] \to \mathbb{R}$ (mol/µm²)



 $(mol/\mu m^3)$

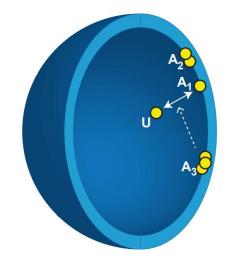
• In the cytosol and boundary conditions

$$\partial_t u = D_u \nabla^2 u$$



• In the cytosol and boundary conditions

 $\partial_t u = D_u \nabla^2 u$ - $D_u (\mathbf{n} \cdot \nabla u) = f(u, a_1, a_N)$ ($\mathbf{U} \stackrel{f}{\Longrightarrow} \mathbf{A}_1$) = $(k_0 + k_b a_N) u - k_d a_1$



• In the cytosol and boundary conditions

$$\partial_t u = D_u \nabla^2 u$$

- $D_u (\mathbf{n} \cdot \nabla u) = f(u, a_1, a_N)$ ($\mathbf{U} \stackrel{f}{=} \mathbf{A}_1$
= $(k_0 + k_b a_N)u - k_d a_1$

A2 A1 U U A3 C

• On the Membrane:

boundary flux $\partial_t a_1 = D_1 \Delta a_1 + (k_0 + k_b a_N)u - k_d a_1$

• In the cytosol and boundary conditions

$$\partial_t u = D_u \nabla^2 u$$

- $D_u (\mathbf{n} \cdot \nabla u) = f(u, a_1, a_N)$ ($\mathbf{U} \stackrel{f}{\longleftrightarrow} \mathbf{A}_1$)
= $(k_0 + k_b a_N) u - k_d a_1$

• On the Membrane:

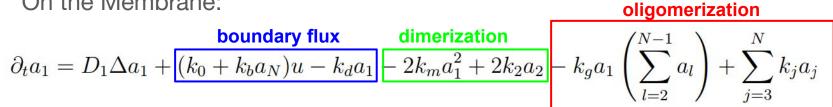
boundary flux dimerization $\partial_t a_1 = D_1 \Delta a_1 + (k_0 + k_b a_N)u - k_d a_1 - 2k_m a_1^2 + 2k_2 a_2$

In the cytosol and boundary conditions

$$\partial_t u = D_u \nabla^2 u$$

- $D_u (\mathbf{n} \cdot \nabla u) = f(u, a_1, a_N)$ ($\mathbf{U} \stackrel{f}{\longleftrightarrow} \mathbf{A}_1$)
= $(k_0 + k_b a_N) u - k_d a_1$

On the Membrane:



In the cytosol and boundary conditions

$$\partial_t u = D_u \nabla^2 u$$

- $D_u (\mathbf{n} \cdot \nabla u) = f(u, a_1, a_N)$ ($\mathbf{U} \stackrel{f}{\longleftrightarrow} \mathbf{A}_1$)
= $(k_0 + k_b a_N) u - k_d a_1$

On the Membrane:

oligomerization boundary flux dimerization $\partial_t a_1 = D_1 \Delta a_1 + (k_0 + k_b a_N)u - k_d a_1 - 2k_m a_1^2 + 2k_2 a_2 - k_g a_1 \left(\sum_{i=1}^{n} a_i\right) + \sum_{i=1}^{n} k_j a_j$

$$\partial_t a_2 = D_2 \Delta a_1 + k_m a_1^2 - k_g a_1 a_2 - k_2 a_2 + k_3 a_3$$

• In the cytosol and boundary conditions

$$\partial_t u = D_u \nabla^2 u$$

- $D_u (\mathbf{n} \cdot \nabla u) = f(u, a_1, a_N)$ ($\mathbf{U} \stackrel{f}{\longleftrightarrow} \mathbf{A}_1$)
= $(k_0 + k_b a_N) u - k_d a_1$

• On the Membrane:

oligomerization

$$\begin{array}{c} \begin{array}{c} \text{boundary flux} & \text{dimerization} \\ \partial_t a_1 = D_1 \Delta a_1 + \underbrace{(k_0 + k_b a_N)u - k_d a_1} - 2k_m a_1^2 + 2k_2 a_2} \\ - k_g a_1 \left(\sum_{l=2}^{N-1} a_l\right) + \sum_{j=3}^N k_j a_j \\ \partial_t a_2 = D_2 \Delta a_1 + k_m a_1^2 - k_g a_1 a_2 - k_2 a_2 + k_3 a_3 \\ \partial_t a_j = D_j \Delta a_j + k_g a_1 a_{j-1} - k_g a_1 a_j - k_j a_j + k_{j+1} a_{j+1}, \end{array} \\ j = 3, \dots, N-1 \end{array}$$

• In the cytosol and boundary conditions

$$\partial_t u = D_u \nabla^2 u$$

- $D_u (\mathbf{n} \cdot \nabla u) = f(u, a_1, a_N)$ ($\mathbf{U} \stackrel{f}{\longleftrightarrow} \mathbf{A}_1$)
= $(k_0 + k_b a_N) u - k_d a_1$

• On the Membrane:

oligomerization

$$\begin{array}{l} \begin{array}{c} \text{boundary flux} & \text{dimerization} \\ \partial_t a_1 = D_1 \Delta a_1 + \underbrace{(k_0 + k_b a_N)u - k_d a_1} - 2k_m a_1^2 + 2k_2 a_2} - k_g a_1 \left(\sum_{l=2}^{N-1} a_l\right) + \sum_{j=3}^N k_j a_j \\ \partial_t a_2 = D_2 \Delta a_1 + k_m a_1^2 - k_g a_1 a_2 - k_2 a_2 + k_3 a_3 \\ \partial_t a_j = D_j \Delta a_j + k_g a_1 a_{j-1} - k_g a_1 a_j - k_j a_j + k_{j+1} a_{j+1}, \\ \partial_t a_N = D_N \Delta a_N + k_g a_1 a_{N-1} - k_N a_N \end{array}$$

• In the cytosol and boundary conditions

$$\partial_t u = D_u \nabla^2 u$$

- $D_u (\mathbf{n} \cdot \nabla u) = f(u, a_1, a_N)$ ($\mathbf{U} \stackrel{f}{\longleftrightarrow} \mathbf{A}_1$)
= $(k_0 + k_b a_N) u - k_d a_1$

• On the Membrane:

$$\begin{array}{l} \begin{array}{c} \text{boundary flux} & \text{dimerization} \\ \partial_t a_1 = D_1 \Delta a_1 + \overbrace{(k_0 + k_b a_N)u - k_d a_1}^N - 2k_m a_1^2 + 2k_2 a_2}^N - k_g a_1 \left(\sum_{l=2}^{N-1} a_l\right) + \sum_{j=3}^N k_j a_j \\ \partial_t a_2 = D_2 \Delta a_1 + k_m a_1^2 - k_g a_1 a_2 - k_2 a_2 + k_3 a_3 \\ \partial_t a_j = D_j \Delta a_j + k_g a_1 a_{j-1} - k_g a_1 a_j - k_j a_j + k_{j+1} a_{j+1}, \\ \partial_t a_N = D_N \Delta a_N + k_g a_1 a_{N-1} - k_N a_N \end{array}$$

•
$$\frac{du}{dt} = f(u)$$
 u^* s.t $f(u^*) = 0$ (steady-state)

•
$$\frac{du}{dt} = f(u)$$
 u^* s.t $f(u^*) = 0$ (steady-state)

• What happens in the neighborhood of u*?

•
$$\frac{du}{dt} = f(u)$$
 u^* s.t $f(u^*) = 0$ (steady-state)

• What happens in the neighborhood of u*?

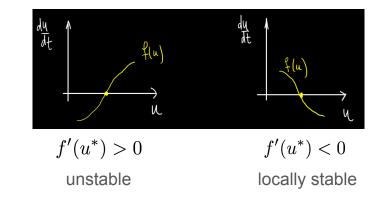
$$\delta u(t) = u - u^*$$
 $\frac{d \,\delta \, u}{dt} = f'(u^*) \,\delta \, u$
linearization about u^*

•
$$\frac{du}{dt} = f(u)$$
 u^* s.t $f(u^*) = 0$ (steady-state)

• What happens in the neighborhood of u*?

$$\delta u(t) = u - u^*$$
 $\frac{d \,\delta \, u}{dt} = f'(u^*) \,\delta \, u$

linearization about u*



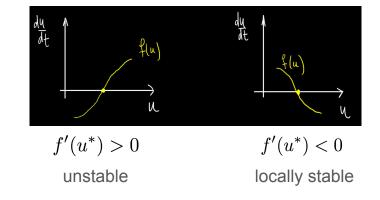
•
$$\frac{du}{dt} = f(u)$$
 u^* s.t $f(u^*) = 0$ (steady-state)

• What happens in the neighborhood of u*?

$$\delta u(t) = u - u^*$$
 $\frac{d \,\delta \, u}{dt} = f'(u^*) \,\delta$

linearization about u*

u



•
$$\frac{d\mathbf{u}}{dt} = F(\mathbf{u})$$
 $\mathbf{u} = (u_1, u_2, \dots, u_N)$
 $F(\mathbf{u}) = (f_1(\mathbf{u}), f_2(\mathbf{u}), \dots, f_N(\mathbf{u}))$

•
$$\frac{du}{dt} = f(u)$$
 u^* s.t $f(u^*) = 0$ (steady-state)

• What happens in the neighborhood of u*?

$$\delta u(t) = u - u^*$$
 $\frac{d \,\delta \, u}{dt} = f'(u^*) \,\delta \, u$

linearization about u*

$$\begin{array}{c} \displaystyle \frac{d u}{d t} & \displaystyle \int \\ \displaystyle \frac{d u}{d t} & \displaystyle \int \\ \displaystyle \frac{f(u)}{u} & \displaystyle \frac{d u}{d t} & \displaystyle \int \\ \displaystyle \frac{f'(u)}{u} & \displaystyle \frac{f'(u)}{u} & \displaystyle \frac{f'(u)}{u} \\ \displaystyle \frac{f'(u^*) > 0}{unstable} & \displaystyle \frac{f'(u^*) < 0}{locally stable} \\ \end{array}$$

 $\mathcal{J}(\mathbf{u}^*) = \begin{bmatrix} \frac{\partial f_1}{\partial u_1} & \frac{\partial f_1}{\partial u_2} & \cdots & \frac{\partial f_1}{\partial u_N} \\ \frac{\partial f_2}{\partial u_1} & \frac{\partial f_2}{\partial u_2} & \cdots & \frac{\partial f_2}{\partial u_N} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_N}{\partial u_1} & \frac{\partial f_N}{\partial u_2} & \cdots & \frac{\partial f_N}{\partial u_N} \end{bmatrix}_{|\mathbf{u}=\mathbf{u}^*}$

$$\frac{d\mathbf{u}}{dt} = F(\mathbf{u}) \qquad \mathbf{u} = (u_1, u_2, \dots, u_N)$$
$$F(\mathbf{u}) = (f_1(\mathbf{u}), f_2(\mathbf{u}), \dots, f_N(\mathbf{u}))$$
$$(\text{Hartman & Grobman})$$
$$\frac{d\delta \mathbf{u}}{dt} = \mathcal{J}(\mathbf{u}^*)\delta \mathbf{u}$$

•
$$\frac{du}{dt} = f(u)$$
 u^* s.t $f(u^*) = 0$ (steady-state)

What happens in the neighborhood of u*?

$$\delta u(t) = u - u^*$$
 $\frac{d \,\delta \, u}{dt} = f'(u^*) \,\delta \, u$

linearization about u*

$$\frac{d u}{d t} \oint f(u)$$

$$f(u^*) > 0$$

$$f'(u^*) < 0$$

97

- -

$$\begin{aligned} \frac{d\mathbf{u}}{dt} &= F(\mathbf{u}) & \mathbf{u} = (u_1, u_2, \dots, u_N) \\ F(\mathbf{u}) &= (f_1(\mathbf{u}), f_2(\mathbf{u}), \dots, f_N(\mathbf{u})) \\ (\text{Hartman & Grobman)} & \mathcal{J}(\mathbf{u}^*) &= \begin{bmatrix} \frac{\partial f_1}{\partial u_1} & \frac{\partial f_1}{\partial u_2} & \dots & \frac{\partial f_1}{\partial u_N} \\ \frac{\partial f_2}{\partial u_1} & \frac{\partial f_2}{\partial u_2} & \dots & \frac{\partial f_2}{\partial u_N} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_N}{\partial u_1} & \frac{\partial f_N}{\partial u_2} & \dots & \frac{\partial f_N}{\partial u_N} \end{bmatrix}_{|\mathbf{u}=\mathbf{u}^*} \end{aligned}$$

• Reaction-diffusion systems

• Reaction-diffusion systems

$$\frac{\partial u}{\partial t} = D_u \nabla^2 u + f_1(u, v)$$

$$\frac{\partial v}{\partial t} = D_v \nabla^2 v + f_2(u, v)$$
diffusion reaction

$$\begin{aligned} \frac{\partial u}{\partial t} &= \nabla^2 u + \gamma f_1(u, v) \\ \frac{\partial v}{\partial t} &= d\nabla^2 v + \gamma f_2(u, v) \qquad d = \frac{D_v}{D_u} \end{aligned}$$

Non-dimensional form

• Reaction-diffusion systems

$$\frac{\partial u}{\partial t} = D_u \nabla^2 u + f_1(u, v)$$

$$\frac{\partial v}{\partial t} = D_v \nabla^2 v + f_2(u, v)$$
diffusion reaction

$$\frac{\partial u}{\partial t} = \nabla^2 u + \gamma f_1(u, v)$$
$$\frac{\partial v}{\partial t} = d\nabla^2 v + \gamma f_2(u, v) \qquad d = \frac{D_v}{D_u}$$

Non-dimensional form

Steady-states

$$\nabla^2 u + \gamma f_1(u, v) = 0$$
$$d\nabla^2 v + \gamma f_2(u, v) = 0$$

• Reaction-diffusion systems

$$\frac{\partial u}{\partial t} = D_u \nabla^2 u + f_1(u, v)$$

$$\frac{\partial v}{\partial t} = D_v \nabla^2 v + f_2(u, v)$$
diffusion reaction

$$\frac{\partial u}{\partial t} = \nabla^2 u + \gamma f_1(u, v)$$
$$\frac{\partial v}{\partial t} = d\nabla^2 v + \gamma f_2(u, v) \qquad d = \frac{D_v}{D_u}$$

Non-dimensional form

Steady-states

$$\nabla^2 u + \gamma f_1(u, v) = 0$$

$$d\nabla^2 v + \gamma f_2(u, v) = 0$$

$$u^*, v^* \in \mathbb{R}$$
 s.t
 $f_1(u^*, v^*) = 0, \quad f_2(u^*, v^*) = 0$

• Reaction-diffusion systems

$$\frac{\partial u}{\partial t} = D_u \nabla^2 u + f_1(u, v)$$

$$\frac{\partial v}{\partial t} = D_v \nabla^2 v + f_2(u, v)$$
diffusion reaction

$$\begin{split} &\frac{\partial u}{\partial t} = \nabla^2 u + \gamma f_1(u,v) \\ &\frac{\partial v}{\partial t} = d\nabla^2 v + \gamma f_2(u,v) \qquad d = \frac{D_v}{D_u} \\ &\text{Non-dimensional form} \end{split}$$

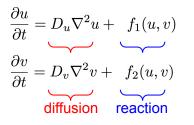
Steady-states

$$abla^2 u + \gamma f_1(u,v) = 0$$
 $d
abla^2 v + \gamma f_2(u,v) = 0$

$$u^*, v^* \in \mathbb{R}$$
 s.t
 $f_1(u^*, v^*) = 0, \quad f_2(u^*, v^*) = 0$

• What happens in the neighborhood of (u*,v*)?

• Reaction-diffusion systems



$$\begin{split} &\frac{\partial u}{\partial t} = \nabla^2 u + \gamma f_1(u,v) \\ &\frac{\partial v}{\partial t} = d\nabla^2 v + \gamma f_2(u,v) \qquad d = \frac{D_v}{D_u} \\ &\text{Non-dimensional form} \end{split}$$

Steady-states

$$abla^2 u + \gamma f_1(u, v) = 0$$
 $d
abla^2 v + \gamma f_2(u, v) = 0$
 $u^*, v^* \in \mathbb{R}$ s.t

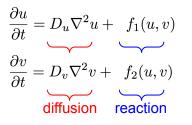
- $f_1(u^*, v^*) = 0, \quad f_2(u^*, v^*) = 0$
- What happens in the neighborhood of (u*,v*)?

Homogeneous perturbations:

$$u = u^* + \delta u$$

 $v = v^* + \delta v$

Reaction-diffusion systems



$$\begin{split} &\frac{\partial u}{\partial t} = \nabla^2 u + \gamma f_1(u,v) \\ &\frac{\partial v}{\partial t} = d\nabla^2 v + \gamma f_2(u,v) \qquad d = \frac{D_v}{D_u} \\ &\text{Non-dimensional form} \end{split}$$

Steady-states

$$\nabla^2 u + \gamma f_1(u, v) = 0$$
$$d\nabla^2 v + \gamma f_2(u, v) = 0$$

$$u, v \in \mathbb{R}$$
 s.t
 $f_1(u^*, v^*) = 0, \quad f_2(u^*, v^*) = 0$

What happens in the neighborhood of (u^*,v^*) ?

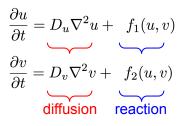
Homogeneous perturbations:

Non-homogeneous perturbations:

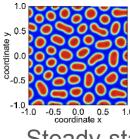
 $u = u^* + \delta u$

$$v = v^* + \delta v$$
$$u = u^* + \varphi(x, x)$$
$$v = v^* + \psi(x, x)$$

• Reaction-diffusion systems



$$\begin{aligned} \frac{\partial u}{\partial t} &= \nabla^2 u + \gamma f_1(u, v) \\ \frac{\partial v}{\partial t} &= d\nabla^2 v + \gamma f_2(u, v) \qquad d = \frac{D_v}{D_u} \end{aligned}$$
Non-dimensional form



Steady-states

 $\nabla^2 u + \gamma f_1(u, v) = 0$ $d\nabla^2 v + \gamma f_2(u, v) = 0$

$$u^*, v^* \in \mathbb{R}$$
 s.t
 $f_1(u^*, v^*) = 0, \quad f_2(u^*, v^*) = 0$

• What happens in the neighborhood of (u*,v*)?

Homogeneous perturbations:

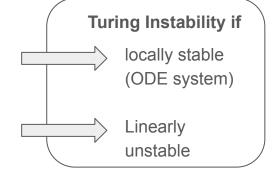
Non-homogeneous perturbations:

$$u = u^* + \delta u$$

$$v = v^* + \delta v$$

$$u = u^* + \varphi(x, t)$$

$$v = v^* + \psi(x, t)$$



• Turing Instability

$$\frac{\partial u}{\partial t} = \nabla^2 u + \gamma f_1(u, v) \qquad u = u^* + \varphi(x, t)$$
$$\frac{\partial v}{\partial t} = d\nabla^2 v + \gamma f_2(u, v) \qquad v = v^* + \psi(x, t)$$

• Turing Instability

$$\frac{\partial u}{\partial t} = \nabla^2 u + \gamma f_1(u, v) \qquad \qquad u = u^* + \varphi(x, t) \qquad \qquad \mathbf{w} = \begin{pmatrix} \varphi \\ \psi \end{pmatrix}$$
$$\frac{\partial v}{\partial t} = d\nabla^2 v + \gamma f_2(u, v) \qquad \qquad v = v^* + \psi(x, t)$$

• Turing Instability

$$\frac{\partial u}{\partial t} = \nabla^2 u + \gamma f_1(u, v) \qquad \qquad u = u^* + \varphi(x, t) \qquad \qquad \mathbf{w} = \begin{pmatrix} \varphi \\ \psi \end{pmatrix} \qquad \partial_t \mathbf{w} = \mathbf{D} \nabla^2 \mathbf{w} + \gamma \mathcal{J}(u^*, v^*) \mathbf{w} \\ \underbrace{\partial v}{\partial t} = d\nabla^2 v + \gamma f_2(u, v) \qquad \qquad v = v^* + \psi(x, t) \qquad \qquad \mathbf{D} = \begin{pmatrix} 1 & 0 \\ 0 & d \end{pmatrix} \qquad \begin{array}{c} \text{Jacobian matrix} \\ \text{of the ODE system} \end{array}$$

Revision: Local Stability Analysis

• Turing Instability

$$\frac{\partial u}{\partial t} = \nabla^2 u + \gamma f_1(u, v) \qquad u = u^* + \varphi(x, t) \qquad \mathbf{w} = \begin{pmatrix} \varphi \\ \psi \end{pmatrix} \qquad \partial_t \mathbf{w} = \mathbf{D} \nabla^2 \mathbf{w} + \gamma \mathcal{J}(u^*, v^*) \mathbf{w} \\ \underbrace{\partial v}{\partial t} = d\nabla^2 v + \gamma f_2(u, v) \qquad v = v^* + \psi(x, t) \qquad \mathbf{D} = \begin{pmatrix} 1 & 0 \\ 0 & d \end{pmatrix} \qquad \begin{array}{c} \text{Jacobian matrix} \\ \text{of the ODE system} \end{array}$$

Look for solutions in the form

$$\mathbf{w} = \sum_{l=0}^{\infty} \mathcal{A}_l(t) \omega_l \quad \text{where} \quad \nabla^2 \omega_l = -\eta_l \omega_l \quad \text{and} \quad 0 = \eta_0 < \eta_1 \le \eta_2 \le \dots$$

Revision: Local Stability Analysis

• Turing Instability

$$\frac{\partial u}{\partial t} = \nabla^2 u + \gamma f_1(u, v) \qquad u = u^* + \varphi(x, t) \qquad \mathbf{w} = \begin{pmatrix} \varphi \\ \psi \end{pmatrix} \qquad \partial_t \mathbf{w} = \mathbf{D} \nabla^2 \mathbf{w} + \gamma \mathcal{J}(u^*, v^*) \mathbf{w} \\ \underbrace{\partial v}{\partial t} = d\nabla^2 v + \gamma f_2(u, v) \qquad v = v^* + \psi(x, t) \qquad \mathbf{D} = \begin{pmatrix} 1 & 0 \\ 0 & d \end{pmatrix} \qquad \begin{array}{c} \text{Jacobian matrix} \\ \text{of the ODE system} \end{array}$$

Look for solutions in the form

$$\mathbf{w} = \sum_{l=0}^{\infty} \mathcal{A}_l(t) \omega_l \quad \text{where} \quad \nabla^2 \omega_l = -\eta_l \omega_l \quad \text{and} \quad 0 = \eta_0 < \eta_1 \le \eta_2 \le \dots$$

$$\frac{d\mathcal{A}_l}{dt} = \left[-\eta_l \mathbf{D} + \gamma \mathcal{J}(u^*, v^*)\right] \mathcal{A}_l$$

Revision: Local Stability Analysis

• Turing Instability

$$\frac{\partial u}{\partial t} = \nabla^2 u + \gamma f_1(u, v) \qquad u = u^* + \varphi(x, t) \qquad \mathbf{w} = \begin{pmatrix} \varphi \\ \psi \end{pmatrix} \qquad \partial_t \mathbf{w} = \mathbf{D} \nabla^2 \mathbf{w} + \gamma \mathcal{J}(u^*, v^*) \mathbf{w} \\ \underbrace{\partial v}{\partial t} = d\nabla^2 v + \gamma f_2(u, v) \qquad v = v^* + \psi(x, t) \qquad \mathbf{D} = \begin{pmatrix} 1 & 0 \\ 0 & d \end{pmatrix} \qquad \begin{array}{c} \text{Jacobian matrix} \\ \text{of the ODE system} \end{array}$$

Look for solutions in the form

$$\mathbf{w} = \sum_{l=0}^{\infty} \mathcal{A}_{l}(t)\omega_{l} \quad \text{where} \quad \nabla^{2}\omega_{l} = -\eta_{l}\omega_{l} \quad \text{and} \quad 0 = \eta_{0} < \eta_{1} \le \eta_{2} \le \dots$$

$$\frac{d\mathcal{A}_{l}}{dt} = \left[-\eta_{l}\mathbf{D} + \gamma\mathcal{J}(u^{*}, v^{*})\right]\mathcal{A}_{l} \qquad \qquad h(l) := \max(\Re(\lambda(\eta_{l}))) \quad \left\{ \begin{array}{l} > 0 \quad \text{unstable} \\ < 0 \quad \text{locally stable} \end{array} \right.$$

Governing Equations

• In the cytosol and boundary conditions

$$\partial_t u = D_u \nabla^2 u$$

- $D_u (\mathbf{n} \cdot \nabla u) = f(u, a_1, a_N)$ ($\mathbf{U} \stackrel{f}{\longleftrightarrow} \mathbf{A}_1$)
= $(k_0 + k_b a_N) u - k_d a_1$

• On the Membrane:

$$\begin{array}{l} \begin{array}{c} \text{boundary flux} & \text{dimerization} \\ \partial_t a_1 = D_1 \Delta a_1 + \overbrace{(k_0 + k_b a_N)u - k_d a_1}^N - 2k_m a_1^2 + 2k_2 a_2}^N - k_g a_1 \left(\sum_{l=2}^{N-1} a_l\right) + \sum_{j=3}^N k_j a_j \\ \partial_t a_2 = D_2 \Delta a_1 + k_m a_1^2 - k_g a_1 a_2 - k_2 a_2 + k_3 a_3 \\ \partial_t a_j = D_j \Delta a_j + k_g a_1 a_{j-1} - k_g a_1 a_j - k_j a_j + k_{j+1} a_{j+1}, \\ \partial_t a_N = D_N \Delta a_N + k_g a_1 a_{N-1} - k_N a_N \end{array}$$

Model Reduction

• Mass conservation:
$$M(t) := \int_{\Omega} u(x,t)dx + \sum_{j=1}^{N} \left\{ j \cdot \int_{\Gamma} a_j(x,t)ds \right\}$$

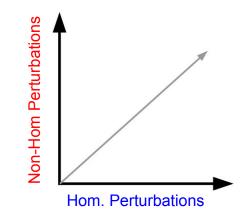
Model Reduction

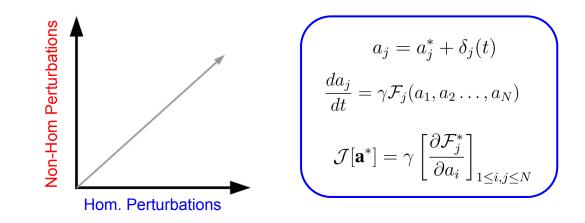
• Mass conservation:
$$M(t) := \int_{\Omega} u(x,t)dx + \sum_{j=1}^{N} \left\{ j \cdot \int_{\Gamma} a_j(x,t)ds \right\}$$

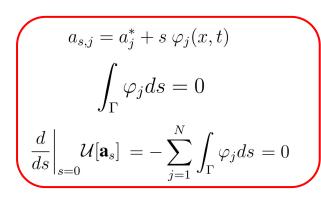
• $D_u \to \infty \longrightarrow \mathcal{U}[a_1, a_2, ..., a_N](t) := \frac{1}{|\Omega|} \left[M_0 - \sum_{j=1}^{N} \left\{ j \cdot \int_{\Gamma} a_j ds \right\} \right]$

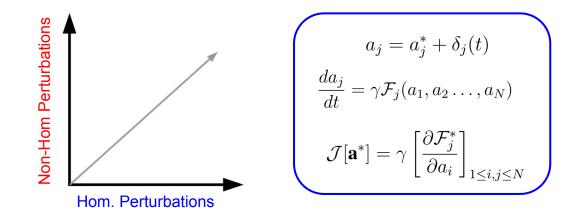
Model Reduction

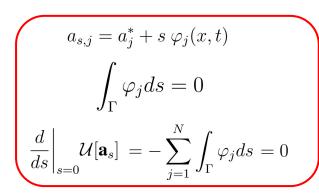
$$\begin{array}{l} \text{Mass conservation:} \quad M(t) := \int_{\Omega} u(x,t) dx + \sum_{j=1}^{N} \left\{ j \cdot \int_{\Gamma} a_{j}(x,t) ds \right\} \\ \text{D}_{u} \to \infty \qquad \longrightarrow \qquad \mathcal{U}[a_{1},a_{2},...,a_{N}](t) := \frac{1}{|\Omega|} \left[M_{0} - \sum_{j=1}^{N} \left\{ j \cdot \int_{\Gamma} a_{j} ds \right\} \right] \\ \text{Reduced surface system:} \\ \partial_{t}a_{1} = \Delta a_{1} + \gamma \left\{ (k_{0} + k_{b}a_{N}) \overline{\mathcal{U}[a_{1},a_{2},...,a_{N}]} - a_{1} - 2k_{m}a_{1}^{2} + 2k_{2}a_{2} - k_{g}a_{1} \left(\sum_{l=2}^{N-1} a_{j} \right) + \sum_{j=3}^{N} k_{j}a_{j} \right\}, \\ \partial_{t}a_{2} = d_{2}\Delta a_{2} + \gamma \left(k_{m}a_{1}^{2} - k_{2}a_{2} - k_{g}a_{1}a_{2} + k_{2}a_{3} \right), \\ \partial_{t}a_{j} = d_{j}\Delta a_{j} + \gamma \left(k_{g}a_{1}a_{j-1} - k_{j}a_{j} - k_{g}a_{1}a_{j} + k_{j+1}a_{j+1} \right), \quad j = 3, \dots, N \\ \partial_{t}a_{N} = d_{N}\Delta a_{N} + \gamma \left(k_{g}a_{1}a_{N-1} - k_{N}a_{N} \right) \end{array}$$





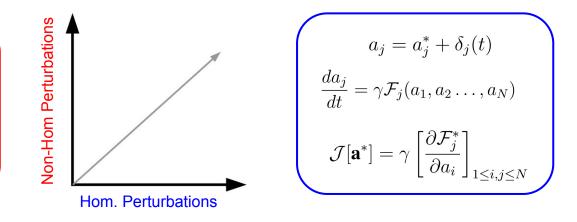






Different linearization!!!

$$\partial_t \Phi = \mathbf{D} \Delta \Phi + \tilde{\mathcal{J}}(\mathbf{a}^*) \Phi$$



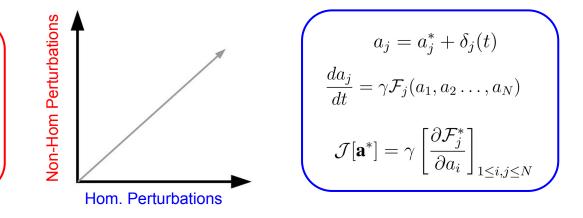
$$a_{s,j} = a_j^* + s \varphi_j(x,t)$$
$$\int_{\Gamma} \varphi_j ds = 0$$
$$\frac{d}{ds} \Big|_{s=0} \mathcal{U}[\mathbf{a}_s] = -\sum_{j=1}^N \int_{\Gamma} \varphi_j ds = 0$$

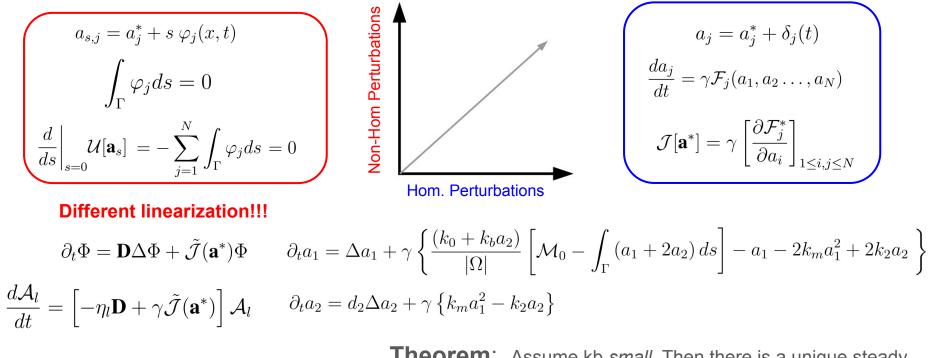
Different linearization!!!

$$\partial_t \Phi = \mathbf{D} \Delta \Phi + \tilde{\mathcal{J}}(\mathbf{a}^*) \Phi$$

$$\frac{d\mathcal{A}_l}{dt} = \left[-\eta_l \mathbf{D} + \gamma \tilde{\mathcal{J}}(\mathbf{a}^*)\right] \mathcal{A}_l$$

 $0 = \eta_0 < \eta_1 \le \eta_2 \le \dots$

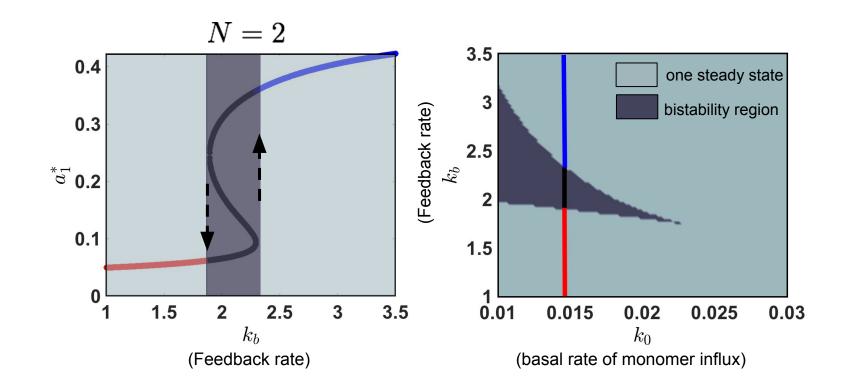


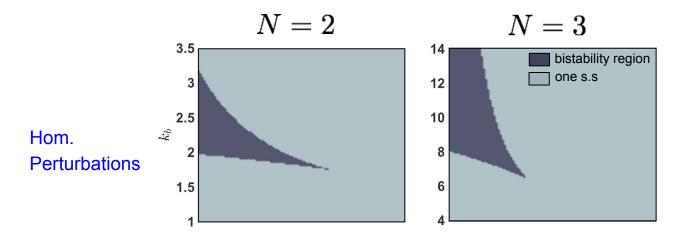


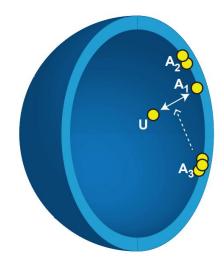
 $0 = \eta_0 < \eta_1 \le \eta_2 \le \dots$

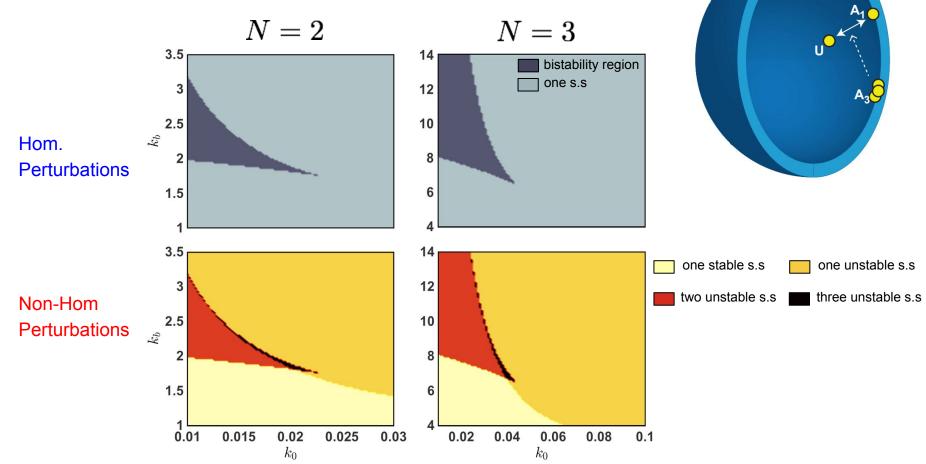
Theorem: Assume kb *small*. Then there is a unique steady state and no-diffusion driven instabilities $k_b \leq \frac{2}{\mathcal{M}_0} \min\left\{k_0|\Gamma|, \frac{d_2\eta_i|\Omega|}{\gamma}\right\}$

Homogeneous Perturbations and Bistability

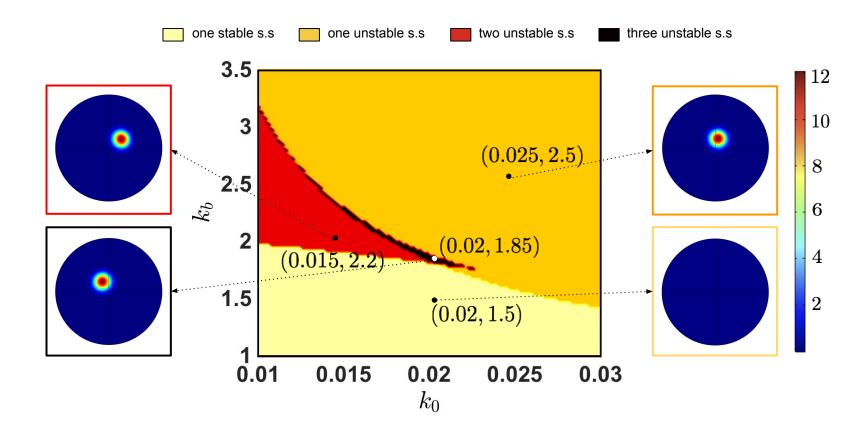




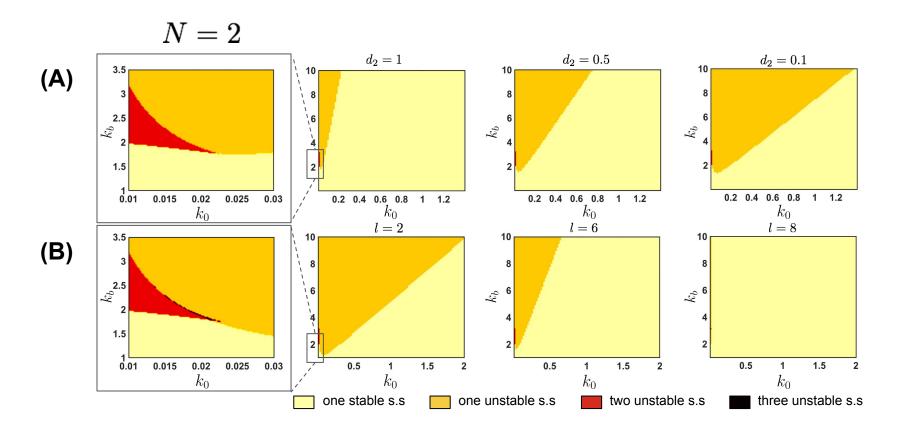




A



Stability Analysis: Numerical predictions



Governing Equations

• In the cytosol and boundary conditions

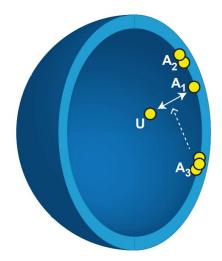
$$\partial_t u = D_u \nabla^2 u$$

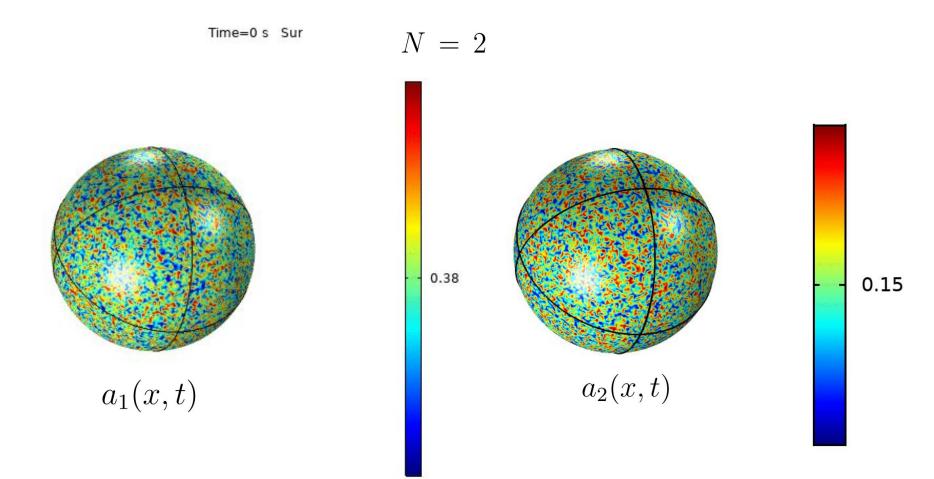
- $D_u (\mathbf{n} \cdot \nabla u) = f(u, a_1, a_2)$ ($\mathbf{U} \stackrel{f}{\longleftrightarrow} \mathbf{A}_1$)
= $(k_0 + k_b a_2) u - k_d a_1$

• On the Membrane:

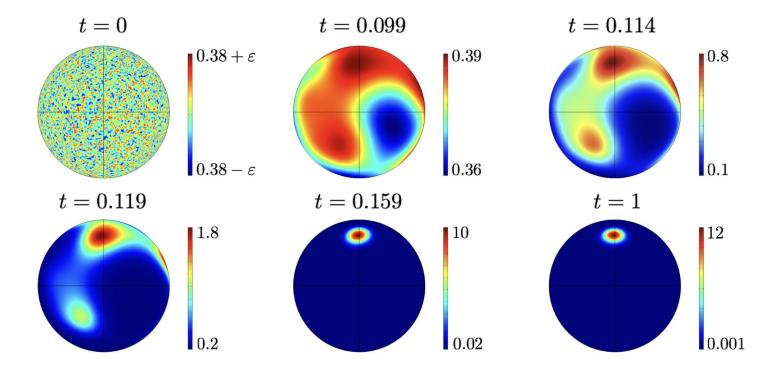
boundary flux dimension $<math>\partial_t a_1 = D_1 \Delta a_1 + (k_0 + k_b a_2) u - k_d a_1 - 2k_m a_1^2 + 2k_2 a_2$

 $\partial_t a_2 = D_2 \Delta a_1 + k_m a_1^2 - k_g a_1 a_2$



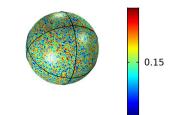


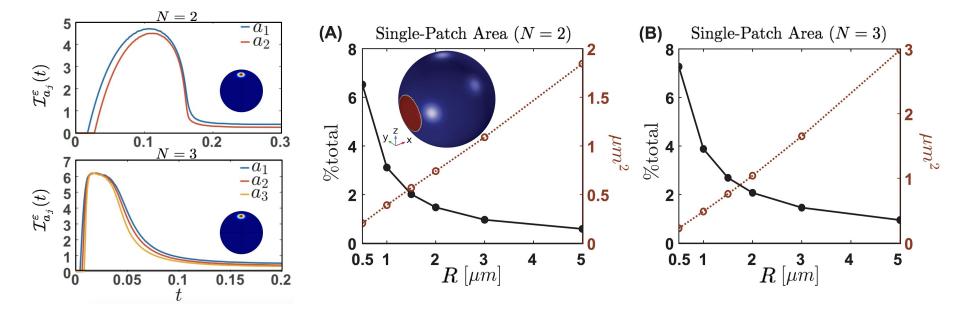
$$-D_u \left(\mathbf{n} \cdot \nabla u \right) = f(u, a_1, a_N)$$
$$= (k_0 + k_b a_N)u - k_d a_1$$



Analysis of the patch area

$$\mathcal{I}_{j}^{\varepsilon}(t) = \int_{\Gamma} \mathbb{1}_{\{a_{j}(x,t) > \langle a_{j} \rangle(t) + \varepsilon\}} ds$$





• Bulk-surface model for protein aggregation with a positive feedback exhibits a spatial heterogeneous single-patch steady-states.

- Bulk-surface model for protein aggregation with a positive feedback exhibits a spatial heterogeneous single-patch steady-states.
- Under homogeneous perturbations, bistability is promoted by a combination of mass conservation and positive feedback.

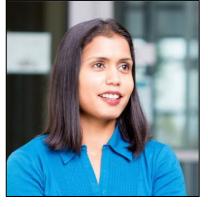
- Bulk-surface model for protein aggregation with a positive feedback exhibits a spatial heterogeneous single-patch steady-states.
- Under homogeneous perturbations, bistability is promoted by a combination of mass conservation and positive feedback.
- Feedback rate (kb) must be strong enough to promote a diffusion driven instability. If the rate is low, then the system converges back to the spatially homogeneous steady-state (theorem for N=2, conjecture for N>2)

- Bulk-surface model for protein aggregation with a positive feedback exhibits a spatial heterogeneous single-patch steady-states.
- Under homogeneous perturbations, bistability is promoted by a combination of mass conservation and positive feedback.
- Feedback rate (kb) must be strong enough to promote a diffusion driven instability. If the rate is low, then the system converges back to the spatially homogeneous steady-state (theorem for N=2, conjecture for N>2)
- The single-patch steady-states consistently appears for a range of parameter regions of instability. A rich gets richer mechanism seems to explain that fact.

References

- **Stolerman LM**, Getz M, Smith SG, Holst M, Rangamani P. *Stability Analysis of a Bulk–Surface Reaction Model for Membrane Protein Clustering.* Bulletin of Mathematical Biology. 2020 Feb 1;82(2):30.
- [2] A. Ratz and M. Roger. *Turing instabilities in a mathematical model for signaling networks*. Journal of mathematical biology, 65(6-7):1215–1244, 2012.
- [3] A. Ratz. *Turing-type instabilities in bulk–surface reaction–diffusion systems*. Journal of Computational and Applied Mathematics, 289:142–152, 2015
- [4] A. Ratz and M. Roger *Symmetry breaking in a bulk–surface reaction–diffusion model for signalling networks*. Nonlinearity, *27*(8), 1805.
- [5] D. Cusseddu, L. Edelstein-Keshet, JA Mackenzie, S Portet, A Madzvamuse. *A coupled bulk-surface model for cell polarisation*. Journal of theoretical biology, 2018.

Stefan Llewellyn Smith Dept. of Mechanical and Aerospace Engineering (UCSD) Michael Holst Dept. of Mathematics (UCSD)

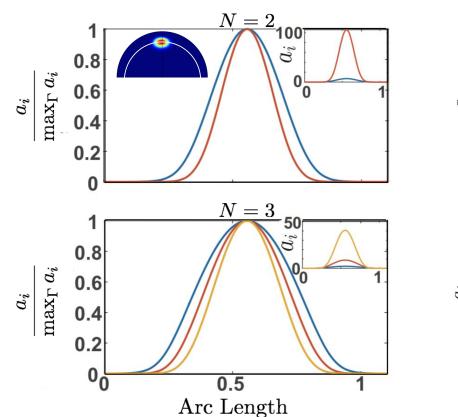


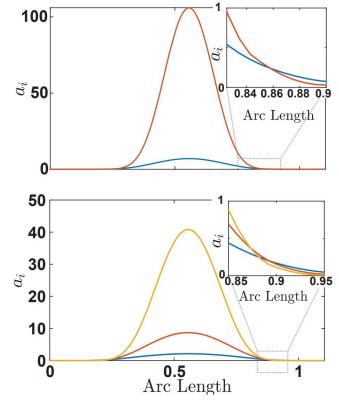
Padmini Rangamani

Dept. of Mechanical and Aerospace Engineering (UCSD)

Backup slides

Stability Analysis: Numerical Integration





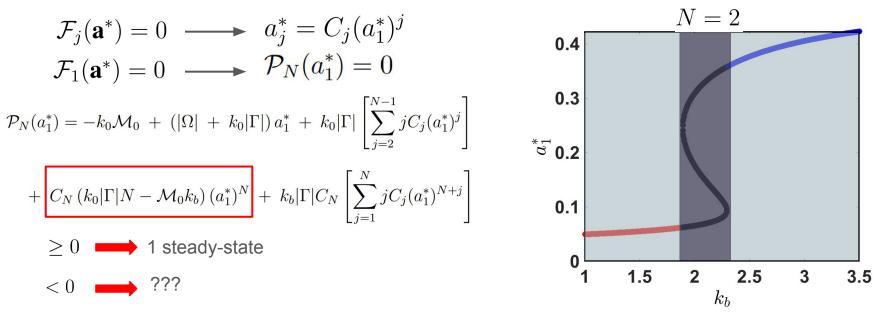
$$\partial_t a_1 = \Delta a_1 + \gamma \left\{ \frac{(k_0 + k_b a_2)}{|\Omega|} \left[\mathcal{M}_0 - \int_{\Gamma} (a_1 + 2a_2) \, ds \right] - a_1 - 2k_m a_1^2 + 2k_2 a_2 \right\}$$
$$\partial_t a_2 = d_2 \Delta a_2 + \gamma \left\{ k_m a_1^2 - k_2 a_2 \right\}$$

• Theorem:
$$k_b \leq \frac{2}{\mathcal{M}_0} \min\left\{k_0|\Gamma|, \frac{d_2\eta_i|\Omega|}{\gamma}\right\} \longrightarrow \begin{array}{l} 1) \text{ Unique steady-state} \\ 2) \text{ No diffusion-driven} \\ \text{ instability} \end{array}$$

Steady-state analysis

$$\frac{\partial a_1}{\partial t} = \Delta a_1 + \gamma \mathcal{F}_1(a_1, a_2, \dots, a_N) \qquad \frac{\partial a_j}{\partial t} = d_j \Delta a_j + \gamma \mathcal{F}_j(a_1, a_2, \dots, a_N), \quad j = 2, \dots, N$$

• Spatially Homogeneous Steady-states: $\mathbf{a}^* = (a_1^*, a_2^*, a_3^*, \dots, a_N^*)$ s.t $\mathcal{F}_j(\mathbf{a}^*) = 0$



Stability Analysis: Overview

$$\partial_{t}a_{1} = \Delta a_{1} + \gamma \left\{ (k_{0} + k_{b}a_{N}) \mathcal{U}[a_{1}, a_{2}, ..., a_{N}] - a_{1} - 2k_{m}a_{1}^{2} + 2k_{2}a_{2} - k_{g}a_{1} \left(\sum_{l=2}^{N-1} a_{j}\right) + \sum_{j=3}^{N} k_{j}a_{j} \right\}, \\ \partial_{t}a_{2} = d_{2}\Delta a_{2} + \gamma \left(k_{m}a_{1}^{2} - k_{2}a_{2} - k_{g}a_{1}a_{2} + k_{2}a_{3}\right), \\ \partial_{t}a_{j} = d_{j}\Delta a_{j} + \gamma \left(k_{g}a_{1}a_{j-1} - k_{j}a_{j} - k_{g}a_{1}a_{j} + k_{j+1}a_{j+1}\right), \quad j = 3, \dots, N \\ \partial_{t}a_{N} = d_{N}\Delta a_{N} + \gamma \left(k_{g}a_{1}a_{N-1} - k_{N}a_{N}\right) \\ \mathcal{U}[a_{1}, a_{2}, ..., a_{N}](t) := \frac{1}{|\Omega|} \left[M_{0} - \sum_{j=1}^{N} \left\{j \cdot \int_{\Gamma} a_{j}ds\right\}\right]$$

Homogeneous Perturbations:

$$a_j = a_j^* + \delta_j(t) \longrightarrow \frac{da_j}{dt} = \gamma \mathcal{F}_j(a_1, a_2 \dots, a_N) \longrightarrow \mathcal{J}[\mathbf{a}^*] = \gamma \left[\frac{\partial \mathcal{F}_j^*}{\partial a_i}\right]_{1 \le i, j \le N}$$

• Arbitrary Perturbations:

$$\begin{aligned} a_{s,j} &= a_j^* + s \,\varphi_j(x,t) & \longrightarrow & \frac{d}{ds} \Big|_{s=0} \mathcal{U}[\mathbf{a}_s] = -\sum_{j=1}^N \int_{\Gamma} \varphi_j ds = 0 & \text{Different} \\ & \int_{\Gamma} \varphi_j ds = 0 \end{aligned}$$

Stability Analysis: Overview (cont.)

• In vector notation, $\partial_t \Phi = \mathbf{D} \Delta \Phi + \tilde{\mathcal{J}}(\mathbf{a}^*) \Phi$, $\mathbf{D}_{jj} = d_j$

•
$$-\Delta \omega_l = \eta_l \omega_l$$
 Eigenmodes where $0 = \eta_0 < \eta_1 \le \eta_2 \le \dots$
• $\Phi = \mathcal{A}_0 \omega_0 + \sum_{l \in \mathbb{N}} \mathcal{A}_i \omega_l(x) \longrightarrow \frac{d\mathcal{A}_l}{dt} = \left[-\eta_l \mathbf{D} + \gamma \tilde{\mathcal{J}}(\mathbf{a}^*)\right] \mathcal{A}_l$
 $l = 0, 1, 2, \dots$

• Dispersion relation $h(l) := \max \left(\operatorname{Re}(\lambda(\eta_l)) \right) > 0 \longrightarrow$ Diffusion-driven Instability

Our model: properties and reduction

• Mass conservation:
$$M(t) := \int_{\Omega} u(x,t) dx + \sum_{j=1}^{N} \left\{ j \cdot \int_{\Gamma} a_j(x,t) ds \right\}$$
 const.

- Non-local functional: $D_u \to \infty \quad u(x,0) = u_0 \longrightarrow \mathcal{U}[a_1, a_2, ..., a_N](t) := \frac{1}{|\Omega|} \left[M_0 - \sum_{j=1}^N \left\{ j \cdot \int_{\Gamma} a_j ds \right\} \right]$
- Non-dimensional reduced system:

$$\partial_{t}a_{1} = \Delta a_{1} + \gamma \left\{ (k_{0} + k_{b}a_{N}) \mathcal{U}[a_{1}, a_{2}, ..., a_{N}] - a_{1} - 2k_{m}a_{1}^{2} + 2k_{2}a_{2} - k_{g}a_{1} \left(\sum_{l=2}^{N-1} a_{j}\right) + \sum_{j=3}^{N} k_{j}a_{j} \right\},\\ \partial_{t}a_{2} = d_{2}\Delta a_{2} + \gamma \left(k_{m}a_{1}^{2} - k_{2}a_{2} - k_{g}a_{1}a_{2} + k_{2}a_{3}\right),\\ \partial_{t}a_{j} = d_{j}\Delta a_{j} + \gamma \left(k_{g}a_{1}a_{j-1} - k_{j}a_{j} - k_{g}a_{1}a_{j} + k_{j+1}a_{j+1}\right), \quad j = 3, \dots, N$$

$$\left[\gamma = \frac{k_{d}R^{2}}{D_{1}}\right]$$