# Vector Competence: <br> Population Genomics, Price Decomposition, and Causal Graphs 

# Claudio José Struchiner ${ }^{1}$ José M.C. Ribeiro ${ }^{2}$ Bruno Arca ${ }^{3}$ 

${ }^{1}$ FGV and IMS/UERJ claustru@gmail.com<br>${ }^{2}$ National Institutes of Health<br>${ }^{3}$ Sapienza University of Rome

COLMEA 2019

## Evolution (Dennett)

## "Noise

"Evolution is all about turning "bugs" into "features", turning "noise" into "signal", and the fuzzy boundaries between these categories are not optional; the opportunistic open-endedness of natural selection depends on them.

## COLMEA 2019

CJ Struchiner

## "Noise"

Noise into signal Vector trait recurrence Resulits
Competence
Vectorial Capacity
Mosquitoes Susceptibility

## Motivation /

 ImplicationsHands-on analytical tools

Wrap-up
Causal Inference

## Interspecies Vectorial Capacity



Geography, vector status, molecular phylogeny, gene orthology, and genome alignability of the 16 newly sequenced anopheline mosquitoes and selected other dipterans.(Neafsey et al., 2015).

CJ Struchiner

## "Noise"

Noise into signal Vector trait recurrence
Resulis
Competence
Vectorial Capacily
Mosquitoes Susceptibility
Motivation /
LETTER

## Genetic diversity of the African malaria vector Anopheles gambiae

The Anopheles gambiae 1000 Genomes Consortium*

CJ Struchiner
"Noise"
Noise into signal

## Vector trait recurrence

Results
Competence
Vectorial Capacity
Mosquitoes Susceptibility
Sciencexpress

## Research Article

## Motivation /

Implications
Hands-on
analytical tools
Wrap-up
Causal Inference
partly due to the challenges involved in accurately identifying introgression in the very groups where it is most likely to occur. Recently diverged species often have incomplete reproductive barriers, hence may hybridize in sympatry. However, another fea-

RESEARCH ARTICLE

MOSQUITO GENOMICS

## Highly evolvable malaria vectors: The genomes of 16 Anopheles mosquitoes

Comparative analyses show:

- faster rates of gene gain and loss
- elevated gene shuffling on the X chromosome
- more intron losses, relative to Drosophila
- chemosensory genes, do not show elevated turnover but instead diversify through protein-sequence changes.

This dynamism of anopheline genes and genomes may contribute to their flexible capacity to take advantage of new ecological niches, including adapting to humans as primary hosts.

## Competence is a Variable Trait

## "Noise"

Why is this trait so variable?

- differences in mosquito physiology, molecular biology, and/or behavior
- differences in the environment and the climate
- differences in host and parasite physiology, molecular biology, and/or behavior


## Vector Competence as a Phenotype

## "Noise"

Noise into signal
quadrimaculatus close to gambiae but shows no athropophilic behavior; competent if artificially fed; long lasting
farauti everything ok but does not live long enough
darlingi new world; distance to gambiae = man to rat; reasonable vector; contact with parasite 500 yrs ago

## Vectorial Capacity B.G.

## "Noise"

Noise into signal Vector trait recurrence Resulits
Competence

## Vectorial Capacity

- Garrett-Jones, 1964: Vectorial capacity is the expected number of humans infected per infected human, per day; parameters that have to do with mosquitoes

$$
C=\frac{m a^{2} b e^{-\mu n}}{\mu}
$$

- Ross-MacDonald

$$
\begin{aligned}
\frac{\mathrm{d} x(t)}{\mathrm{d} t} & =\operatorname{maby}(t)(1-x(t))-r x(t) \\
\frac{\mathrm{d} y(t)}{\mathrm{d} t} & =a x(t)(1-y(t))-\mu y(t)
\end{aligned}
$$

- Basic reproductive number (threshold condition)

$$
R_{0}=\frac{m a^{2} b c e^{-\mu n}}{\mu r}=\frac{C \times c}{r}
$$

## "Noise"

Noise into signal Vector trait recurrence
Resulits
Competence
Vectorial Capacily
Mosquitoes Susceptibility

## Motivation /

Implications
Hands-on analytical tools

## One Gene, One Parameter



Infection phenotype of wild A. gambiae pedigrees with natural P. falciparum. (Niaré et al., 2002)

## COLMEA 2019

CJ Struchiner
"Noise"
Noise into signal
Motivation /
Implications
GMM
Mosquito "Vaccines": Wolbachia

Hands-on analytical tools

Wrap-up
Causal Inference

## Genetically Modified Mosquitoes



Pattern of green fluorescent protein (GFP) expression in transgenic Anopheles stephensi mosquitoes transformed with a piggyBac vector (Horn et al., 2000). The GFP gene was under the control of the eye-specific 3XP3 promoter. (A) Two larvae: transgenic (bottom) and non-transgenic (top). GFP is visible in the ocelli and salivary glands of the transgenic larva. (B) Transgenic pupa. Note GFP fluorescence in some of the eye ommatidia. (C) Eyes of a non-transgenic (left) and transgenic (right) mosquito. Note that while all eye ommatidia of the transgenic mosquito express GFP, the pattern of fluorescence depends on the angle of incident light (Moreira et al., 2002)

## "Noise"

Noise into signal
Motivation /

## Implications

## GMM

## Wrap-up

## Cytoplasmic Incompatibility

## Cytoplasmic Incompatibility

$$
\vec{A}+\vec{a}=4
$$



Infected males are incompatible with uninfected females
Cytoplasmic incompatibility caused by maternally inherited Wolbachia bacteria in arthropods. In diploids, the offspring of crosses between uninfected mothers and infected fathers die early in development. All other crosses are compatible (Werren Lab).

## COLMEA 2019

## Molecular evolution

## Motivation

 Implications
## Hands-on

## analytical tools

Molecular evolution
Natural Selection Footprints MK tables
Price
Wrap-up
Causal Inference


$$
\begin{aligned}
& \text { c. } K=2 N_{e} \mu \int_{-\infty} u\left(N_{e}, s\right) f(s) d s \\
& \begin{array}{l}
\text { New mutations per } \\
\text { site per generation }
\end{array}
\end{aligned}
$$

Molecular evolutionary rate $(\mathrm{K})$ as a function of $(\mathrm{A})$ the DFE, (B) the probability of fixation of new mutations entering the population, and (C) the rate at which new mutations enter the population per site per generation. Different selection coefficients of mutations are colored in a gradient from maroon (strongly deleterious), red (slightly deleterious), gray (neutral), light green (slightly advantageous), and dark green (advantageous). (Casillas and Barbadilla, 2017)

## COLMEA 2019

CJ Struchiner

## "Noise" <br> Noise into signal

Motivation / Implications

## Hands-on

analytical tools
Molecular evolution
Natural Selection Footprints
MK tables.
Price
Wrap-up
Causal Inference

-

## Natural Selection Footprints



Strategies for detection of the genome-wide selection signatures. SNP variation: white and green alleles (synonymous variants) and also a codon-altering non-synonymous allele (red and white) (Oleksyk, 2009).

COLMEA 2019

## "Noise"

Noise into signal

## Motivation /

## Implications

## Hands-on

 analytical tools
## Molecular evolution

Natural Selection Footprints

## MK tables

## Price

## Wrap-up

Causal Inference

## Natural Selection Footprints



A, Traditional population genetics (individuals within populations); B, summary statistics as continuous variables along the length of the genome, such as $\pi$ (nucleotide diversity) and allele frequency spectrum (Tajima's D); Signature of evolutionary processes: i , hard selective sweep; ii , region linked to hard sweep; iii , neutral expectation; iv, balancing selection; v, neutral expectation; vi , soft sweep. C, The coalescent structure. D, statistics comparing genetic variation across populations, such as FST. E, Collapsing the genomic distribution of a statistic (Hohenlohe, 2010).

COLMEA 2019
CJ Struchiner

## "Noise"

Noise into signal
Motivation / Implications

Hands-on analytical tools

## Molecular evolution

Natural Selection Footprints

## MK tables

Price
Wrap-up
Causal Inference

## MK table

Table 1. MK table.

|  | MK |  | SnIPRE |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Polymorphic | Divergent | Polymorphic | Divergent |  |
| Synonymous | PS | DS | $y_{00}$ | $y_{01}$ | $n_{1}$ |
| Non-Synonymous | PN | DN | $y_{10}$ | $y_{11}$ | $n_{2}$ |
|  |  | d |  |  |  |

Notation used for the MK statistic and SnIPRE. $y_{i j}=$ the number of mutations a gene has in category $i j ; i=1$ if the mutations are non-synonymous, 0 otherwise; $j=1$ if the mutations are divergent, 0 otherwise.

McDonald and Kreitman table (Eilertson et al., 2012 Plos CB)

COLMEA 2019
CJ Struchiner

## "Noise"

Noise into signal

## Motivation /

## Implications

## Hands-on

analytical tools

$$
\begin{aligned}
\log \left(\mu_{i j}\right)= & \log \left(\text { Tsites }_{i}\right)+\beta+\beta^{N_{i}}+\beta^{D_{j}}+\beta^{N D_{i j}}+ \\
& \beta_{k}^{G}+\beta_{k}^{N G_{i}}+\beta_{k}^{D D G_{j}}+\beta_{k}^{N D G_{i j}}
\end{aligned}
$$

$N_{i}$ synonymous vs non-synonymous
$D_{j}$ divergent vs polymorphic
$\beta_{k}$ random effects

COLMEA 2019
CJ Struchiner

## "Noise"

Noise into signal
Motivation / Implications
Hands-on analytical tools

## Molecular evolution

Natural Selection Footprints
MK tables
Price
Wrap-up
Causal Inference

## Selection vs Constraint (drosophila)


D. simulans estimated selection effects and non-synonymous effects for 8,887 genes (Eilertson et al., 2012).

COLMEA 2019
CJ Struchiner

## "Noise"

Noise into signal
Motivation /
Implications
Hands-on analytical tools

## Molecular evolution

Natural Selection Footprints

## MK tables

Price
Wrap-up
Causal Inference

## Selection vs Constraint (humans)



Human estimated selection effects and non-synonymous effects for 11,624 genes. (Eilertson et al., 2012).

## COLMEA 2019

CJ Struchiner

## "Noise"

Noise into signal
Motivation / Implications

## Hands-on

 analytical tools
## Molecular evolution

Natural Selection Footprints
MK tables
Price
Wrap-up
Causal Inference

## Selection vs Constraint (anopheles)

## Parameters for each gene

## "Noise"

## LME $\Longleftrightarrow \mathrm{PRF}$

$\gamma$ selection coefficient; $\gamma=2 \times N_{e} \times s$
$1+s$ fitness of mutants
$\tau$ divergence time
$\mu$ nucleotide mutation rate
$\theta$ per-locus mutation rate; $\theta=2 \times N_{e} \times \mu$
$f$ proportion of nonsynonymous mutations that are non-lethal; 1 - $f$ mutation constraint
$N_{e}$ effective population size

## COLMEA 2019 <br> CJ Struchiner

## "Noise"

Noise into signal
Motivation /
Implications

## Hands-on

 analytical tools
## Phenotype changes across generations



Phenotype of ancestors and descendants (Rice, 2004)

## "Noise"

Noise into signal
Motivation /
Implications

## Hands-on

Phenotype changes across generations

$$
\bar{\Phi}^{\prime}-\bar{\Phi}=\Delta \bar{\Phi}=\frac{1}{\bar{W}}[\operatorname{cov}(W, \Phi)+E(W \bar{\delta})]
$$

$N$ Population size
$\Phi_{i}$ Phenotype of individual $i(0<i \leq N)$
$\bar{\Phi}$ Mean phenotype in the population
$\delta_{i, j}$ Difference between phenotype of the $j^{\text {th }}$ descendant of individual $i$ and $i$ 's phenotype
$\bar{\delta}_{i}$ Difference between the mean value of $\phi$ among $i$ 's descendants and $\Phi_{i}$
$\bar{\phi}^{\prime}$ Mean phenotype of the descendants
$W_{i}$ Number of descendants of individual $i$
$\bar{W}$ Mean number of descendants per individual

## COLMEA 2019

CJ Struchiner

## "Noise"

Noise into signal
Motivation / Implications

## Hands-on

analytical tools
Molecular evolution
Natural Selection Footprints
MK tables
Price
Wrap-up
Causal Inference

Synthesis

## Fundamental Theorems of Evolution

David C. Queller*

Fundamental theorem of evolution
(Price equation)

$$
\Delta \bar{\phi}=\frac{1}{\bar{w}}(\operatorname{cov}(w, \phi)+E(w \delta))
$$

Partitions selection and transmission bias

( $\phi=$ any trait value; $\delta=$ the change in $\phi$ from parent to offspring; $w=$ fitness; $p=$ allele frequency; $a_{A}=$ average excess; $g=$ breeding value; $z=$ phenotype value; $r=$ partial correlation; $s=$ selection differential, $h^{2}=$ heritability.)


Directional selection (Rice 2004)

## COLMEA 2019

## CJ Struchiner

## "Noise"

Noise into signal

## Motivation /

 Implications
## Hands-on

analytical tools

## Molecular evolution

Natural Selection Footprints

## MK tables

Price
Wrap-up
Causal Inference

## Stabilizing and disruptive selection



Stabilizing and disruptive selection (Rice 2004)

## Vectorial Capacity B.G.

- Garrett-Jones, 1964: Vectorial capacity is the expected number of humans infected per infected human, per day; parameters that have to do with mosquitoes

$$
C=\frac{m a^{2} b e^{-\mu n}}{\mu}
$$

- Ross-MacDonald

$$
\begin{aligned}
\frac{\mathrm{d} x(t)}{\mathrm{d} t} & =\operatorname{maby}(t)(1-x(t))-r x(t) \\
\frac{\mathrm{d} y(t)}{\mathrm{d} t} & =a x(t)(1-y(t))-\mu y(t)
\end{aligned}
$$

- Basic reproductive number (threshold condition)

$$
R_{0}=\frac{m a^{2} b c e^{-\mu n}}{\mu r}=\frac{C \times c}{r}
$$

## COLMEA 2019 CJ Struchiner

## "Noise"

Noise into signal
Motivation / Implications

## Hands-on

 analytical tools
## Wrap-up

B.G.
A.G.

Price Like
Causal Inference

## Evolutionary dynamics and epidemiological dynamics



## Going "genomics"

## "Noise"

$y_{T}=\sum_{i} y_{i}$ total number of infected mosquitoes
$q_{i}=\frac{y_{i}}{y_{t}} \quad$ frequency of mosquito of strain $i$
$\eta \quad$ mutation rate
$r_{i} \quad$ fitness of strain $i$ probability that, given a mutation, a
$\delta_{j i} \quad$ strain of genotype $j$ changes to one of genotype $i$
$\begin{array}{ll}\bar{a} & \sum_{i} a_{i} q_{i} \\ \bar{\mu} & \sum_{i} \mu_{i} q_{i}\end{array}$
$m \bar{a} \bar{b}$
$m \sum_{i} a_{i} q_{i} \sum_{i} b_{i} q_{i}$

## COLMEA 2019 <br> CJ Struchiner <br> Quantities of interest (Price 1970)

## "Noise"

Noise into signal

## Motivation /

Implications

## Hands-on

 analytical tools
## Wrap-up

B.G.
A.G.

Price Like
Causal Inference

- trait dynamics

$$
\frac{d \bar{a}}{d t}=\operatorname{cov}\left(a_{i}, r_{i}\right)-\eta\left(\bar{a}-\overline{a_{\delta}}\right)
$$

- average value of trait among all new mutations

$$
\overline{a_{\delta}}=\sum_{i j} a_{i} \delta_{j i} q_{j}
$$

## COLMEA 2019 <br> Environment and Niche Construction

## "Noise"

Noise into signal
Motivation /
Implications
Hands-on analytical tools

## Wrap-up

Causal Inference Research agenda
Urbanization
Increased Global Travel $\left\{\begin{array}{l}\text { expansion } \\ \text { reestablishment }\end{array}\right.$

## COLMEA 2019 Representation as a DAB <br> CJ Struchiner

## "Noise" <br> Noise into signal

Motivation /
Implications
Hands-on
analytical tools
Wrap-up
Causal Inference
Research agenda

$\sigma_{A}^{2}$ additive genetic effect $\left(\operatorname{Cov}\left(\Phi, \Phi^{\prime}\right)\right)$
$\Delta \bar{\Phi}$ evolutionary response

$$
\Delta \bar{\Phi}=\frac{1}{\beta \bar{\Phi}+\overline{E_{W}}} \beta \sigma_{A}^{2}
$$

assumptions: faithful gene transmission $\left(\bar{X}=\overline{X^{\prime}}\right)$; homogeneous environments ( $\bar{E}=\overline{E^{\prime}}$ ); no reproductive bias ( $\bar{\Phi}^{\prime}-\bar{\Phi}=0$ )

## COLMEA 2019

## Niche construction

## Hands-on

analytical tools
Wrap-up
Causal Inference Research agenda


Organisms as causal agents of environmental changes and evolutionary fate. Modified from Otsuka, 2014, Laland et al. 1999, and Lewontin, 1983
$R_{G P}, R, R^{\prime}$ environmental resources (niches) of the grandparental, parental, and offspring generations, respectively
$H, P$ human (resources) and parasites (predators) trophic levels
$\lambda_{2}$ linear coeficient measuring the influence of $\Phi$ on $R$
$\lambda_{1}$ persistence/inheritance of the enrironmental resource between generations

$$
\Delta \bar{\Phi}=\frac{1}{\beta \bar{\Phi}+R}\left(\beta+\lambda_{2}\right) \sigma_{A}^{2}
$$

assumptions: $R$ is a group or contextual variable (selection at the group level); it keeps changing across generations and may counteract selection measured by $\beta$

## Research agenda

## "Noise"

- study designs (population genomics, climate, behavior):
- causal measures,
- confounding: backdoor, colliders
- mendelian randomization
- experimental evolution:
- sequencing following experimental challenge;
- niche manipulation
- software development
- what drives us into the future?

