Bootstrap percolation and Kinetically constrained models: critical time scales

Cristina Toninelli

Laboratoire de Probabilités et Modèles Aléatoires

Collaborators: Laure Marêché, Fabio Martinelli, Rob Morris

< ロト (母) (ヨ) (コ) (コ) (コ) (コ) (コ) (コ) (コ) (コ) (コ) (1)

C.TONINELLI

Bootstrap percolation

First example: 2-neighbour bootstrap on \mathbb{Z}^2

- At time t = 0 sites of \mathbb{Z}^2 are i.i.d., empty with prob q, occupied with prob 1 q
- At time t = 1 empty sites remain empty and occupied sites with at least 2 empty nearest neighbours are emptied

< ロト (母) (ヨ) (コ) (コ) (コ) (コ) (コ) (コ) (コ) (コ) (コ) (1)

- Iterate
- \Rightarrow deterministic monotone dynamics
- $\Rightarrow \exists$ blocked clusters

C.TONINELLI

Critical density and Infection time

- Will the whole lattice become empty eventually?
- $q_c := \inf\{q \in [0,1] : \mu_q(\text{origin is emptied eventually}) = 1\}$
- How many steps does it take to empty the origin?
- $\tau(q) := \mu_q$ (first time at which origin is empty)

Critical density and Infection time

- Will the whole lattice become empty eventually?
 → Yes (Van Enter '87)
- $q_c := \inf\{q \in [0,1] : \mu_q(\text{origin is emptied eventually}) = 1\}$ $\rightarrow q_c = 0$
- How many steps does it take to empty the origin?
- $\tau(q) := \mu_q$ (first time at which origin is empty)

$$ightarrow au(q) \sim \exp\left(rac{\pi^2}{18q}(1+o(1))
ight) \quad ext{for} \quad q \to 0$$

[Aizenmann-Lebowitz '88, Holroyd '02, ...]

The general framework: \mathcal{U} -bootstrap percolation

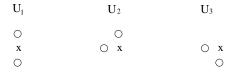
- Choose the update family, a finite collection
 U = {U₁,...,U_m} of local neighbourhoods of the origin,
 i.e. U_i ⊂ Z² \ 0, |U_i| < ∞
- At time t = 1 site x is emptied iff at least one of the translated neighborhoods $U_i + x$ is completely empty
- Iterate

Example: 2-neighbour bootstrap percolation

 $\mathcal{U}=$ collection of the sets containing 2 nearest neighb. of origin

Some other examples

- r-neighbour bootstrap percolation: $\mathcal{U} =$ all the sets containing r nearest neighb. of origin
- East model $\mathcal{U} = \{U_1, U_2\}$ with $U_1 = (0, -1), U_2 = (-1, 0)$
- North-East model $\mathcal{U} = \{U_1\}$ with $U_1 = \{(0, 1), (1, 0)\}$
- Duarte model $\mathcal{U} = \{U_1, U_2, U_3\}$



Universality classes

- q_c ?
- Scaling of $\tau(q)$ for $q \downarrow q_c$?

Of course, answers depend on the choice of the rule ${\mathcal U}$

Three universality classes

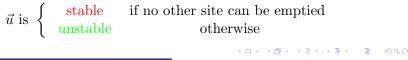
- Supercritical models: $q_c = 0$, $\tau(q) = 1/q^{\Theta(1)}$
- Critical models: $q_c = 0$, $\tau(q) = \exp(1/q^{\Theta(1)})$
- Subcritical models: $q_c > 0$

[Bollobas, Smith, Uzzell '15, Balister, Bollobas, Przykucki, Smith '16]

How can you identify the universality class of \mathcal{U} ?

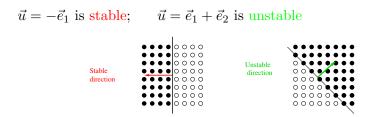
We need the notion of stable and unstable directions

- Fix a direction \vec{u}
- Start from a configuration which is
 - completely empty on the half plane perpendicular to \vec{u} in the negative direction (H_u)
 - filled otherwise
- Run the bootstrap dynamics



Stable and unstable directions: examples

Of course, the stability of a direction depends on \mathcal{U} Ex. East model:



Instead :

• both directions are unstable for 1-neighbour bootstrap

• both directions are stable for North East

Supercritical universality class

 ${\cal U}$ is supercritical iff there exists an open semicircle ${\cal C}$ which does not contain stable directions

 $\Rightarrow \text{ exists a finite empty droplet} \\ \text{from which we can empty} \\ \text{the line bisecting } \mathcal{C}$

《曰》 《聞》 《臣》 《臣》

Supercritical universality class

 ${\cal U}$ is supercritical iff there exists an open semicircle ${\cal C}$ which does not contain stable directions

 $\Rightarrow \text{ exists a finite empty droplet} \\ \text{from which we can empty} \\ \text{the line bisecting } \mathcal{C}$

《曰》 《聞》 《臣》 《臣》

Supercritical universality class

 ${\cal U}$ is supercritical iff there exists an open semicircle ${\cal C}$ which does not contain stable directions

 $\Rightarrow \text{ exists a finite empty droplet} \\ \text{from which we can empty} \\ \text{the line bisecting } \mathcal{C}$

 $\Rightarrow \tau \sim \text{distance of origin from empty droplet} \sim 1/q^{\Theta(1)}$ $\Rightarrow q_c = 0$

Examples of supercritical models

For East and 1-neighbour: droplet = single empty site

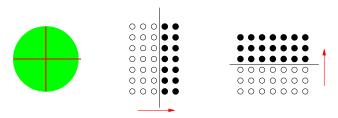
イロト イポト イヨト イヨト 三日

Critical universality class

${\mathcal U}$ is critical iff

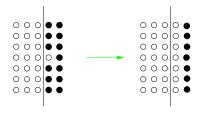
- 1) it is not supercritical
- 2) \exists open semicircle C with only a finite number of stable directions

Example 2-neighbour model



《曰》 《聞》 《臣》 《臣》

2-neighbour model



- 1 site is sufficient to unblock $\vec{e_1}$ $\rightarrow \vec{e_1}$ is stable with *difficulty* 1
- A column of size $1/q \log(1/q)$ is a *droplet*: if it is empty it can (typically) empty the next column

 $\Rightarrow \ \tau(q) \leq e^{1/q \log(1/q)^2} = \text{mean distance from 0 to nearest}$ empty droplet

Critical universality class

The general critical case:

• *Difficulty* of a stable direction :

 $d(\vec{u}) =$ minimal number of empty sites to unstabilize \vec{u} , i.e. to empty an infinite number of sites in direction \vec{u}

- Difficulty of the model : $\alpha = \min_{\mathcal{C}} \max_{\vec{u} \in \mathcal{C}} d(\vec{u})$
- $\Rightarrow\,$ size of the droplet (= empty region from which we can expand) is $\sim 1/q^{\alpha}$
- $\Rightarrow \tau(q) \sim e^{1/q^{\alpha} \log(1/q)^{\Theta(1)}} =$ mean distance from origin to nearest empty droplet

 $\Rightarrow q_c = 0$

Subcritical universality class

Two equivalent definitions

 ${\mathcal U}$ is subcritical iff it is neather supercritical nor critical

or

 ${\mathcal U}$ is subcritical iff each open semicircle contains infinite stable directions

 $\Rightarrow q_c > 0$: blocked clusters percolate at $q < q_c$

Example: North East model

Kinetically Constrained Models, a.k.a. KCM

Configurations : $\eta \in \{0,1\}^{\mathbb{Z}^2}$

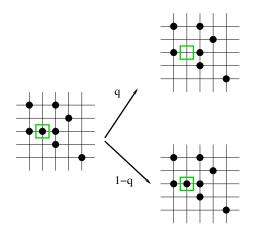
Dynamics: continuous time Markov process of Glauber type, i.e. birth / death of particles

Fix an update family \mathcal{U} and $q \in [0, 1]$.

Each site for which the \mathcal{U} bootstrap constraint is satisfied is updated to empty at rate q and to occupied at rate 1 - q.

- \Rightarrow non monotone dynamics
- \Rightarrow reversible w.r.t. product measure at density 1-q
- \Rightarrow blocked clusters for BP \leftrightarrow blocked clusters for KCM
- \Rightarrow empty sites needed to update \rightarrow slowing down when $q\downarrow 0$

2-neighbour KCM



Origins of KCM

KCM introduced in the '80's to model the liquid/glass transition

- If a liquid is cooled sufficiently rapidly it avoids crystallisation and freezes in an amorphous solid, the glass;
- understanding the liquid/glass transition is a major open problem in condensed matter physics;

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

- sharp divergence of timescales;
- no significant structural changes.

Origins of KCM

KCM introduced in the '80's to model the liquid/glass transition \mathbf{K}

- If a liquid is cooled sufficiently rapidly it avoids crystallisation and freezes in an amorphous solid, the glass;
- understanding the liquid/glass transition is a major open problem in condensed matter physics;
- sharp divergence of timescales;
- no significant structural changes.

KCM:

 \Rightarrow constraints mimic <u>cage effect</u>:

if temperature is lowered free volume shrinks, $q \leftrightarrow e^{-1/T}$

⇒ trivial equilibrium, sharp divergence of timescales when $q \downarrow 0$, glassy dynamics (aging, heterogeneities, ...)

Why are KCM mathematically challenging?

- KCM dynamics is not attractive: more empty sites can have unpredictable consequences
- Coupling arguments and censoring arguments fail
- ∃ blocked clusters → relaxation not uniform on initial condition → worst case analysis is too rough
- Coercive inequalities (e.g. Log-Sobolev) anomalous
- $\rightarrow\,$ new tools are needed

KCM: time scales

 $\tau^{\text{\tiny KCM}}(q) := \mathbb{E}_{\mu_q}($ first time at which origin is emptied)

- How does τ^{KCM} diverge when $q \downarrow q_c$?
- How does it compare with τ^{BP} , the infection time of the corresponding bootstrap process?

An (easy) lower bound

 $\tau^{\rm KCM} \ge c \, \tau^{\rm BP}$

General, but it does not always capture the correct behavior

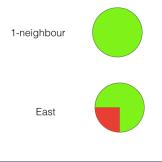
Supercritical KCM: a new classification

We introduce a refined classification. A supercritical model is

- rooted if there are two non opposite stable directions
- unrooted otherwise.

Examples.

- 1-neighbour model: unrooted
- East model: rooted



< ロト (母) (ヨ) (コ) (コ) (コ) (コ) (コ) (コ) (コ) (コ) (コ) (1)

Supercritical KCM : results

Theorem 1. [Martinelli, Morris, C.T. '17]

(i) for all supercritical unrooted models $\tau^{\text{KCM}}(q) = 1/q^{\Theta(1)}$ (ii) for all supercritical rooted models $\tau^{\text{KCM}} = 1/q^{\Theta(\log(1/q))}$

 \Rightarrow Rooted models: $\tau^{\text{\tiny KCM}}(q) \gg \tau^{\text{\tiny BP}}(q)$

Critical KCM: first example

Theorem 2. [Martinelli, C.T. '16]

For the 2-neighbour KCM

$$\exp\left(\frac{\pi^2}{18q}\right) \le \tau(q) \le \exp\left(\frac{\log(1/q)^2}{q}\right)$$

- Heuristic / ideas of proof in a moment ...
- new flexible toolbox: we can analyse all critical models

イロト イロト イヨト イヨト 三日

Critical KCM : a new classification

We introduce a refined classification.

A critical KCM with difficulty α is

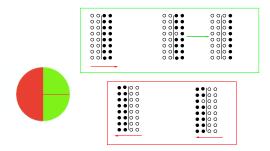
- rooted if \exists two non opposite directions of difficulty $> \alpha$
- unrooted otherwise.

Examples

- 2-neighbour model: $\pm \vec{e}_1, \pm \vec{e}_2$ have difficulty = 1 $\rightarrow \alpha = 1$ and unrooted
- Duarte model (at least 2 empty among S, W, and N): $\alpha = 1$ and rooted. Why?

Duarte model is critical rooted

Duarte model (at least 2 empty among S, W, and N):



- \vec{e}_1 has difficulty 1;
- $-\vec{e}_1$ and all the directions in the red semicircle have ∞ difficulty
- α = 1 and rooted (there are a lot of non opposite stable directions with difficulty > 1!)

Critical KCM : results

Theorem 2. [Martinelli, C.T. '16 + Martinelli, Morris, C.T. '17]

- for unrooted critical KCM with difficulty α

$$au^{\text{KCM}} = \exp\left(\frac{c|\log(1/q)|^{\Theta(1)}}{q^{\alpha}}\right)$$

• for rooted critical KCM with difficulty α

$$\exp\left(\frac{c|\log(1/q)|^{\Theta(1)}}{q^{\alpha}}\right) \leq \tau^{\text{KCM}} \leq \exp\left(\frac{c|\log(1/q)|^{\Theta(1)}}{q^{\gamma}}\right)$$

 $\gamma > \alpha$

$$\begin{split} \gamma &= \min\left(2\alpha,\beta\right) \quad \text{with} \quad \beta &= \min_{\mathcal{C}} \max(d(\mathcal{C}),d(-\mathcal{C})) \geq \alpha + 1 \\ & d(\mathcal{C}) &= \max_{\vec{u} \in \mathcal{C}} d(\vec{u}) \end{split}$$

Conjecture for rooted KCM

For rooted KCM we conjecture that the upper bound is correct:

$$au^{\mathrm{KCM}} \gg au^{\mathrm{BP}}$$

With L.Marêché and F.Martinelli we proved the conjecture for Duarte model ($\alpha = 1, \gamma = 2$)

$$\tau^{\text{KCM Duarte}} \sim \exp(1/q^2) \gg \tau^{\text{BP Duarte}} \sim \exp(1/q)$$

Work in progress for general case ...

Heuristic for supercritical unrooted/rooted result

Unrooted KCM:

 \bullet empty droplet D moves back and forth

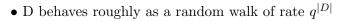
- \bullet D behaves roughly as a random walk of rate $q^{|D|}$
- distance of origin to first empty droplet $\sim 1/q^{|D|}$

 $\Longrightarrow \tau^{\text{KCM}} \sim 1/q^{\Theta(1)}$

Heuristic for supercritical unrooted/rooted result

Unrooted KCM:

• empty droplet D moves back and forth



• distance of origin to first empty droplet $\sim 1/q^{|D|}$ $au^{\mathrm{KCM}} \sim 1/q^{\Theta(1)}$

Rooted KCM:

• \rightarrow logarithmic energy barriers [L.Marêché '17]: to create new droplet at distance $n \sim 1/q^{\Theta(1)}$ we have to go through a configuration with $\log n$ empty sites $\implies \tau^{\text{KCM}} \sim 1/q^{c \log(1/q)}$ C.TONINELLI

• empty droplet moves only in one direction

2-neighbour KCM: ideas of the proof

Renormalize on $\ell \times \ell$ boxes with $\ell = 1/q \log 1/q$.

- a box is good if it contains at least one empty site on each column and on each line
- a droplet is an empty column or row of length ℓ
- $\mu_q(\text{good}) \sim 1 \rightarrow \text{good boxes percolate}$
- droplets can freely move on the good cluster without creating more then one extra droplet

2-neighbour KCM: ideas of the proof

Heuristics:

- at t = 0 w.h.p. the origin belongs to a cluster of good boxes containing a droplet at distance $L \sim \exp(c/q \log(1/q)^2)$
- in time $\operatorname{poly}(L)$ the droplet moves near origin and we can empty the origin $\to \tau \leq \exp(c/q \log(1/q)^2)$

(日) (周) (見) (見) (見) 見 のQC

Main difficulties when turning heuristics into a proof:

- the good cluster evolves
- the droplet can be destroyed
- no monotonicity, no coupling arguments

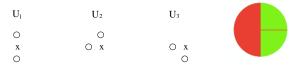
Critical KCM: the general case

• Very flexible strategy: changing the notion of droplet, good box, and the length scales we cover all critical models

• Why do we get $\tau^{\text{KCM}} \gg \tau^{\text{BP}}$ for critical rooted models?

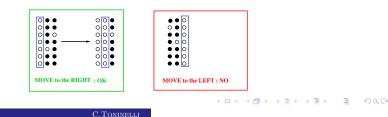
An example of critical rooted KCM: Duarte model

Duarte model: ≥ 2 empty among N, W and S neighbours



• $d(\vec{e}_1) = 1$, $d(\vec{u}) = \infty$ for all $u \in$ red semicercle

• an empty column of height $\ell = 1/q \log 1/q$ can (typically) empty next column to its right, but never to its left!



Duarte model

- an empty column of height $\ell = 1/q \log(1/q)$ is a droplet that moves only to its right
- logarithmic barriers: to move the droplet a distance L on the good cluster we have to go through a configuration with $\log(L)$ simultaneous droplets
- to bring the droplet near the origin we typically have to move it a distance $L = \exp(1/q \log(1/q))$

$$\tau^{\text{KCM Duarte}} \sim \frac{1}{q^{\ell}} \sum_{l=0}^{\log L} = e^{1/q^2 \log(1/q)^{\Theta(1)}} \gg e^{1/q \log(1/q)^{\Theta(1)}} = \tau^{\text{BP Duarte}}$$

 $\Rightarrow \tau^{\rm BP} = \text{length of the optimal path to empty origin}$ $\Rightarrow \tau^{\rm KCM} = \text{length of optimal path} \times \text{time to go through it }$

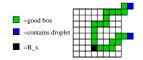
2-neighbour KCM: more on the proof

• First step: upper bound infection time with relaxation time

$$\tau \leq \frac{T_{rel}}{q} = \frac{1}{q} \inf \left(\lambda : \operatorname{Var}(f) \leq \lambda \sum_{x} \mu_q(c_x \operatorname{Var}_x(f)) \ \forall f \right)$$

 $c_x = 1_x$ has at least 2 empty neighbours

- Second step: an auxiliary long range block dynamics
 - blocks are $\ell \times \ell$ boxes, $\ell = 1/q \log(1/q)$
 - put equilibrium on box B_x at rate 1 iff it belongs to a good cluster with two droplets at distance at most $L = \exp(1/q \log(1/q)^2)$



2-neighbour KCM: more on the proof

- Third step : we establish a new long range Poincaré inequality that yields $T_{rel}^{aux} = O(1)$
- Fourth step : canonical path techniques for reversible Markov chains
 - We construct an allowed path to bring the droplets near B_x
 - We move the droplets inside B_x near any site y ∈ B_x: flip at y is now allowed → we "reconstruct" the update of block B_x via allowed elementary moves

C.TONINELLI

 $\to \tau^{\text{2-neighb. KCM}} \leq \text{ length of path} \times \text{congestion} = \exp\left(c/q(\log 1/q)^2\right)$

Summary

- KCM are the stochastic counterpart of bootstrap percolation;
- times for KCM may diverge very differently from those of bootstrap due to the occurrence of *energy barriers*;
- a refined classification of update rules captures the universality classes of KCM;
- we construct a new (flexible) toolbox to analyse T_{rel} and τ

k-neighbour model on \mathbb{Z}^d , $k \in [2, d]$

 $q_c = 0$, blocked clusters do not percolate [Schonmann '90] $\exists \lambda(d,k) > 0 \text{ s.t. } \tau^{\text{BP}} = \exp_{k-1}\left(\frac{\lambda(d,k) + o(1)}{q^{1/(d-k+1)}}\right)$

[Aizenmann, Lebowitz '88, Cerf, Manzo '02, Balogh, ..., Bollobas, Duminil-Copin, Morris '12]

Theorem (Martinelli, C.T. '16)

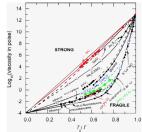
• 2-neighbour KCM:

$$\exp(c/q^{1/(d-1)}) \le \tau^{\text{KCM}}(q) \le \exp\left(\log(1/q)^c/q^{1/(d-1)}\right)$$

• k-neighbour KCM:

$$\exp_{k-1}\left(\frac{c}{q^{1/(d-k+1)}}\right) \leq \tau^{\mathrm{KCM}}(q) \leq \exp_{k-1}\left(\frac{c'}{q^{1/(d-k+1)}}\right)$$

Liquid/glass transition



Strong supercooled liquids: Arrhenius $\tau \sim \exp(\Delta E/T)$

Fragile supercooled liquids: superArrhenius $\tau \sim \exp(c/T^2), \ldots$

$$q \leftrightarrow e^{-1/T}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- \Rightarrow supercritical unrooted models \leftrightarrow strong liquids
- \Rightarrow supercritical rooted models \leftrightarrow fragile liquids

A general constrained Poincare inequality

$$\Omega = S^{\mathbb{Z}^2}$$
$$\mu = \prod_x \mu_x$$

 A_x event on quadrant with bottom left corner xIf $\sup_{x \in \mathbb{Z}^2} (1 - \mu(A_x)) |Supp(A_x)| \le 1/4$

$$Var_{\mu}(f) \le 4\sum_{x} \mu(c_x Var_{\mu_x}(f))$$

where $c_x = 1_{A_x}$