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Bootstrap percolation

First example: 2-neighbour bootstrap on Z2

• At time t = 0 sites of Z2 are i.i.d., empty with prob q,
occupied with prob 1− q

• At time t = 1 empty sites remain empty and occupied sites
with at least 2 empty nearest neighbours are emptied

• Iterate

⇒ deterministic monotone dynamics

⇒ ∃ blocked clusters

.
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Critical density and Infection time

• Will the whole lattice become empty eventually?

→ Yes (Van Enter ’87)

• qc := inf{q ∈ [0, 1] : µq(origin is emptied eventually) = 1}

→ qc = 0

• How many steps does it take to empty the origin?

• τ(q) := µq(first time at which origin is empty)

→ τ(q) ∼ exp

(
π2

18q
(1 + o(1))

)
for q → 0

[ Aizenmann-Lebowitz ’88, Holroyd ’02, . . . ]
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The general framework: U-bootstrap percolation

• Choose the update family, a finite collection

U = {U1, . . . , Um} of local neighbourhoods of the origin,

i.e. Ui ⊂ Z2 \ 0, |Ui| <∞

• At time t = 1 site x is emptied iff at least one of the
translated neighborhoods Ui + x is completely empty

• Iterate

Example: 2-neighbour bootstrap percolation

U = collection of the sets containing 2 nearest neighb. of origin
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Some other examples

• r-neighbour bootstrap percolation:
U = all the sets containing r nearest neighb. of origin

• East model U = {U1, U2} with U1 = (0,−1), U2 = (−1, 0)

• North-East model U = {U1} with U1 = {(0, 1), (1, 0)}

• Duarte model U = {U1, U2, U3}

3

xxx

U1 U U2
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Universality classes

• qc?
• Scaling of τ(q) for q ↓ qc?

Of course, answers depend on the choice of the rule U

Three universality classes

• Supercritical models: qc = 0, τ(q) = 1/qΘ(1)

• Critical models: qc = 0, τ(q) = exp(1/qΘ(1))

• Subcritical models: qc > 0

[Bollobas, Smith, Uzzell ’15, Balister, Bollobas, Przykucki, Smith ’16]
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How can you identify the universality class of U?

We need the notion of stable and unstable directions

• Fix a direction ~u

• Start from a configuration which is
• completely empty on the half plane perpendicular to ~u in

the negative direction (Hu)

• filled otherwise

• Run the bootstrap dynamics
H_u

u

~u is

{
stable if no other site can be emptied

unstable otherwise
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Stable and unstable directions: examples

Of course, the stability of a direction depends on U

Ex. East model:

~u = −~e1 is stable; ~u = ~e1 + ~e2 is unstable

directionStable

direction

Unstable

Instead :

• both directions are unstable for 1-neighbour bootstrap

• both directions are stable for North East
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Supercritical universality class

U is supercritical iff there exists an open semicircle C which
does not contain stable directions

⇒ exists a finite empty droplet
from which we can empty

the line bisecting C
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Supercritical universality class

U is supercritical iff there exists an open semicircle C which
does not contain stable directions

0

⇒ exists a finite empty droplet
from which we can empty

the line bisecting C

⇒ τ ∼ distance of origin from empty droplet ∼ 1/qΘ(1)

⇒ qc = 0
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Examples of supercritical models

For East and 1-neighbour: droplet = single empty site
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Critical universality class

U is critical iff

1) it is not supercritical

2) ∃ open semicircle C with only a finite number of stable
directions

Example 2-neighbour model
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2-neighbour model

• 1 site is sufficient to unblock ~e1

→ ~e1 is stable with difficulty 1

• A column of size 1/q log(1/q) is a droplet:
if it is empty it can (typically) empty the next column

⇒ τ(q) ≤ e1/q log(1/q)2
= mean distance from 0 to nearest

empty droplet

⇒ τ(q) ∼ e
π2

18q
(1+o(1))

via a (much) more refined argument
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Critical universality class

The general critical case:

• Difficulty of a stable direction :
d(~u) = minimal number of empty sites to unstabilize ~u, i.e.
to empty an infinite number of sites in direction ~u

• Difficulty of the model :
α = minC max~u∈C d(~u)

⇒ size of the droplet (= empty region from which we can
expand) is ∼ 1/qα

⇒ τ(q) ∼ e1/qα log(1/q)Θ(1)
= mean distance from origin to

nearest empty droplet

⇒ qc = 0

C.Toninelli Bootstrap percolation and Kinetically constrained models: critical time scales



Subcritical universality class

Two equivalent definitions

U is subcritical iff it is neather supercritical nor critical

or

U is subcritical iff each open semicircle contains infinite stable
directions

⇒ qc > 0: blocked clusters percolate at q < qc

Example: North East model
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Kinetically Constrained Models, a.k.a. KCM

Configurations : η ∈ {0, 1}Z2

Dynamics: continuous time Markov process of Glauber type,
i.e. birth / death of particles

Fix an update family U and q ∈ [0, 1].

Each site for which the U bootstrap constraint is satisfied is
updated to empty at rate q and to occupied at rate 1− q.

⇒ non monotone dynamics

⇒ reversible w.r.t. product measure at density 1− q
⇒ blocked clusters for BP ↔ blocked clusters for KCM

⇒ empty sites needed to update → slowing down when q ↓ 0
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2-neighbour KCM

q

1−q
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Origins of KCM

KCM introduced in the ’80’s to model the liquid/glass transition

• If a liquid is cooled sufficiently rapidly it avoids
crystallisation and freezes in an amorphous solid, the glass;

• understanding the liquid/glass transition is a major open
problem in condensed matter physics;

• sharp divergence of timescales;

• no significant structural changes.
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• If a liquid is cooled sufficiently rapidly it avoids
crystallisation and freezes in an amorphous solid, the glass;

• understanding the liquid/glass transition is a major open
problem in condensed matter physics;

• sharp divergence of timescales;

• no significant structural changes.

KCM:

⇒ constraints mimic cage effect:
if temperature is lowered free volume shrinks, q ↔ e−1/T

⇒ trivial equilibrium, sharp divergence of timescales when
q ↓ 0, glassy dynamics (aging, heterogeneities, . . . )
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Why are KCM mathematically challenging?

• KCM dynamics is not attractive: more empty sites can
have unpredictable consequences

• Coupling arguments and censoring arguments fail

• ∃ blocked clusters → relaxation not uniform on initial
condition → worst case analysis is too rough

• Coercive inequalities (e.g. Log-Sobolev) anomalous

→ new tools are needed
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KCM: time scales

τKCM(q) := Eµq( first time at which origin is emptied )

• How does τKCM diverge when q ↓ qc?
• How does it compare with τBP, the infection time of the

corresponding bootstrap process?

An (easy) lower bound

τKCM ≥ c τBP

General, but it does not always capture the correct behavior
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Supercritical KCM: a new classification

We introduce a refined classification. A supercritical model is
• rooted if there are two non opposite stable directions
• unrooted otherwise.

Examples.
• 1-neighbour model: unrooted
• East model: rooted
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Supercritical KCM : results

Theorem 1. [Martinelli, Morris, C.T. ’17 ]

(i) for all supercritical unrooted models τKCM(q) = 1/qΘ(1)

(ii) for all supercritical rooted models τKCM = 1/qΘ(log(1/q))

⇒ Rooted models: τKCM(q)� τBP(q)
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Critical KCM: first example

Theorem 2. [Martinelli, C.T. ’16]

For the 2-neighbour KCM

exp

(
π2

18q

)
≤ τ(q) ≤ exp

(
log(1/q)2

q

)

• Heuristic / ideas of proof in a moment . . .

• new flexible toolbox: we can analyse all critical models
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Critical KCM : a new classification

We introduce a refined classification.

A critical KCM with difficulty α is

• rooted if ∃ two non opposite directions of difficulty > α

• unrooted otherwise.

Examples

• 2-neighbour model:
±~e1,±~e2 have difficulty = 1
→ α = 1 and unrooted

• Duarte model (at least 2 empty among S , W, and N):
α = 1 and rooted. Why?
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Duarte model is critical rooted

Duarte model (at least 2 empty among S , W, and N):

• ~e1 has difficulty 1;

• −~e1 and all the directions in the red semicircle have ∞
difficulty

• α = 1 and rooted (there are a lot of non opposite stable
directions with difficulty > 1!)
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Critical KCM : results

Theorem 2. [Martinelli, C.T. ’16 + Martinelli,Morris,C.T. ’17]

• for unrooted critical KCM with difficulty α

τKCM = exp
(
c| log(1/q)|Θ(1)

qα

)
• for rooted critical KCM with difficulty α

exp
(
c| log(1/q)|Θ(1)

qα

)
≤ τKCM ≤ exp

(
c| log(1/q)|Θ(1)

qγ

)

γ > α

γ = min (2α, β) with β = min
C

max(d(C), d(−C)) ≥ α+ 1

d(C) = max
~u∈C

d(~u)

C.Toninelli Bootstrap percolation and Kinetically constrained models: critical time scales



Conjecture for rooted KCM

For rooted KCM we conjecture that the upper bound is correct:

τKCM � τBP

With L.Marêché and F.Martinelli we proved the conjecture for
Duarte model (α = 1, γ = 2)

τKCM Duarte ∼ exp(1/q2)� τBP Duarte ∼ exp(1/q)

Work in progress for general case . . .
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Heuristic for supercritical unrooted/rooted result

Unrooted KCM:

• empty droplet D moves back and forth

• D behaves roughly as a random walk of rate q|D|

• distance of origin to first empty droplet ∼ 1/q|D|

=⇒ τKCM ∼ 1/qΘ(1)
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Heuristic for supercritical unrooted/rooted result

Unrooted KCM:

• empty droplet D moves back and forth

• D behaves roughly as a random walk of rate q|D|

• distance of origin to first empty droplet ∼ 1/q|D|

=⇒ τKCM ∼ 1/qΘ(1)

Rooted KCM:

• empty droplet moves only in one direction

• → logarithmic energy barriers [L.Marêché ’17]:

to create new droplet at distance n ∼ 1/qΘ(1) we

have to go through a configuration with log n empty sites

=⇒ τKCM ∼ 1/qc log(1/q)
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2-neighbour KCM: ideas of the proof

Renormalize on `× ` boxes with ` = 1/q log 1/q.

• a box is good if it contains at least one empty site on each
column and on each line

• a droplet is an empty column or row of length `

• µq(good) ∼ 1→ good boxes percolate

• droplets can freely move on the good cluster without
creating more then one extra droplet

........
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2-neighbour KCM: ideas of the proof

Heuristics:

• at t = 0 w.h.p. the origin belongs to a cluster of good boxes
containing a droplet at distance L ∼ exp(c/q log(1/q)2)

• in time poly(L) the droplet moves near origin and we can
empty the origin → τ ≤ exp(c/q log(1/q)2)

Main difficulties when turning heuristics into a proof:

• the good cluster evolves

• the droplet can be destroyed

• no monotonicity, no coupling arguments
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Critical KCM: the general case

• Very flexible strategy: changing the notion of droplet, good
box, and the length scales we cover all critical models

• Why do we get τKCM � τBP for critical rooted models?
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An example of critical rooted KCM: Duarte model

Duarte model: ≥ 2 empty among N, W and S neighbours

3

xxx

U1 U U2

• d(~e1) = 1, d(~u) =∞ for all u ∈ red semicercle

• an empty column of height ` = 1/q log 1/q can (typically)
empty next column to its right, but never to its left!

: OK MOVE to the LEFT : NOMOVE to the RIGHT
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Duarte model

• an empty column of height ` = 1/q log(1/q) is a droplet
that moves only to its right

• logarithmic barriers: to move the droplet a distance L on
the good cluster we have to go through a configuration
with log(L) simultaneous droplets

• to bring the droplet near the origin we typically have to
move it a distance L = exp(1/q log(1/q))

τKCM Duarte ∼ 1

q`

logL

= e1/q2 log(1/q)Θ(1) � e1/q log(1/q)Θ(1)
= τBP Duarte

⇒ τBP = length of the optimal path to empty origin

⇒ τKCM = length of optimal path × time to go through it !
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2-neighbour KCM: more on the proof

• First step: upper bound infection time with relaxation time

τ ≤ Trel
q

=
1

q
inf
(
λ : Var(f) ≤ λ

∑
x

µq(cx Varx(f)) ∀f
)

cx = 1x has at least 2 empty neighbours

• Second step: an auxiliary long range block dynamics
• blocks are `× ` boxes, ` = 1/q log(1/q)

• put equilibrium on box Bx at rate 1 iff it belongs to a good
cluster with two droplets at distance at most
L = exp(1/q log(1/q)2)

=good box

−

=B_x

=contains droplet
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2-neighbour KCM: more on the proof

• Third step : we establish a new long range Poincaré
inequality that yields T auxrel = O(1)

• Fourth step : canonical path techniques for reversible
Markov chains

• We construct an allowed path to bring the droplets near Bx

• We move the droplets inside Bx near any site y ∈ Bx:
flip at y is now allowed → we ”reconstruct” the update of
block Bx via allowed elementary moves

y y

B_x B_x

→ τ 2-neighb. KCM ≤ length of path× congestion = exp
(
c/q(log 1/q)2

)
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Summary

• KCM are the stochastic counterpart of bootstrap
percolation;

• times for KCM may diverge very differently from those of
bootstrap due to the occurrence of energy barriers;

• a refined classification of update rules captures the
universality classes of KCM;

• we construct a new (flexible) toolbox to analyse Trel and τ
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k-neighbour model on Zd, k ∈ [2, d]

qc = 0, blocked clusters do not percolate [Schonmann ’90]

∃λ(d, k) > 0 s.t. τBP = expk−1

(
λ(d, k) + o(1)

q1/(d−k+1)

)
[Aizenmann, Lebowitz ’88, Cerf,Manzo ’02, Balogh, . . . ,
Bollobas, Duminil-Copin,Morris ’12]

Theorem (Martinelli, C.T. ’16)

• 2-neighbour KCM:

exp(c/q1/(d−1)) ≤ τKCM(q) ≤ exp
(

log(1/q)c/q1/(d−1)
)

• k-neighbour KCM:

expk−1

(
c

q1/(d−k+1)

)
≤ τKCM(q) ≤ expk−1

(
c′

q1/(d−k+1)

)
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Liquid/glass transition

Strong supercooled liquids: Arrhenius τ ∼ exp(∆E/T )

Fragile supercooled liquids: superArrhenius τ ∼ exp(c/T 2), . . .

q ↔ e−1/T

• ⇒ supercritical unrooted models ↔ strong liquids

• ⇒ supercritical rooted models ↔ fragile liquids
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A general constrained Poincare inequality

Ω = SZ2

µ =
∏
x

µx

Ax event on quadrant with bottom left corner x

If supx∈Z2(1− µ(Ax))|Supp(Ax)| ≤ 1/4

V arµ(f) ≤ 4
∑
x

µ(cxV arµx(f))

where cx = 1Ax
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