
Stability analysis of a bulk-surface model 
for membrane protein clustering

Lucas Stolerman

Laboratory for Computational Cellular Mechanobiology
UCSD

COLMEA 24/09/2020



Introduction

● Central Question:  What spatial patterns can emerge on the PM solely through protein-protein 
interaction and diffusion? What is the simplest-insightful mathematical model that exhibits 
heterogeneous protein distribution?  

AMPAR (D.Choquet, 2018)

FYN (Padmanabhan et at, 2019)

Amyloid - β (Habchi et al, 2018)
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Homogeneous Perturbations and Bistability

bistability region

one steady state

(Feedback rate) (basal rate of monomer influx)
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Stability Analysis: Numerical predictions

(A)

(B)

one stable s.s one unstable s.s two unstable s.s   three unstable s.s



● In the cytosol and boundary conditions

                                             

Governing Equations

      (                   )

● On the Membrane: oligomerization
dimerizationboundary flux





Parameter regions of Instability



Analysis of the patch area



 

Conclusions 

● Bulk-surface model for protein aggregation with a positive feedback exhibits a spatial 
heterogeneous single-patch steady-states. 

● Under homogeneous perturbations, bistability is promoted by a combination of mass conservation 
and positive feedback.

● kb must be high enough to facilitate a diffusion driven instability. If the rate is small, then the system 
converges back to the spatially homogeneous steady-state (theorem for N=2, conjecture for N>2)

● The single-patch steady-states consistently appears for a range of parameter regions of instability.
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Conclusions 

● Bulk-surface model for protein aggregation with a positive feedback exhibits a spatial 
heterogeneous single-patch steady-states. 

● Under homogeneous perturbations, bistability is promoted by a combination of mass conservation 
and positive feedback.

● Feedback rate (kb) must be strong enough to promote a diffusion driven instability. If the rate is low, 
then the system converges back to the spatially homogeneous steady-state (theorem for N=2, 
conjecture for N>2)

● The single-patch steady-states consistently appears for a range of parameter regions of instability. A 
rich gets richer mechanism seems to explain that fact. 
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Stability Analysis: Numerical Integration



● Theorem:      

Stability analysis

1) Unique steady-state
2) No diffusion-driven 
instability



● Spatially Homogeneous Steady-states:                s.t 

   

   

Steady-state analysis

1 steady-state

???



Stability Analysis: Overview

● Homogeneous Perturbations:

● Arbitrary Perturbations: 
 Different 
linearization!!!



Stability Analysis: Overview (cont.)

● In vector notation,    ,

●               Eigenmodes where

●

● Dispersion relation             Diffusion-driven
Instability 



Our model: properties and reduction

● Mass conservation:   const.

● Non-local functional:

● Non-dimensional reduced system:

  


