26 04 im alumniV8
22 11 im fatiado face
22 11 im fatiado twitter
22 11 im fatiado youtube
22 11 im fatiado gmail
22 11 im fatiado brazil
22 11 im fatiado england
22 11 im fatiado spain

Título: Closed Geodesics on Surfaces without Conjugate Points

Palestrante: Khadim War (IMPA)

Data: 23 de setembro (quarta feira)
Horário: 13h00
Local: Transmissão online

ID da reunião: 843 901 7386
Senha de acesso: 849232

Resumo: We obtain Margulis-type asymptotic estimates for the number of free homotopy classes of closed geodesics on certain manifolds without conjugate points. Our results cover all compact surfaces of genus at least 2 without conjugate points. This is based on a join work with Vaughn Climenhaga and Gerhard Knieper.

Título: Some recent results on multicritical circle maps

Palestrante: Gabriela Alexandra Estevez Jacint (IM-UFRJ)

Data: 9 de setembro (quarta feira)
Horário: 13h00
Local: Transmissão online  

Entrar na reunião Zoom
ID da reunião: 843 901 7386
Senha de acesso: 849232

Resumo: We study circle homeomorphisms with a finite number of "inflexive" critical points and without periodic points, so-called multicritical circle maps. The topology of these maps is well under-stood. One of the main questions in one-dimensional dynamics is on the conditions that make the topology determine the geometry. In this talk, we will discuss some recent results concerning this question for multicritical circle maps

Título: Expoentes de Lyapunov de cociclos lineares
Palestrante: Katrin Gelfert (UFRJ)

Data: 13/11/2019 (quarta feira)
Horário: 15:15
Local: IM-UFRJ, CT, sala C-116

Resumo: Apresentarei resultados de um estudo de medidas não-hiperbólicos. Foco serão sistemas parcialmente hiperbólicos que têm uma descrição simples como produto semi-direito de um sistema hiperbólico na sua base (e.g. uma ferradura de Smale) e uma dinâmica nas suas fibras onde os efeitos das contrações e expansões se sobrepõem e a ação da dinâmica é neutra. Um modelo simples e rico para uma tal dinâmica são difeomorfismos do círculo inducidos pelas ações projetivas de matrizes de SL, em particular quando se misturam matrizes hiperbólicas (autovalores diferentes de um) com elípticas (autovalores de módulo um). Apresentaremos como expoentes de Lyapunov de tais denominados cociclos se traduzem para os expoentes de Lyapunov do sistema parcialmente hiperbólico. Faremos uma análise do espectro de tais exponentes em termos da entropia topológica dos conjuntos de tais pontos com o mesmo expoente. Ferramenta principal é a pressão topológica e a análisa da topologia do espaço das medidas ergódicas. A decomposição do espaço das medidas ergódicas em medidas hiperbólicas de indices diferentes e em medidas não-hiperbólicas é uma chave principal para a análise.

Palestra: Non-convergence of equilibrium states at zero temperature for geodesic flows
Palestrante: Felipe Riquelme (PUC-Valparaiso, Chile)

Data: 04/03/2020 (quarta feira)
Horário: 15:15
Local: IM-UFRJ, CT, sala C-116

Resumo: In this talk we will be interested on the study of ground states at zero temperature for positive Hölder-continuous potentials under the dynamic of the geodesic flow in negative curvature over non-compact manifolds. More precisely, for F: X -> R a vanishing at infinity positive potential, we will study the asymptotic behavior of the equilibrium state m(tF) for the potential tF as t tends to infinity. We will primarily focus our attention in the construction of such a potential describing non-convergence at the limit. This is a joint work with Anibal Velozo.

Título: Aproximação de medidas ergódicas por ferraduras no cenário parcialmente hiperbólicos
Palestrante: Bruno Santiago (UFF)

Data: 30/10/2019 (quarta feira)
Horário: 15:15
Local: IM-UFRJ, CT, sala C-116

Resumo: Um resultado clássico da teoria dos sistemas uniformemente hiperbólicos, devido a Sigmund, garante que as medidas de Dirac uniformemente distribuídas ao longo de órbitas periódicas formam um subconjunto denso do espaço das medidas invariantes. Como consequência disso, pode-se mostrar que as medidas de Bernoulli também formam um subconjunto denso do mesmo espaço, evidenciando a riqueza e complexidade desse tipo de sistema dinâmico (esse é outro resultado devido a Sigmund). Por trás desse último teorema está a aproximação ergódica de medidas invariantes por ferraduras, o que é possível de se fazer para medidas invariantes hiperbólicas (sem expoentes nulos), um clássico resultado de Katok depois aprimorado por Gelfert, incluindo aí o contexto C1 mais dominação. Neste seminário, vou mostrar como usar blenders e folheações fortes minimais para obter aproximação de medidas ergódicas não-hiperbólicas (expoente central nulo) por ferraduras, no contexto de difeos robustamente transitivos, parcialmente hiperbólicos e com central uni-dimensional. Trabalho em colaboração com Katrin Gelfert e Lorenzo Diaz.

Topo