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The one-dimensional voter model

Interacting Particle Systems with configuration
space {0,1}Z and generator acting on local
functions F : Ω→ R as∑
x∈Z

∑
y∈Z

p(y − x)1{η(x) 6= η(y)}[F (ηx)− F (η)]

for every η ∈ Ω, where

ηx(z) =

{
η(z), if z 6= x
1− η(z), if z = x .

and p(·) is a irreducible symmetric probability
kernel on Z with finite absolute first moment.

(*) There exists γ ≥ 1 such that∑
x∈Z
|x|γp (x) <∞



Let η1,0 be the Heavyside configuration on {0,1}Z,

i.e., the configuration:

η1,0(z) =

{
1, if z ≤ 0
0, if z ≥ 1 ,

and consider the voter model (ηt)t≥0 starting

at η1,0. For each time t > 0, let

rt = sup{x : ηt(x) = 1}

and

lt = inf{x : ηt(x) = 0},

which are respectively the positions of the right-

most 1 and the leftmost 0. We call the voter

model configuration between the coordinates lt
and rt the voter model interface, and rt− lt+1

is the interface size.



Question 1: Is the interface size, i.e., the

random variables (rt − lt)t≥0, tight?

Question 2: The second question arises from

the observation of Cox and Durrett(1995) that,

if (rt−`t)t≥0 is tight, then the finite-dimensional

distributions of(
rtN2

N

)
t≥0

and

(
ltN2

N

)
t≥0

converge to those of a Brownian motion with

speed σ :=
(∑

z∈Z z
2p(z)

)1/2
. Do the distribu-

tions on D([0,+∞),R) of(
rtN2

N

)
t≥0

and

(
ltN2

N

)
t≥0

converge weakly to a one-dimensional σ-speed

Brownian Motion as N → ∞, i.e, (σBt)t≥0,

where (Bt)t≥0 is a standard one-dimensional

Brownian Motion?



Question 3: Let {Θx : x ∈ Z} be the group of
translations on {0,1}Z, i.e., (η◦Θx)(y) = η(y+
x) for every x ∈ Z and η ∈ Ω. The third ques-
tion concerns the equilibrium distribution of
(ηt◦Θ`t)t≥0 when such an equilibrium exists. It
was observed by Cox and Durrett (1995) that
the question of tightness of (rt − `t)t≥0 could
be recast as a question concerning the count-
able state space Markov chain (ηt ◦Θ`t|N)t≥0
on ξ ∈ {0,1}N :

∑
x≥1

ξ(x) <∞

 .

The family (rt−`t)t≥0 is tight if and only if (ηt◦
Θ`t|N)t≥0 is a positive recurrent Markov chain.
Cox and Durrett also noted that if (ηt◦Θ`t)t≥0
was indeed positive recurrent with equilibrium
distribution π, then excluding the trivial nearest
neighbor case, the equilibrium has

Eπ[sup{x : ξ(x) = 1}] =∞ .

How does the tail distribution of the interface
size under the equilibrium distribution decays?



Comments on question 1:

γ ≥ 2 ⇒ The interface is tight (Belhaouari and

Mountford and previously Cox and Durrett for

γ ≥ 3).

∑
x∈Z |x|γp (x) = ∞ for some γ ∈ (0,2) ⇒ The

interface is not tight (Belhaouari and Mount-

ford).



Theorem 1: For the one-dimensional voter

model

(i) If γ > 3, then the path distributions on

D([0,+∞),R) of(
rtN2

N

)
t≥0

and

(
ltN2

N

)
t≥0

converge weakly to a one-dimensional σ-speed

Brownian Motion.

(ii) For (
r
tN2
N )t≥0

(
resp. (

l
tN2
N )t≥0

)
to converge

to a Brownian motion, it is necessary that

∑
x∈Z

|x|3

logβ(|x| ∨ 2)
p (x) <∞

for all β > 1. In particular, if for some 1 ≤
γ < γ̃ < 3 we have

∑
x |x|γ̃p (x) = ∞, then

{(
r
tN2
N )t≥0}

(
resp. (

l
tN2
N )t≥0

)
is not a tight fam-

ily in D([0,+∞),R), and hence cannot con-

verge in distribution to a Brownian motion.



Remark: item (i) extends a recent result of

Newman, Ravishankar and Sun (2005), in which

they obtained the same result for γ ≥ 5 as a

corollary of the convergence of systems of coa-

lescing random walks to the so-called Brownian

web under a finite fifth moment assumption.

Theorem 2: Let X1 denote the random set

of continuous time rate 1 coalescing random

walk paths with one walker starting from every

point on the space-time lattice Z×R, where the

random walk increments all have distribution

p (·). Let Xδ denote X1 diffusively rescaled,

i.e., scale space by δ/σ and time by δ2. If γ >

3, then in the topology of the Brownian web,

Xδ converges weakly to the standard Brownian

web W̄ as δ → 0. A necessary condition for this

convergence is again
∑
x∈Z

|x|3
logβ(|x|∨2)

p (x) < ∞
for all β > 1.



Theorem 3: Take 2 < γ < 3 and fix 0 < θ <
γ−2
γ . For N ≥ 1, let (ηNt )t≥0 be described as

the voter model according to the same Har-

ris system and also starting from η1,0 except

that a flip from 0 to 1 at a site x at time

t is suppressed if it results from the “influ-

ence” of a site y with |x − y| ≥ N1−θ and

[x ∧ y, x ∨ y] ∩ [rNt− − N, rNt−] 6= φ, where rNt is

the rightmost 1 for the process ηN· . Then

(i)

(
rN
tN2
N

)
t≥0

converge in distribution to a σ-

speed Brownian Motion.

(ii) As N →∞, the integral

1

N2

∫ TN2

0
IrNs 6=rs

ds

tends to 0 in probability for all T > 0.



Theorem 4: For the non-nearest neighbor
one-dimensional voter model defined as above

(i) If γ ≥ 2, then there exists C1 > 0 such that
for all M ∈ N

π{ξ : Γ(ξ) ≥M} ≥
C1

M
.

(ii) If γ > 3, then there exists C2 > 0 such that
for all M ∈ N

π{ξ : Γ(ξ) ≥M} ≤
C2

M
.

(iii) Let α = sup{γ :
∑
x∈Z |x|γp (x) < ∞}. If

α ∈ (2,3), then

lim sup
n→∞

logπ{ξ : Γ(ξ) ≥ n}
logn

≥ 2− α.

Furthermore, there exist choices of p (·) = pα(·)
with α ∈ (2,3) and

π{ξ : Γ(ξ) ≥ n} ≥
C

nα−2

for some constant C > 0.



(i) For every n ∈ N and 0 ≤ t1 < t2 < ... < tn in

[0,∞) the finite-dimensional distribution(
rt2N2 − rt1N2

σN
√
t2 − t1

, ... ,
rtnN2 − rtn−1N2

σN
√
tn − tn−1

)
converges weakly to a centered n-dimensional

Gaussian vector of covariance matrix equal to

the identity. Moreover the same holds if we

replace rt by lt. (True for γ ≥ 2 by Cox and

Durrett and Bransom and Mountford)

(ii) For every ε > 0 and T > 0

lim
δ→0

lim sup
N→∞

P

 sup
|t−s|<δ
s,t∈[0,T ]

∣∣∣∣rtN2 − rsN2

N

∣∣∣∣ > ε

 = 0 .

In particular if the finite-dimensional distribu-

tions of
(r

tN2
N

)
t≥0

are tight, we have that the

path distribution is also tight and every limit

point is concentrated on continuous paths. The

same holds if we replace rt by lt.



By the Markov property, recurrence, the right

continuity of paths and the fact that the voter

model is attractive, we have that (ii) is a con-

sequence of: for all ε > 0

lim sup
δ→0

δ−1 lim sup
N→+∞

P

 sup
0≤t≤N2δ

|rt| ≥ εN

 = 0 .

It is sufficient to show that

lim sup
δ→0

δ−1 lim sup
N→+∞

P

 sup
0≤t≤N2δ

rt ≥ εN

 = 0 . (∗)

Indeed, to see that

lim sup
δ→0

δ−1 lim sup
N→+∞

P

[
inf

0≤t≤N2δ
rt ≤ −εN

]
= 0 ,

note that rt ≥ lt − 1, and

lim sup
δ→0

δ−1 lim sup
N→+∞

P

[
inf

0≤t≤N2δ
lt ≤ −εN

]
= 0 ,

is equivalent to (*) by interchanging the 0’s

and 1’s in the voter model.



Equation (*) is equivalent to

lim
δ→0

δ−1 lim sup
N→+∞

P
[
ζtt([εN,+∞)) ∩ (−∞,0] 6= φ for some

t ∈ [0, δN2]
]

= 0 .

Taking R := R(δ,N) =
√
δN and M = ε/

√
δ:

lim
M→+∞

M2 lim sup
R→+∞

P
[
ζtt([MR,+∞)) ∩ (−∞,0] 6= φ for some

t ∈ [0, R2]
]

= 0,

which means that we have to estimate the

probability that no dual coalescing random walk

starting at a site in [MR,+∞) at a time in the

interval [0, R2] arrive at time t = 0 at a site to

the left of the origin.



Proposition: If γ > 3, then for R > 0 suf-

ficiently large and 2b ≤ M < 2b+1, for some

b ∈ N the probability

P
[
ζtt([MR,+∞)) ∩ (−∞,0] 6= φ : for some

t ∈ [0, R2]
]

is bounded above by a constant times

∑
k≥b

 1

22kR
γ−3

2

+ e−c2
k

+ 2kR4e−c2
k(1−β)R

(1−β)
2 +

2ke−c2
2k
}

for some c > 0 and 0 < β < 1.



For the rescaled interface boundary
r
tN2
N to

converge to a σ-speed Brownian motion, we
must have

lim
t→0

lim sup
N→∞

P

[
sup

0≤s≤t

rtsN2

N
> ε

]
= 0.

This is equivalent to

lim
t→0

lim sup
N→∞

P {ζss([εN,+∞)) ∩ (−∞,0] 6= φ for some

s ∈ [0, tN2]
}

= 0.

Since random walk jumps originating from

(−∞,−εN ] ∪ [εN,+∞)

which crosses level 0 in one step occur as a
Poisson process with rate

∑∞
k=εN F (k) where

F (k) =
∑
|x|≥k p(x), previous condition implies

that

lim sup
N→∞

N2
∞∑

k=εN

F (k) ≤ C < +∞.



In particular,

sup
N∈Z+

N2
∞∑

k=N

F (k) ≤ Cε < +∞.

Let H(y) = y3 log−β(y ∨ 2) for some β > 1.

Let H(1)(k) = H(k)−H(k − 1)

and H(2)(k) = H(1)(k)−H(1)(k − 1).

k0 ∈ Z+, such that 0 < H(2)(k) < 8k log−β k
for k > k0.

G(k) =
∑∞
i=k F (i) and thus G(k) ≤ Cε

k2 for all

k ∈ Z+.

Then ∑
k∈Z

H(|k|)p(k) =
∞∑
k=1

2H(k)p(k)



is equal to

k0−1∑
k=1

2H(k)p(k) +H(k0)F (k0)

+H(1)(k0 + 1)G(k0 + 1) +
∞∑

k=k0+2

H(2)(k)G(k)

which is bounded by

k0−1∑
k=1

2H(k)p(k) +H(k0)F (k0)

+H(1)(k0 + 1)G(k0 + 1) +
∞∑

k=k0+2

8k

logβ k
·
Cε

k2

<∞



We assume that 2 < γ < 3 and we fix 0 < θ <
γ−2
γ .

Lemma: For almost surely all realizations of

the Harris system in the time interval [0, δN2]

with sup0≤t≤δN2 rNt ≥ εN for some 0 < ε <

1, there exists a dual backward random walk

starting from some site in {Z ∩ [εN,+∞)} ×
[0, δN2] which attains the left of the origin be-

fore time 0 in the voter model by making no

jumps of size greater than or equal to N1−θ.

Take 0 < σ < θ and let ε′ := (1−θ)(3−γ)
σ .∑

|x|≤N1−θ
|x|3+ε′p(x) ≤ CN(1−θ+σ)ε′ .

The estimate required here is the same as in

the proof of Theorem 1, except that as we

increase the index N , the random walk ker-

nel also changes and its (3 + ε′)th-moment



increases as CN(1−θ+σ)ε′. Denote by ζN the

system of coalescing random walks with jumps

larger than or equal to N1−θ suppressed, and

recall that R =
√
δN and M = ε/

√
δ in our ar-

gument.

Proposition: For R > 0 sufficiently large and

2b ≤M < 2b+1 for some b ∈ N, the probability

P
{
ζ
N,t
t ([MR,+∞)) ∩ (−∞,0] 6= φ : for some

t ∈ [0, R2]
}

is bounded above by a constant times

∑
k≥b

 1

22kδε
′
R

(θ−σ)ε′
2

+ e−c2
k

+ 2kR4e−c2
k(1−β)R

(1−β)
2

+2ke−c2
2k
}

for some c > 0 and 0 < β < 1.



Since (ηt◦Θ`t|N)t≥0 is a positive recurrent Markov

chain on Ω̃, by usual convergence results, we

have to show that starting from the Heavy-

side configuration for every t and M sufficiently

large

P (rt − lt ≥M) ≥
C

M
,

for some C > 0 independent of M and t.

Fix λ > 0,

P (rt − lt ≥M, rt−λM2 − lt−λM2 ≤M)

= P (rt − lt ≥M |rt−λM2 − lt−λM2 ≤M)×
P (rt−λM2 − lt−λM2 ≤M) ,

which by tightness is bounded below by

1

2
P (rt − lt ≥M |rt−λM2 − lt−λM2 ≤M)

for M sufficiently large.



Let (X−Mt )t≥0 and (XM
t )t≥0 be two indepen-

dent random walks starting respectively at −M
and M at time 0 with transition probability p(·).
Denote ZMt = XM

t −X
−M
t . For every set A ⊂ Z,

let τA be the stopping time

inf{t ≥ 0 : ZMt ∈ A} .
If A = {x}, we denote τA simply by τx. Then
by duality and the Markov property after trans-
lating the system to have the leftmost 0 at the
origin by time t− λM2 we obtain that

P (rt − lt ≥ 2M |rt−λM2 − lt−λM2 ≤ 2M)

≥ P (τ0 > λM2;X−M
λM2 ≥M ;XM

λM2 ≤ −M) .

Lemma: If p(·) is a non-nearest neighbor tran-
sition probability and has zero mean and finite
second moment, then we can take λ sufficiently
large such that for some C > 0 independent of
M and for all M sufficiently large,

P (τ0 > λM2;X−M
λM2 ≥M ;XM

λM2 ≤ −M) ≥
C

M
.



Let As(M,k, x) be the event

{τx,x+k
0 > λM2−s; Xx+k

λM2−s ≥M ;Xx
λM2−s ≤ −M} ,

where as before, for every x and y, (Xx
t )t≥0 and

(Xy
t )t≥0 denote two independent random walks

starting respectively at x and y with transition

probability p(·), and

τ
x,x+k
0 = inf{t ≥ 0 : Xx+k

t −Xx
t = 0} .

Lemma: Let K ∈ N be fixed. For all l ∈ N
sufficiently large, there exists some C > 0 such

that for all s ≤ λM2/2, |x| < lM and 0 < k ≤ K,

and M sufficiently large

P (As(M,k, x)) >
C

M
.



It suffices to show that, for every M > 0, if t
is sufficiently large, then

P(rt − lt ≥M) ≤
C

M
for some C > 0 independent on M and t.

Fix N ∈ N and assume M = 2N . In the fol-
lowing t will be >> 22N . Let ∆t(s), for s < t,
be the event that a crossing of two dual co-
alescing random walks starting at time t (in
the voter model) occurs in the dual time in-
terval (s, t] and by the dual time t they are on
opposite sides of the origin,.

From the estimates in Cox and Durrett, one
can show that P(∆t(s)) ≤ C/

√
s, if we have

that P(0 ∈ ζss(Z)) ≤ C/
√
s, which holds if p(·)

has finite second moment. Therefore, all we
have to show is that

P
(
{rt − lt ≥ 2N} ∩ (∆t(4N))c

)
≤

C

2N

for some C independent of t and N .



The event

{rt − lt ≥ 2N} ∩ (∆t(4N))c

is a subset of ∪Nk=0V
N
k where V Nk is the event

that there exists x, y ∈ Z with y − x ≥ 2N such

that, for the coalescing walks Xx,t
s and X

y,t
s ,

(i) X
x,t
s < X

y,t
s for every 0 ≤ s ≤ 4k−1;

(ii) There exists s ∈ (4k−1,4k] with Xx,t
s > X

y,t
s ;

(iii) X
x,t
t > 0 and X

y,t
t ≤ 0.

For k = 0 we replace 4k−1 by 0. We obtain

suitable bounds on V Nk which will enable us to

conclude that
∑N
k=0 P (V Nk ) ≤ C

2N
.



Fix 0 ≤ k ≤ N . For 0 ≤ s ≤ t and y ∈ Z, we call

Ry(s) =

{
supx∈Z{|x− y| : X

x,t
s = y} , ∃x : Xx,t

s = y
0 , otherwise

the range of the coalescing random walk at

(s, y) ∈ (0, t]×Z. Obviously V Nk is contained in

the event that there exists x, y in ζt
4k−1(Z) with

x < y such that

(i) Rx(4k−1) +Ry(4k−1) + |y − x| ≥ 2N ;

(ii) There exists s ∈ (4k−1,4k] with Xx,t−4k−1

s−4k−1 >

X
y,t−4k−1

s−4k−1 ;

(iii) X
x,t−4k−1

t−4k−1 > 0, Xy,t−4k−1

t−4k−1 ≤ 0,

which we denote by Ṽ Nk .



We call the crossing between two coalescing

random walks a relevant crossing if it satisfies

conditions (i) and (ii) in the definition of Ṽ Nk up

to the time of the crossing. We are interested

in the density of relevant crossings between

random walks in the time interval (4k−1,4k]

and (as is also relevant) the size of the over-

shoot. We consider separately three cases:

(i) The random walks at time 4k−1 are at x <

y with |x − y| ≤ 2k−1 (so it is ”reason-

able” to expect the random walks to cross

in the time interval (4k−1,4k], and either

Rx(4k−1) or Ry(4k−1) must exceed 2N−2).

(ii) The random walks are separated at time

4k−1 by at least 2k−1 but no more than

2N−1 (so either Rx(4k−1) or Ry(4k−1) must

exceed 2N−2).



(iii) The random walks are separated at time

4k−1 by at least 2N−1. In this case we

disregard the size of the range.

We estimate the relevant crossing densities and

overshoot size in cases (i), (ii) and (iii) above.

We first estimate the expectation of the over-

shoot between two random walks starting at

x < y at time 4k−1 restricted to the event that:

x, y ∈ ζt
4k−1(Z), Rx and Ry are compatible with

y − x as stated in cases (i)–(iii), and the two

walks cross before time 4k. Then we fix a

site x ∈ Z and summing over y ∈ Z, we ob-

tain that the total expected overshoot associ-

ated with relevant crossings in the time interval

(4k−1,4k] involving (x,4k−1) and (y,4k−1) for

all possible y ∈ Z is bounded by

C

 1

2N(1+ε)
+ e−c2

N(1−β)
+
e−c4

N−k

2k

 ,
where β ∈ (0,1) is fixed.



Lemma: For every 0 < β < 1, there exists

c, C ∈ (0,∞) so that for every k ∈ N and m ≥ 1,

the density of y ∈ ζt
4k

(Z) such that on the

(dual) time interval (4k,4k+1] the correspond-

ing random walk distances itself from y by m2k

is bounded by

C

2k

(
e−c(m2k)1−β

+ e−cm
2

+
1

m3+ε2k(1+ε)

)
.

As a corollary, we have

Lemma: For every 0 < β < 1, there exists

c, C ∈ (0,∞) so that for every k ∈ N and m ≥
1, the density of y ∈ ζt

22k(Z) whose range is

greater than m2k is bounded by

C

2k

(
2ke−c(m2k)1−β

+ e−cm
2

+
1

m3+ε2k(1+ε)

)
.



We say a d-crossover (d ∈ N) occurs at site
x ∈ Z at time s ∈ (4k−1,4k] if at this time
(dual time, for coalescing random walks) a rel-
evant crossing occurs leaving particles at sites
x and x + d immediately after the crossing.
We denote the indicator function for such a
crossover by Ik(s, x, d). By translation invari-
ance, the distribution of {Ik(s, x, d)}s∈(4k−1,4k]
is independent of x ∈ Z.

Let Xx
s and Xx+d

s be two independent random
walks starting at x and x+d at time 0, and let
τx,x+d = inf{s : Xx

s = Xx+d
s } . Then P (Ṽ Nk ) is

bounded above by

∑
d∈N

∑
x∈Z

E

[∫ 4k

4k−1
dsIk(s, x, d)×

P
(
Xx
t−s ≤ 0 < Xx+d

t−s , τx,x+d > t− s
)]

=
∑
d∈N

{
E

[∫ 4k

4k−1
Ik(s,0, d)ds

]
×

∑
x∈Z

P
(
Xx
t−s ≤ 0 < Xx+d

t−s , τx,x+d > t− s
) .



If we know that∑
x∈Z

P
(
Xx
t−s ≤ 0 < Xx+d

t−s , τx,x+d > t− s
)
≤ Cd

for some C > 0 independent of k, d, s, t and N ,

and

E

∑
d∈N

d
∫ 4k

4k−1
Ik(s,0, d)ds


is dominated by

C

 1

2N(1+ε)
+ e−c2

N(1−β)
+
e−c4

N−k

2k

 .
Therefore

N∑
k=0

P (Ṽ Nk )

is bounded above by

N∑
k=0

 1

2N(1+ε)
+ e−c2

N(1−β)
+
e−c4

N−k

2k

 ≤ C′

2N

for some C′ > 0 uniformly over all large t and

N and we are done.



If we denote Zds′ = Xx+d
s′ −Xx

s′, (Zds′)
+ = Zds′ ∨0

and τ0 = inf{s′ : Zds′ = 0}, then by translation

invariance, it is not difficult to see that∑
x∈Z

P
(
Xx
t−s ≤ 0 < Xx+d

t−s , τx,x+d > t− s
)

is equal to

E[(Zdt−s)
+, τ0 > t− s] ≤ Cd,

where the inequality with C > 0 uniform over

d and t is a standard result for random walks.



If γ ≥ 2, then the voter model interface evolves

as a positive recurrent chain (Bransom and

Mountford), and hence the equilibrium distri-

bution π exists and π{ξ0} > 0 where ξ0 is the

trivial interface of the Heavyside configuration

η1,0. Let ξt denote the interface configuration

at time t starting with ξ0, and let ν denote its

distribution. Then

π{ξ : Γ(ξ) ≥ n} > π{ξ0}ν{Γ(ξt) ≥ n}

for all t > 0. It suffices to show

lim sup
n→∞

log ν{Γ(ξn2) ≥ n}
logn

≥ 2− α.



Lemma: Let Xt be a centered continuous

time one-dimensional random walk starting at

the origin and with finite 3 + ε moment for

some ε > 0. Then for every 0 < β < 1, there

exists c, C > 0 such that

P
(

sup
t≤T
|Xt| ≥M

)
≤ C

(
e−cM

1−β
+ e−

cM2
T +

T

M3+ε

)
for all T,M > 0.

Lemma 1: Let Xx
t and Xy

t be two independent

identically distributed continuous time homo-

geneous random walks with finite second mo-

ments starting from positions x and y at time

0. Let τx,y = inf{t > 0 : Xx
t = X

y
t } be the first

meeting time of the two walks. Then there

exists C0 > 0 such that

P (τx,y > T ) ≤
C0√
T
|x− y|

for all x, y and T > 0.



Lemma: Given a system of 2J coalescing ran-

dom walks indexed by their starting positions

{x(1)
1 , x

(1)
2 , ..., x

(J)
1 , x

(J)
2 } at time 0, if

x
(1)
1 < x

(1)
2 < · · · < x

(i)
1 < x

(i)
2 < · · · < x

(J)
1 < x

(J)
2 ,

and supi |x
(i)
1 −x

(i)
2 | ≤M for some M > 0, then

for any fixed time T > C2
0M

2 with C0 satisfy-

ing Lemma 1, the number of coalesced walks

by time T stochastically dominates the sum

of J independent Bernoulli random variables

{Y1, ..., YJ}, each with parameter 1−C0M/
√
T .

In particular the probability that the number of

coalesced particles by time T is smaller than N

is bounded above by

P

 J∑
i=1

Yi ≤ N

 .



Proposition: Let 1
2 < p < 1 be fixed. Consider

a system of coalescing random walks starting

with at most γL particles inside an interval of

length L at time 0. Let K0 =
64C2

0
(2p−1)4, where

C0 is as in Lemma 1. If γL ≥ 8
2p−1, then there

exist constants C, c depending only on p such

that, the probability that the number of parti-

cles alive at time T = K0
γ2 is greater than pγL

is bounded above by Ce−cγL.



Lemma: In the system of backward coalesc-

ing random walks {Xx,s}(x,s)∈Z×R dual to the

voter model, assume the random walk incre-

ment distribution p (·) has finite 3+ε moment.

Then there exist C > 0 depending only on p (·),

such that for all K ≥ 1,

P
{

for some (x, s) ∈ [2kR,2k+1R]× [0, R2],

|Xx,s
u − x| ≥

2kR

(logR)2

for some 0 ≤ u ≤ s−Kb
s− 1

K
c
}

is bounded above by

CK(logR)2(3+ε)

22k+3εRε

for all R sufficiently large.



Lemma: Let ζZ
t be the process of coalescing

random walks starting from Z at time 0 where

all random walk increments are distributed ac-

cording to a transition probability p(·) with fi-

nite second moment. Then for all t > 0

P(0 ∈ ξZ
t ) ≤

C√
t

for some C > 0.


