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Bootstrap percolation

First example: 2-neighbour bootstrap on Z2

e At time t = 0 sites of Z? are i.i.d., empty with prob ¢,
occupied with prob 1 — ¢

e At time ¢ = 1 empty sites remain empty and occupied sites
with at least 2 empty nearest neighbours are emptied

o [terate

4

deterministic monotone dynamics

Y

3 blocked clusters 00ee000
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Critical density and Infection time

Will the whole lattice become empty eventually?

¢c = inf{q € [0,1] : p4(origin is emptied eventually) = 1}

e How many steps does it take to empty the origin?

e 7(q) := pg(first time at which origin is empty)
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Critical density and Infection time

Will the whole lattice become empty eventually?
— Yes (Van Enter '87)

¢c = inf{q € [0,1] : p4(origin is emptied eventually) = 1}
—q =0

e How many steps does it take to empty the origin?

e 7(q) := pg(first time at which origin is empty)

2

— 7(q) ~ exp (17T8q(1 + 0(1))) for ¢—0

[ Aizenmann-Lebowitz '88, Holroyd 02, ]
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The general framework: U-bootstrap percolation

e Choose the update family, a finite collection
U=A{U,...,Upy} of local neighbourhoods of the origin,
ie U; C VA \ 0, |UZ| < o0

e At time t = 1 site = is emptied iff at least one of the
translated neighborhoods U; + x is completely empty

e [terate

Example: 2-neighbour bootstrap percolation

U = collection of the sets containing 2 nearest neighb. of origin
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Some other examples

e r-neighbour bootstrap percolation:
U = all the sets containing r nearest neighb. of origin

e East model U = {Uy,Us} with U; = (0,—1), Uy = (—1,0)
e North-East model ¢ = {U;} with U; = {(0,1),(1,0)}

e Duarte model U = {Uy, U, Us}

Ul U2 U3
O (@)

X O X O X
O O
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Universality classes

* q?
e Scaling of 7(q) for q | q.?

Of course, answers depend on the choice of the rule U/
Three universality classes

e Supercritical models: ¢. =0, 7(q) =1/¢°®

e Critical models: ¢, =0, 7(q) = exp(1/¢°WM)

e Subcritical models: ¢. > 0

[Bollobas, Smith, Uzzell ’15, Balister, Bollobas, Przykucki, Smith ’16]
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How can you identify the universality class of U ?

We need the notion of stable and unstable directions

e Fix a direction 4

e Start from a configuration which is

e completely empty on the half plane perpendicular to « in
the negative direction (H,,)

e filled otherwise

e Run the bootstrap dynamics

7 i stable if no other site can be emptied
otherwise
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Stable and unstable directions: examples

Of course, the stability of a direction depends on U

Ex. East model:

u = —e is stable; U=

0000000

0000000

®®®00000 Unstable
Stable ®0ee000O0 direction
direction ®®00000O0

0000000

0000000

0000000

Instead :
e both directions are unstable for 1-neighbour bootstrap
e both directions are stable for North East
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Supercritical universality class

U is supercritical iff there exists an open semicircle C which
does not contain stable directions

= exists a finite empty droplet
from which we can empty
the line bisecting C
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Supercritical universality class
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Supercritical universality class

U is supercritical iff there exists an open semicircle C which
does not contain stable directions

= exists a finite empty droplet
from which we can empty
the line bisecting C

= 71 ~ distance of origin from empty droplet ~ 1/ ¢®W
=q =0
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Examples of supercritical models

1-neighbour

East

For East and 1-neighbour: droplet = single empty site
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Critical universality class

U is critical iff
1) it is not supercritical
2) 3 open semicircle C with only a finite number of stable
directions

Example 2-neighbour model

oOoco0cee

OocCcee 0000000
OocCcee 0000000
Oo0co0cee 00000 OCS
oo ee O0O0O000O0
Oo0co0ee 0000000
Oo0co0ee 0000000
E—
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2-neighbour model

[epeneN X ] OO0O00Ce
[epeneN X ] o000 e
oo ee OO000e
OO000Ce —_— OO000Ce@e
oo ee OO0O0O0e
[epeneN X ] [eNeNel N |
Ooo0ee O000®

e 1 site is sufficient to unblock €}
— € is stable with difficulty 1

e A column of size 1/qlog(1/q) is a droplet:
if it is empty it can (typically) empty the next column

= 7(q) < '/9108(1/9)* — mean distance from 0 to nearest
empty droplet
2
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Critical universality class

The general critical case:

e Difficulty of a stable direction :
d(@) = minimal number of empty sites to unstabilize , i.e.
to empty an infinite number of sites in direction @

e Difficulty of the model :
a = ming maxgee d()

= size of the droplet (= empty region from which we can
expand) is ~ 1/¢®

= 7(q) ~ !/ log(1/a)* = mean distance from origin to
nearest empty droplet

= q.=0
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Subcritical universality class

Two equivalent definitions

U is subcritical iff it is neather supercritical nor critical
or
U 1is subcritical iff each open semicircle contains infinite stable

directions

= ¢, > 0: blocked clusters percolate at ¢ < ¢,

Example: North East model
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Kinetically Constrained Models, a.k.a. KCM

Configurations : 7 € {0,1}%°

Dynamics: continuous time Markov process of Glauber type,
i.e. birth / death of particles

Fix an update family ¢/ and ¢ € [0, 1].

Each site for which the U bootstrap constraint is satisfied is
updated to empty at rate ¢ and to occupied at rate 1 — q.

= non monotone dynamics

= reversible w.r.t. product measure at density 1 — ¢

= blocked clusters for BP <+ blocked clusters for KCM

= empty sites needed to update — slowing down when ¢ | 0
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2-neighbour KCM

It

BRS

w0

?7
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Origins of KCM

KCM introduced in the '80’s to model the liquid/glass transition
e If a liquid is cooled sufficiently rapidly it avoids
crystallisation and freezes in an amorphous solid, the glass;

e understanding the liquid/glass transition is a major open
problem in condensed matter physics;

e sharp divergence of timescales;

e no significant structural changes.
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Origins of KCM

KCM introduced in the '80’s to model the liquid/glass transition
e If a liquid is cooled sufficiently rapidly it avoids
crystallisation and freezes in an amorphous solid, the glass;

e understanding the liquid/glass transition is a major open
problem in condensed matter physics;

e sharp divergence of timescales;

e no significant structural changes.

KCM:

= constraints mimic cage effect:

if temperature is lowered free volume shrinks, g «» e /7

= trivial equilibrium, sharp divergence of timescales when
q 1 0, glassy dynamics (aging, heterogeneities, ...)
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Why are KCM mathematically challenging?

e KCM dynamics is not attractive: more empty sites can
have unpredictable consequences

e Coupling arguments and censoring arguments fail

e 1 blocked clusters — relaxation not uniform on initial
condition — worst case analysis is too rough

e Coercive inequalities (e.g. Log-Sobolev) anomalous

— new tools are needed
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KCM: time scales

M (q) := E,, ( first time at which origin is emptied )

e How does 7™ diverge when ¢ | ¢.?

e How does it compare with 757, the infection time of the
corresponding bootstrap process?

An (easy) lower bound
TKCM > CTBP

General, but it does not always capture the correct behavior
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Supercritical KCM: a new classification

We introduce a refined classification. A supercritical model is
e rooted if there are two non opposite stable directions
e unrooted otherwise.

Examples.
e 1-neighbour model: unrooted
e East model: rooted

1-neighbour

East
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Supercritical KCM : results

Theorem 1. [Martinelli, Morris, C.T. '17 ]
(i) for all supercritical unrooted models 78 (q) = 1/¢®™)

(ii) for all supercritical rooted models 75M = 1 /¢®os(1/4))

= Rooted models: 75M(q) > 757 (q)
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Critical KCM: first example

Theorem 2. [Martinelli, C.T. ’16]
For the 2-neighbour KCM

exp (;r—;q) < 7(q) < exp (M)

e Heuristic / ideas of proof in a moment ...

e new flexible toolbox: we can analyse all critical models
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Critical KCM : a new classification

We introduce a refined classification.

A critical KCM with difficulty « is

e rooted if 3 two non opposite directions of difficulty > «

e unrooted otherwise.
Examples

e 2-neighbour model:
+¢é, +e5 have difficulty = 1
— o = 1 and unrooted

e Duarte model (at least 2 empty among S, W, and N):
«a =1 and rooted. Why?
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Duarte model is critical rooted

Duarte model (at least 2 empty among S, W, and N):

coee coee oop0e
ocolee oolee ooloe
ocolee oolee ooloe
oolee ooloe ooloe
oolee oolee ooloe
colee oolee ooloe
colee oolee ooloe
colee colee ooloe

®e®00 e®00

®ej00 eeloo

e ej00 eoloo

e o0 0 eel00

®e00 eel00

® @00 eel00

e el0 0 eel00

ee00 ee00

e ¢ has difficulty 1;

e —¢; and all the directions in the red semicircle have oo
difficulty

e a =1 and rooted (there are a lot of non opposite stable
directions with difficulty > 1!)
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Critical KCM : results

Theorem 2. [Martinelli, C.T. ’16 + Martinelli, Morris,C.T. '17]

e for unrooted critical KCM with difficulty «

(1)
TKOM — oxp <C| 10g(2£q)| )

e for rooted critical KCM with difficulty «

e(1) o(1)
e (CI log(z{yq)l ) < 7KOM < oxp (CI log(lq/wq)\ ! )

V>«

v =min (2a, f) with = mcin max(d(C),d(—C)) > a+1
d(C) = max d(u)
ueC
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Conjecture for rooted KCM

For rooted KCM we conjecture that the upper bound is correct:
TKCM >> TBP

With L.Maréché and F.Martinelli we proved the conjecture for
Duarte model (o = 1,7 = 2)

TKCM Duarte ~ eXp(]./qQ) > TBP Duarte ~ eXp(l/q)

Work in progress for general case ...
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Heuristic for supercritical unrooted/rooted result

Unrooted KCM:

e empty droplet D moves back and forth
e D behaves roughly as a random walk of rate ¢”!
o distance of origin to first empty droplet ~ 1/¢!P!

— 7KCM 1/q(—)(1)
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Heuristic for supercritical unrooted/rooted result

Unrooted KCM:
e empty droplet D moves back and forth

e D behaves roughly as a random walk of rate ¢!
e distance of origin to first empty droplet ~ 1/¢!”!
— KON 1/00)
Rooted KCM:
e empty droplet moves only in one direction
e — logarithmic energy barriers [L.Maréché *17]:

to create new droplet at distance n ~ 1/ ¢®® we

have to go through a configuration with logn empty sites

— TKCM 1/qclog(l/q)



2-neighbour KCM: ideas of the proof

Renormalize on £ x ¢ boxes with £ = 1/qlog1/q.

e a box is good if it contains at least one empty site on each
column and on each line

e a droplet is an empty column or row of length /¢
e pg(good) ~ 1 — good boxes percolate

e droplets can freely move on the good cluster without
creating more then one extra droplet

ce ce [o}Ne] ® O
ce ce [o}Ne] ® O
c® — OO0 — - 00— @0
(o] OO [o}Ne] [o}Ne]
ce ce [o}Ne] ® O
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2-neighbour KCM: ideas of the proof

Heuristics:

e at ¢t = 0 w.h.p. the origin belongs to a cluster of good boxes
containing a droplet at distance L ~ exp(c/qlog(1/q)?)

e in time poly(L) the droplet moves near origin and we can
empty the origin — 7 < exp(c/qlog(1/q)?)

Main difficulties when turning heuristics into a proof:
e the good cluster evolves

e the droplet can be destroyed

e no monotonicity, no coupling arguments
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Critical KCM: the general case

e Very flexible strategy: changing the notion of droplet, good
box, and the length scales we cover all critical models

e Why do we get 75 > 8% for critical rooted models?
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An example of critical rooted KCM: Duarte model

Duarte model: > 2 empty among N, W and S neighbours

U, U2 Us
@] @]

X O X O X
@] @]

e d(€1) =1, d(&) = oo for all u € red semicercle
e an empty column of height ¢ = 1/qlog1/q can (typically)
empty next column to its right, but never to its left!

Oolee ojo|e L X Jie]
olee o|0|e® O e|0
[e)] Nel o|0|0 ® e
Olee ——— O|0|® ® 0|0
oo e o|0|e ® e
olee o|0|e® ® 00
Oee o|0|® LN J(e]
MOVE totheRIGHT : OK MOVE tothe LEFT : NO
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Duarte model

R

an empty column of height £ = 1/qlog(1/q) is a droplet
that moves only to its right

logarithmic barriers: to move the droplet a distance L on
the good cluster we have to go through a configuration
with log(L) simultaneous droplets

to bring the droplet near the origin we typically have to
move it a distance L = exp(1/qlog(1/q))

1 log L
KCM Duarte
T ~ —

. — 61/q2 log(1/¢)®™M > el/qlog(l/q)@(l) — BP Duart
q

7BF = length of the optimal path to empty origin

THOM — Jength of optimal path x time to go through it !

C.TONINELLI



2-neighbour KCM: more on the proof

e First step: upper bound infection time with relaxation time

Trel 1.
T < :*lnf()\Z Var(f) < A ¢y Vary(f Vf)
. q (f) % g (£)
Cy = 11‘ has at least 2 empty neighbours

e Second step: an auxiliary long range block dynamics
e blocks are ¢ x ¢ boxes, £ = 1/qlog(1/q)

e put equilibrium on box B, at rate 1 iff it belongs to a good
cluster with two droplets at distance at most

L = exp(1/qlog(1/9)?)

[l =good box
B =contains dropl

M =B x

C.TONINELLI



2-neighbour KCM: more on the proof

e Third step : we establish a new long range Poincaré
inequality that yields T%* = O(1)

e Fourth step : canonical path techniques for reversible
Markov chains

e We construct an allowed path to bring the droplets near B,
e We move the droplets inside B, near any site y € B,:
flip at y is now allowed — we "reconstruct” the update of
block B, via allowed elementary moves

00000
o —e—
o — 000
y |o oy
o o
o Lo |
B_x B x

—y prmeishb KOM < length of path x congestion = exp (c/q(log 1/q)2)
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Summary

e KCM are the stochastic counterpart of bootstrap
percolation;

e times for KCM may diverge very differently from those of
bootstrap due to the occurrence of energy barriers;

e a refined classification of update rules captures the
universality classes of KCM;

e we construct a new (flexible) toolbox to analyse T, and 7
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k-neighbour model on Z4, k € [2, d]

¢c = 0, blocked clusters do not percolate [Schonmann ’90]

Ad, k) +o(1
N, k) > 0 st 777 = expy_y (W)

[Aizenmann, Lebowitz ’88, Cerf,Manzo ’02, Balogh, ...,
Bollobas, Duminil-Copin,Morris '12]

Theorem (Martinelli, C.T. '16)

e 2-neighbour KCM:

exp(c/ql/(dfl)) < TKOM(g) < exp <log(1/q)c/q1/(dfl)>

o k-neighbour KCM:

c c

CXPp—1 (ql/(dk+1)> < 7 M(q) < expry <ql/(dk+1)

)

<
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Liquid/glass transition

Log, (viscosity in poise)

T
9

Strong supercooled liquids: Arrhenius 7 ~ exp(AE/T)

Fragile supercooled liquids: superArrhenius 7 ~ exp(c/T?), ...

g e VT

e = supercritical unrooted models <+ strong liquids

e = supercritical rooted models < fragile liquids
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A general constrained Poincare inequality

0 =57
= H Ha
€T
A, event on quadrant with bottom left corner x

If SupmeZQ(l - M(Az))|supp(Am)| < 1/4
Var,(f) <43 pleaVary, (1)

where ¢; = 14,
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